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OBJECTIVES: To compare choroidal vascularity index (CVI) measurements using the automated image binarization algorithm in
healthy subjects with two Spectralis spectral-domain optical coherence tomography (SD-OCT) protocol scans.
METHODS: Sixty-nine eyes of 69 healthy volunteers were included in this cross-sectional prospective study. Two subsequent
horizontal 20°line scans passing through the fovea were acquired with enhanced-depth imaging mode with high speed (HS) and
high resolution (HR) protocol scans. CVI and its subcomponents were measured with the previously validated automated algorithm.
Differences between choroidal measurements obtained with HS and HR protocol scans were evaluated with t-test and Bland &
Altman plots.
RESULTS: A total of 33 male (47.8%) and 36 female (52.2%) subjects with a mean age of 35.1 ± 13.4 years were included. Overall, HS
protocol scan was associated with significant lower values of total choroidal area (−0.047 mm2) and stromal choroidal area
(−0.036mm2), and a significant greater value of CVI (+0.010%) if compared to HR protocol. Luminal choroidal area was lower when
calculated with the HS protocol, although it did not reach significance. To compare the two different protocols, the number of
pixels should be multiplied for 3.87 ×5.73 when the CVI is measured on a HR OCT b scan and 3.87 ×11.46 for the HS OCT b scan.
CONCLUSIONS: HS and HR acquisition modes significantly influence CVI and its subcomponents values measured with the
automated software. However, adopting the scale factors can minimize the differences between the two protocol scans.
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INTRODUCTION
The choroid is one of the most vascularized tissue of the body and
contributes to the majority of oxygen and other nutrients supply
to the outer retina and the retinal pigment epithelium (RPE) [1]. It
is composed of three vascular layers: Haller’s layer with large-sized
vessels, Sattler’s layer with medium-sized vessels and chorioca-
pillaris. Vascular changes of the choroid play an important role in
the pathogenesis of many retinal diseases [1].
The advent of the optical coherence tomography (OCT) over the

last decades has allowed a detailed and non-invasive examination
of the choroidal vessels [2]. Particularly, the introduction of
enhanced depth imaging (EDI) spectral domain (SD)-OCT and
swept source (SS)-OCT have provided a more in-depth analysis of
the choroidal structure. Although choroidal thickness (CT) is
considered a robust tool in clinical research, it only reflects the
total choroidal structure including stroma and vasculature [2, 3].
Conversely, the new OCT metric named choroidal vascularity

index (CVI) allows to calculate the area of dark and light pixels
corresponding to the luminal and stromal areas of the choroid
[4, 5]. CVI, a ratio of the luminal choroidal area (LCA) and total
choroidal area (TCA), was originally calculated through a semi-
automated algorithm requiring a manual selection of the TCA

followed by the application of several auto-local thresholds to
binarize the image and select dark pixels [6–9].
More recently, fully automated choroidal segmentation and

binarization algorithms allowing a significant reduction of the time
required for the analysis have been reported [10–15]. Several
authors investigated the differences in terms of CVI values
measured with SD-OCT or SS-OCT [16], or between the different
algorithms employed [17]. Nevertheless, the influence of different
OCT protocol scans on automatized CVI measurement has never
been studied.
The two Spectralis protocol scans, high resolution (HR) and high

speed (HS), differ in terms of resolution and speed of scan
acquisition.
In this study, we compared CVI measurements and its

subcomponents using the automated image binarization algo-
rithm in healthy subjects with both the HS and HR Spectralis
protocol scans.

METHODS
This was a prospective, cross-sectional study conducted at Referral Center
of Hereditary Retinal Dystrophies of the University of Campania “Luigi
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Vanvitelli”. The investigation was approved by the Local Ethical Committee
of the University of Campania “Luigi Vanvitelli” and performed according
to the guidelines of the Declaration of Helsinki. After receiving a detailed
explanation of the study, written informed consent was obtained from all
participants before examination.

Patients and clinical examination
All subjects were screened for the presence of any ocular disease through
a complete ophthalmologic examination including best corrected visual
acuity (BCVA), intraocular pressure, slit-lamp biomicroscopy and fundus
examination.
Exclusion criteria were patients younger than 18 or older than 70 years,

ocular surgery in the previous 6 months, history of any systemic and
ophthalmic disease, pregnancy, and a spherical equivalent refractive error
greater than −6 D or +3 D. In addition, patients with media opacities that
could influence image quality were also excluded from the study.
Particularly, all scans with poorly visible choroidal scleral interface were
excluded. All individuals required a BCVA of 20/25 or better.

Image acquisition
All patients were imaged using the Spectralis SD-OCT version 6.12.3.0
(Spectralis, Heidelberg Engineering, Heidelberg, Germany). Two subse-
quent horizontal 20°line scans passing through the fovea were acquired
with EDI mode in HS and HR. Patients were instructed to see the central
blue light and not blink the eye during the examination. All OCT
examinations were performed between 10:00 and 12:00 am. The operator
(P.C.) was trained to the study protocol and performed all OCT scans.
The CVI was calculated using the previously reported automated

algorithm, that included initial denoising with localization of the choroidal
inner and outer boundary [10, 12, 13]. To allow computation of LCA and
stromal choroidal area (SCA), the OCT B-scan was binarized and choroidal
components were segmented. Automated binarization process included
exponential and non-linear enhancement, and thresholding. The dark
regions were labeled as LCA and the bright regions as SCA. TCA was
measured as the sum of the SCA and LCA, and the CVI was calculated as
the ratio of LCA over TCA. All choroidal measurements were performed for
both HS and HR Spectralis protocol scans. To compare the measurement of
CVI subcomponents obtained with the two protocol scans, the area of LCA
and TCA were estimated in µm2, by multiplying the number of pixel per
scaling Z (i.e., 3.87 µm/pixel for both protocol scans) and per scaling X
factor (i.e., 11.46 for HS; 5.73 for HR protocol scan).

Statistical analysis
Continuous variables are reported as mean ± standard deviation (SD) and
categorical variables are reported as counts (frequency). Differences
between measurements obtained with HS and HR protocol scans were
evaluated with t-test and Bland & Altman plots. P-values lower than 0.05
were considered as statistically significant.

RESULTS
A total of 69 eyes of 69 healthy volunteers were included in the
study. Only the right eye was selected for the analysis. There were
33 male (47.8%) and 36 female (52.2%) subjects with a mean age
of 35.1 ± 13.4 years.
Regarding choroidal measurements, mean TCA was

1.86 ± 0.52mm2 and 1.91 ± 0.54 mm2 measured with HS and HR
protocol scan respectively (p= 0.005).
Mean SCA and LCA were 0.65 ± 0.21mm2 vs 0.69 ± 0.22 mm2

(p= 0.0004) and 1.21 ± 0.32 mm2 vs 1.22 ± 0.33 mm2 (p= 0.255)
for HS and HR protocols, respectively. Regarding CVI evaluation,
we found a mean of 0.65% ± 0.04% with HS protocol scan and
0.64% ± 0.03% with HR (p= 0.001).
Overall, as shown in Fig. 1, HS protocol scan gave significant lower

values of TCA (−0.047mm2) and SCA (−0.036mm2), and a significant
greater value of CVI (+0.010%) if compared to HR protocol.
To compare the two different protocols, the number of pixels

should be multiplied for 3.87 ×5.73 when the CVI is measured on a
HR OCT b scan and 3.87 ×11.46 for the HS OCT b scan. A
representative case of CVI measurements and its subcomponents
measured with the two acquisition modes is shown in Fig. 2.

DISCUSSION
CVI has been widely recognized as a valuable, repeatable and
robust OCT metric for both healthy and disease eyes [12, 15, 18].
The automated software employed to measure CVI provides the
capability to calculate quantitative parameters of the choroid and
stratify the vascular and stromal components [4]. Several authors
investigated the differences in terms of CVI values measured with
SD-OCT or SS-OCT[16], or between different algorithms [17] and
different scanning area [19], reporting a high reproducibility in all
cases [16, 17, 19].
More recently, Esroz et al. investigated the repeatability of CVI

values in centered and decentered directional subfoveal OCT
scans [20]. The authors found a moderate agreement between
CVIs obtained from scans acquired using a different pupil entry
position of the beam and suggested to always use the same
direction of the beam to standardize CVI measurements [20]. Corvi
et al., analyzed the repeatability of OCT angiography derived
retinal quantitative metrics using HR versus HS acquisition modes,
reporting statistically significant different values [21].
In the present study, we compared CVI measurements and its

subcomponents using the automated image binarization algo-
rithm in healthy subjects with both the HS and HR Spectralis
protocol modes. The two protocols differ with regard of the
resolution of the B-scan with twice as many pixels of acquisition
with the HR mode. Higher resolution and greater number of pixels
for acquisitions require longer scan times. The scaling factor
adopted from the automatized software used for CVI evaluation
has been originally set on the HS protocol scan [10, 12, 13].
Particularly, there are two different resolutions along the X axis for
the two protocol scans: 5.73 μm/pixel for HR and 11.46 μm/pixel
for HS resolution. On the other hand, the resolution along the
vertical axis is the same (3.87 μm/pixels). These different resolu-
tions influence the analysis of the CVI and its subcomponents. As
demonstrated, HS protocol scan is associated with a significant
greater value of CVI and significant lower values of TCA and SCA if
compared to HR protocol. In absolute numbers, being the X axis
11.46 μm/pixel for HS resolution and 5.73 μm/pixel for HR, the TCA
and SCA were both significantly lower with HS protocol and
consequently the CVI was significantly higher. Regarding LCA, it
was also lower when calculated with the HS protocol although it
did not reach significance.
Of note, considering that once the OCT b scan has been

acquired with the HS or HR protocol scan it is not possible to
change it back to the other one, a conversion factor to allow
comparisons between different protocols resolution could be very
useful for retrospective studies. To compare the two different
protocols, the number of pixels should be multiplied for 3.87 ×5.73
when the CVI is measured on a HR OCT b scan and 3.87 ×11.46 for
the HS. By adopting these proportions, OCT scans acquired with
the two different protocols can be compared with limited bias of
the results. This is of particular importance in case-control or
cohort studies where the CVI or its subcomponents can be
compared even with B scan acquired with either HR and HS mode.
CVI analysis remains in a state of rapid evolution and develop-
ment, and in a near future it could be embedded in the software
of all OCT machines, providing additional information about the
vascular status of the choroid.
Of note, the automated software allows a significant reduction

in the time required for a precise quantitative analysis of the
choroidal vasculature and therefore its use is increasing among
researchers worldwide.
Moreover, all the considerations made for the choroidal

vasculature measurements performed with the automated soft-
ware should be also taken into account for the semiautomated
analysis originally proposed by Agrawal and coauthors [22].
Particularly, all ophthalmologists/technicians should be aware of
the different pixel proportions on the X axis when calculating CVI
with the semiautomated software as well. The Heidelberg
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Spectralis is the only OCT allowing the two HR and HS acquisition
modalities, but it would be interesting to also investigate the
variability in the CVI evaluation among several OCT machines to
ascertain any discrepancies in terms of pixel resolution influencing
the CVI and its subcomponents values.
Limitations of the present analysis include the relatively small

number of subjects included. As a result, the study could be
underpowered to detect very small differences in the various
choroidal OCT metric evaluations, although only LCA did not reach
significance. Additionally, the follow-up function was not applied
when performing OCT scans, but this is not allowed from the
manufacture when using different protocol scans.
In summary, we observed that HS and HR acquisition modes for

Spectralis OCT influence the CVI and its subcomponents values
measured with the automated software. However, adopting the
proposed scale factors can minimize the differences between the
two acquisition modes. Considering the significant interest in

using the CVI in the clinical setting, the results of our study
highlight an important technical issue never reported before.

Summary
What was known before

● Automatic algorithms allow a significant reduction of the time
required for the analysis of the choroidal vascularity
index (CVI).

What this study adds

● High speed and high resolution acquisition modes for Spectralis
optical coherence tomography influence the CVI and its
subcomponents values measured with the automated software.

Fig. 1 Bland–Altman plots comparing the choroidal measurements between high resolution (HR) and high-speed (HS) spectral-domain
optical coherence tomography scan protocols. The black lines indicate the mean difference between HR and HS, whereas the gray dotted
lines denote the 95% confidence intervals. Specifically, Bland–Altman plot shows no significant difference in LCA measurements between HS
and HR protocols (A); lower values of SCA (B) and of TCA (C) with HS protocol compared to HR; greater value of CVI (D) with HS protocol
compared to HR.
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● Adopting the proposed scale factors can minimize the differences
between the two scan protocols.

DATA AVAILABILITY
The dataset generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request.
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