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BACKGROUND/OBJECTIVES: We aim to develop an objective fully automated Artificial intelligence (AI) algorithm for MNV
lesion size and leakage area segmentation on fluorescein angiography (FA) in patients with neovascular age-related macular
degeneration (nAMD).
SUBJECTS/METHODS: Two FA image datasets collected form large prospective multicentre trials consisting of 4710 images from
513 patients and 4558 images from 514 patients were used to develop and evaluate a deep learning-based algorithm to detect CNV
lesion size and leakage area automatically. Manual segmentation of was performed by certified FA graders of the Vienna Reading
Center. Precision, Recall and F1 score between AI predictions and manual annotations were computed. In addition, two masked
retina experts conducted a clinical-applicability evaluation, comparing the quality of AI based and manual segmentations.
RESULTS: For CNV lesion size and leakage area segmentation, we obtained F1 scores of 0.73 and 0.65, respectively. Expert review
resulted in a slight preference for the automated segmentations in both datasets. The quality of automated segmentations was
slightly more often judged as good compared to manual annotations.
CONCLUSIONS: CNV lesion size and leakage area can be segmented by our automated model at human-level performance, its
output being well-accepted during clinical applicability testing. The results provide proof-of-concept that an automated deep
learning approach can improve efficacy of objective biomarker analysis in FA images and will be well-suited for clinical application.
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INTRODUCTION
Age-related macular degeneration (AMD) is the leading cause for
vision loss affecting the population over 50 in the developed
world [1].
Retina specialists rely heavily on retinal imaging in the

diagnosis, monitoring and therapy of patients with neovascular
AMD (nAMD). Although optical coherence tomography (OCT) and
in recent years OCT Angiography (OCTA) became the most
common diagnostic modalities for diagnosis and monitoring,
fluorescein angiography (FA) is still considered as the gold
standard of solidifying the diagnosis of nAMD [2]. The most
important biomarker of macular neovascularization (MNV) activity
seen in FA is leakage area, which is characterized by increasing
hyperfluorescence originating from an active MNV lesion seen in
late phase images [3].
FA biomarkers such as presence, size and location of CNV

lesions as well as its lesion type and activity are very useful in the
clinical diagnostics and research [4, 5].
FA evaluation is especially critical in the context of clinical

studies for determining study eligibility of patients, tracking
disease progression or analyzing the efficacy of treatment.

This requires manual segmentation, which is time-consuming,
subjective as it suffers from high inter- and intra-grader
variability and has to be performed by retina experts [6].
Particularly in large multicentre studies, these drawbacks are
very significant, as the process of manual annotation does not
scale well with big data, and needs to be harmonized among
multiple retina experts within as well as across different reading
centres involved in each study. Therefore, developing an
automated and objective way to detect and segment CNV
lesion size and leakage area is desirable. This would not only
allow analyzing FA images in real-time, but also offers the
possibility of conducting even large-scale analyses fast and
objective to reduce variability of manual readings. Deep-
learning based convolutional neural networks (CNN) have
already been successfully applied to a multitude of medical
imaging tasks outside of ophthalmology such as vessel [7] or
brain tissue segmentation [8], and this technique has also shown
impressive performance in multiple retinal imaging tasks [9].
In this study, we developed deep learning-based models for

fully automated segmentation of CNV lesion size and leakage area.
The proposed method additionally provides an uncertainty
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estimation of the prediction, being important for adopting into
clinical routines and eventual subsequent revision by humans [10].

MATERIALS/SUBJECTS AND METHODS
Dataset
This study was conducted in adherence to the tenets of the
Declaration of Helsinki, and ethics approval was obtained by the
Ethics Committee of the Medical University of Vienna Submission Nr
1246/2016. The study is a retrospective data analysis and the ethics
committee decided that informed patient consent is not necessary.
In this study, two datasets from large prospective multicentre

trials for evaluation of anti-vascular endothelial growth factor drugs
in patients with nAMD were used, consisting of FA images from the
Vienna Reading Center (VRC) image database. The first dataset ‘FA-
CNV’ is comprised of 4710 FA images containing CNV lesions from
513 eyes of 513 patients. The second dataset ‘FA-Leakage’ consists
of 4558 FA images from 514 eyes of 514 patients.
Manual ground truth image segmentation was performed by

certified and trained FA graders of the VRC in a standardized
manner to reach best possible human objectiveness. CNV lesion
size was annotated in ‘FA-CNV’ and leakage area was annotated in
‘FA-Leakage’ dataset for each individual image. The images to be
segmented were selected manually from the best images of the
FA image series between 45–90 s for CNV lesions and 5–10min for
leakage area.
All FA images in the datasets have been acquired using

different conventional FA cameras certified by the VRC following a
standardized image acquisition protocol and fulfilling VRC’s
minimal resolution criteria. In particular, the FA images were
acquired using FF540+, Spectralis HRA+OCT, TRC50 & TRC50IX,
Topcon 2000 and Megaplus 1,4 l from manufacturers Zeiss,
Heidelberg, Topcon, Megaplus and Optovue.
No images were excluded due to bad quality. Instead, all images

that had been manually annotated were also used for training the
automated segmentation model. The used datasets are thus
characterized by a large variability in terms of image quality, pixel
size, field-of-view, contrast, viewing angle, imaging artefacts or
motion blur.

Technical setup: Network architecture
We propose an AI-based approach using a convolutional neural
network (CNN) architecture requiring labelled data [11].

In general, the model follows a U-Net [12] based architecture,
with some adaptations. It consists of a contracting (encoder) and
expanding (decoder) part, as shown in Fig. 1. Skip connections are
used between and within each level, as they have shown to be
beneficial for the overall performance of the network [13].
In order to facilitate annotations during clinical application, the

proposed model also provides an uncertainty map. For each pixel
the model both outputs a prediction and an uncertainty
estimation of this prediction [14] (Fig. 1). In this context,
uncertainty estimates quantify the confidence of the model
regarding its prediction, indicating when and where we can trust
the prediction of the model.

Experimental setup and statistical analysis
Both datasets were randomly split on a patient-distinct basis into
70% training, 10% validation, and 20% test set. While the training
set was used for learning the optimal parameters of the model,
the validation set was utilized to tune the hyperparameter settings
such as the learning rate, number of model parameters or the
dropout rate. The final generalization performance of the
algorithm was evaluated in the test set. The split resulted in
3343/507/860 training/validation/test FA images in the ‘FA-CNV’
dataset and 3210/493/860 in the ‘FA-Leakage’ dataset.
We assessed the networks segmentation performance by

comparing the model predictions with the manual annotations.
F1 score, Precision and Recall were used for quantitative
evaluation, which are well-known and widely used metrics for
comparing segmentation results.
Precision indicates the amount of true positive pixels among all

predicted target pixels. Recall is the amount of true positive pixels
among all annotated target pixels of the ground truth. In other
words, recall is a measure for how good the model is in detecting
pixels of the target class, while precision indicates how relevant
the detected target pixels are. The F1 score is the harmonic mean
of precision and recall used to balance both [15].
We also evaluated the impact of image quality on the

segmentation performance of the model. For this we used an
internal automated image quality assessment algorithm for FA,
providing a score in the range [0,1] for multiple image quality
categories (‘overall-quality’, ‘noise’, ‘focus’, ‘contrast’), with 0
indicating bad and 1 good quality. We then computed the
Spearman correlation coefficient between these image quality
scores and the F1 score of the AI segmentation models on both

Fig. 1 Overview of the network. Overview of the proposed deep learning model for (a) CNV lesion size and (b) leakage area segmentation.
The input image is shown on the left-hand side, while the model output is illustrated on the right hand side, consisting of a binary
segmentation and an uncertainty map. The model provides an uncertainty estimation of the prediction for each pixel.
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datasets, across all images in the test set. A description of the
automated quality assessment algorithm is provided in the Sup-
plemental information.

Evaluation of clinical applicability
To evaluate the clinical applicability of the deep-learning model,
an extensive evaluation was performed by two trained retina
experts of the VRC (GM, BH). For each of the FA images of the test
set, both masked experts judged the quality of the manual as well
as the automated segmentations as ‘good segmentation’ vs. ‘bad
segmentation’. In addition, both experts had to decide which
segmentation they preferred for each image. Both experts were
masked for this evaluation, meaning that they did not know which
image showed the manual annotation and which showed the
automated segmentation result coming from the deep
learning model.

RESULTS
Quantitative and qualitative results
Table 1 shows an overview of the results of the quantitative
evaluations including the average F1 score, Precision and Recall
for both datasets. The F1 score for the FA-Leakage dataset (0.73) is
slightly higher than the F1 score for the FA-CNV dataset (0.65), as
are precision and recall. A quantitative comparison of the
presented AI algorithm with a baseline is provided in the Supple-
mental information.
On average, the automatic segmentation together with its

uncertainty estimation by the AI model required 90milliseconds of
computation time for a single FA image, using a ‘GeForce GTX
1080 Ti’ GPU. The whole segmentation pipeline including loading,
pre-processing, segmentation, uncertainty estimation, post-
processing and saving of the image took around 3 s, while this
pipeline was not optimized for speed.
Qualitative segmentation results with uncertainty estimates are

presented both for the FA-CNV and FA-Leakage dataset in Fig. 2.
Typically, the highest uncertainty is present at the edges of
segmentations, and in areas of heterogeneous appearance in the
centre of the leakage area. Figure 2 depicts a representative set of
cases to allow insights into the characteristics of the dataset and
results, including the heterogeneity of images (e.g., low contrast in
third row of Fig. 2b, differences in field-of-view between third and
fourth row in Fig. 2a), improved segmentation of the AI model in
comparison with manual annotations (first row of Fig. 2b) or false
positive predictions of the algorithm (third row of Fig. 2b).
We observed that the performance of the proposed deep

learning models is stable even when facing a wide variety of
different input image appearances. This is supported by the
Spearman correlation coefficients between the image quality
scores and the F1 scores being close to zero: 0.005/0.04/0.02/0.01
in ‘FA-CNV’ and 0.04/0.06/0.07/0.02 in ‘FA-Leakage’ for overall-
quality/noise/focus/contrast, respectively.

Evaluation of clinical applicability
The deep learning based automated segmentations of the
proposed approach were preferred more often than their human
counterparts for both datasets (Fig. 3a).
Both automated predictions and manual human annotations

were judged as being of good quality in the majority of cases

(Fig. 3b). Compared to manual human annotations, automated
predictions were judged more often as good quality, indicating
that the proposed deep learning models achieve at least
human-level performance in both the ‘FA-CNV’ and the ‘FA-
Leakage’ datasets.

DISCUSSION
In order to streamline the segmentation of CNV lesions and their
FA leakage areas, a new deep learning-based approach using
uncertainty estimation was proposed. The models produce
segmentations in a fast, precise, and upscale-able way, achieving
human-level performance in our clinical applicability evaluation.
Manual annotations suffer from a wide variety of problems,

such as the time it takes to produce high-quality annotations or
the subjectivity leading to high inter-, or intra-reader variability. In
contrast, automated models are objective and able to segment in
real time, offering the potential for big data analysis and for
producing high-quality segmentations even in small or under-
staffed clinics.
In recent years OCT and OCT angiography (OCTA) more or less

replaced FA in routine clinical applications, as these examinations
are non-invasive, and faster than FA. Although for the clinical
diagnosis of a treatment-naïve CNV, OCT and OCTA are sufficient in
most cases, in a fair number of cases FA is still necessary, as only
this examination depicts the dynamics of dye leakage over time.
Furthermore, although wide-field OCTA systems are being devel-
oped, ultra-wide-field FA systems are readily available, and thus are
far superior in detecting changes outside of the macular area [16].
Together with signs of exudation in OCT, FA parameters such as

CNV lesion size and area of FA leakage are still highly important
biomarkers in monitoring disease activity and recurrence during
anti-VEGF therapy, and as such are key part of any clinical trial
investigating the efficacy of new drugs. Currently such analyses
are performed manually by trained graders. Although the graders
in our study are certified from a highly standardized renown
centre, the VRC, perform numerous alignment trainings, and their
gradings follow standardized protocols, inter- and intra-grader
reproducibility of such readings is still only moderate to fair
[17, 18]. Artificial intelligence (AI) can further improve the
reproducibility of the grading of these biomarkers. In future
research, combining multiple imaging modalities resulting in high-
quality information about the CNV lesion could be achieved. For
example, by localizing potential lesions using FA in 2D first, and
secondly getting more detailed information by using 3D OCTA. In
this context, the proposed model could be also used in future
studies to identify potential still unknown „patterns of leakage“ in
OCTA by automatically segmenting leakage areas in FA and
mapping the corresponding area to OCTA, in datasets where both
FA and OCTA are available. Mapping the automatic segmentation
in FA to OCTA would allow training an automatic leakage
segmentation model for OCTA, learning “leakage patterns” in
OCTA without involving manual labels. This may help to replace
invasive FA with non-invasive OCTA, that allows faster acquisition,
and carries no risk of the potentially adverse reactions [16].
For CNV segmentation, deep learning-based segmentation has

been proposed in prior publications for OCTA scans only [19]. For FA
images, parametric modelling was used to segment CNV lesions, the
algorithm however requiring FA images of each phase, leading to

Table 1. Depiction of the F1 score, Precision and Recall on ‘FA-CNV and ‘FA-Leakage’ test sets for the final CNV lesion size and leakage area
segmentation model.

Dataset Average F1 score ± standard deviation Average precision ± standard deviation Average recall ± standard deviation

FA-CNV 0.65 ± 0.26 0.75 ± 0.29 0.72 ± 0.28

FA-Leakage 0.73 ± 0.21 0.80 ± 0.23 0.78 ± 0.25
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Fig. 2 Qualitative results. Qualitative results of (a) CNV lesion size and (b) Leakage area segmentation. The original FA input image is shown
on the left-hand side, followed by the binary automated segmentation map, the uncertainty map, the manual segmentation of the trained
experts and the original image with the outline of both manual and automated segmentations overlaid (green: manual annotations, pink: AI
prediction). This figure shows a set of representative cases to provide a realistic view on the characteristics of data and results.
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failure in case of non-providence [5]. In contrast, in our work we
propose a fully automated segmentation model that operates on
individual FA images, providing an output segmentation map using
a single FA image as input. On the one hand, this overcomes the
drawback of needing multiple images of several phases as input for
the segmentation model. On the other hand, this also means that
capturing the leakage dynamic can only be done indirectly by
segmenting multiple subsequent images.
In the clinical applicability evaluation our models reached human-

level performance, meaning that more automated segmentations
than manual human segmentations were preferred by the retina
experts. With an overall selection rate for ‘FA-Leakage’ of 52.2% and
‘FA-CNV’ of 51.9%, the predictions of the proposed deep learning-
based models can be considered as high-quality segmentations on-
par with human annotators. The results show that the automated
predictions even slightly outperform the manual segmentations in
our clinical applicability evaluation. This is a remarkable outcome,
especially as the used datasets were particularly challenging due to
the heterogeneous composition featuring images of different
sharpness, contrast, resolution, field-of-view, etc.
The proposed models allow producing uncertainty estimations

simultaneously with its predictions, providing valuable visualiza-
tions for subsequent processing or usage. The visualized
uncertainty maps in Fig. 2 align with our expectations, being
high in border regions and areas of low contrast or heterogeneous
appearance. In general, uncertainty maps support the procedure
of human revision and offer insights when and where the
prediction should be re-evaluated. We believe that this may be a
cornerstone of clinical application, helping to open the black box
of a convolutional network a bit.
The results did not show a correlation between image quality

and segmentation accuracy, meaning that the performance of
the AI models was robust with respect to image quality. This
demonstrates the potential of the algorithms, as this correlation
has been shown to be present with humans [20]. In the

application scenario where a subsequent check of the auto-
mated segmentation result by a human is intended, an image
quality detection algorithm could be utilized as a pre-processing
step to ensure a certain quality of the overall pipeline [21, 22].
While both segmentation models show stable and accurate

results in general, one limitation is that the models tend to over-
segment target areas in complex cases such as multiple
pathologies appearing within the same image. However, we also
observed that these cases show high uncertainty at the same time
and could therefore be identified in clinical practice. Examples are
provided in the Supplemental information. Compared to under-
segmentation, oversegmentation is less severe, as no lesion would
be missed (e.g., in a screening setting). Nevertheless, this
limitation with respect to oversegmentation could be addressed
in future work by using more training data featuring multiple
pathologies, or by using a specific loss function during training
that penalizes oversegmentation of the model in a stronger way.
One key aspect of FA evaluation in patients with CNV is
the determination of dynamic leakage compared with static
staining. Our AI algorithm cannot determine this directly, and
can only give indirect indication of a dynamic process by
providing an accurately measured growth in the area covered
by hyperfluorescence when being applied to multiple subsequent
images (indicating leakage). Further development is needed to be
able to differentiate between these two angiographic features
automatically.
In conclusion, we have presented a deep learning-based

approach for segmenting CNV lesion sizes and leakage area in
individual FA images. The additional capability of the method to
provide uncertainty estimations of the automatically created
predictions constitutes a key concept for clinical applicability
besides real-time performance and scalability. Moreover, the
results showing human-level performance of the proposed
models in both tasks demonstrate the potential of the method
for clinical practice.

Fig. 3 Results of the manual evaluation, performed by two retina experts. a Bar graphs illustrate the results for the first judgement, asking
which of the shown segmentations is preferred (automated vs. manual in a masked fashion for the grader). b Detailed results of the second
evaluation, asking if shown segmentations (automated or manual annotation) are of good or bad quality. Available choices were ‘AI & human
good’, ‘AI good & human bad’, ‘AI bad & human good’ or ‘AI & human bad’.
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SUMMARY

What was known before

● The reproducibility of manual grading in FA is moderate to low.
● Due to low intra- and inter-grader reproducibility, the

usefulness of biomarkers seen in FA cannot be fully deployed,
particularly in the comparison of novel therapies.

● Manual grading is also time-consuming and costly, hindering
analyses on a large-scale basis.

What this study adds

● A new AI segmentation model that provides a fully automated,
fast and precise segmentation of CNV lesions and leakage
area in FA.

● The model also provides an uncertainty estimation to quantify
the confidence of the model regarding its prediction, allowing
better interpretability.

● The deep learning algorithm could have largest positive
impact on the reproducibility of FA grading, particularly in
the setting of randomized multicentre trials.
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