Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Age-related assessment of foveal avascular zone and surrounding capillary networks with swept source optical coherence tomography angiography in healthy eyes

Subjects

Learning Objectives

Upon completion of this activity, participants will be able to:

  1. 1.

    Describe the overall relationship between retinal vascular parameters and foveal avascular zone (FAZ) architecture and age in normal healthy eyes over a wide age range, according to a cross-sectional study using swept-source optical coherence tomography angiography (SS OCTA).

  2. 2.

    Determine the relationship between retinal vascular parameters and FAZ architecture and age in normal healthy eyes according to macular region and specific decades of life, according to a cross-sectional study using SS OCTA.

  3. 3.

    Identify clinical implications of the relationship between retinal vascular parameters and FAZ architecture and age in normal healthy eyes over a wide age range, according to a cross-sectional study using SS OCTA.

Accreditation Statements

In support of improving patient care, this activity has been planned and implemented by Medscape, LLC and Springer Nature. Medscape, LLC is jointly accredited by the Accreditation Council for Continuing Medical Education (ACCME), the Accreditation Council for Pharmacy Education (ACPE), and the American Nurses Credentialing Center (ANCC), to provide continuing education for the healthcare team.

Medscape, LLC designates this Journal-based CME activity for a maximum of 1.0 AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

To participate in this journal CME activity: (1) review the learning objectives and author disclosures; (2) study the education content; (3) take the post-test with a 75% minimum passing score and complete the evaluation at www.medscape.org/journal/eye; (4) view/print certificate.

Credit hours

1.0

Release date:

Expiration date:

Post-test link: https://medscape.org/eye/posttest972903

Journal CME author disclosure information

Laurie Barclay has disclosed the following relevant financial relationships: Owns stock, stock options, or bonds from: AbbVie Inc. (former).

Abstract

Aim

To assess the macular capillary networks and foveal avascular zone (FAZ) with swept-source optical coherence tomography angiography in healthy eyes.

Methods

This cross-sectional, prospective, observational study enrolled 222 eyes of 116 healthy participants with no ocular or systemic disease. SS-OCTA images were captured using the PLEX Elite 9000 (Carl Zeiss Meditec Inc., Dublin, CA, USA) with a 6 × 6 mm pattern centered on the foveal center. Vessel length density (VLD), perfusion density (PD), and FAZ parameters were analyzed using the manufacturer’s automated software.

Results

A significant negative correlation was observed between age and average VLD in the superficial plexus, and average PD in both the superficial plexus and the whole retina. A significant positive correlation between age and foveal avascular zone perimeter and area was also noted. Age-wise comparisons showed a trend for an increase in VLD and PD until 40 years of age, with a subsequent decrease in the older age in the macular region. The central subfield showed a decrease in the vessel density measurements in the 21–40 age group. FAZ area and perimeter were the mirror inverse of the central subfield vessel density measurements with a numerically greater area and perimeter in the 21–40 age group compared to the 0–20 and 41–60 age groups. FAZ circularity was significantly reduced after 40 years of age.

Conclusion

Age-related changes in the vessel density and FAZ parameters in the healthy macula are complex and vary with the macular location. These results carry significance when interpreting the data from diseased eyes.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Relationship between the study parameters (y-axis) and age (x-axis).
Fig. 2: Bar diagram depicting the changes in study parameters every two decades.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Spaide RF, Klancnik JM Jr, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015;133:45–50.

    Article  PubMed  Google Scholar 

  2. Moult E, Choi W, Waheed NK, Adhi M, Lee B, Lu CD, et al. Ultrahigh-speed swept-source OCT angiography in exudative AMD. Ophthalmic Surg Lasers Imaging Retin. 2014;45:496–505.

    Article  Google Scholar 

  3. Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 2012;20:4710–25.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wu LZ, Huang ZS, Wu DZ, Chan E. Characteristics of the capillary-free zone in the normal human macula. Jpn J Ophthalmol. 1985;29:406–11.

    CAS  PubMed  Google Scholar 

  5. Eldaly Z, Soliman W, Sharaf M, Reyad AN. Morphological characteristics of normal foveal avascular zone by optical coherence tomography angiography. J Ophthalmol. 2020;2020:8281459.

  6. Carnevali A, Sacconi R, Corbelli E, Tomasso L, Querques L, Zerbini G, et al. Optical coherence tomography angiography analysis of retinal vascular plexuses and choriocapillaris in patients with type 1 diabetes without diabetic retinopathy. Acta Diabetol. 2017;54:695–702.

    Article  CAS  PubMed  Google Scholar 

  7. Freiberg FJ, Pfau M, Wons J, Wirth MA, Becker MD, Michels S. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2016;254:1051–8.

    Article  CAS  PubMed  Google Scholar 

  8. Tsai G, Banaee T, Conti FF, Singh RP. Optical coherence tomography angiography in eyes with retinal vein occlusion. J Ophthalmic Vis Res. 2018;13:315–32.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen X, Rahimy E, Sergott RC, Nunes RP, Souza EC, Choudhry N, et al. Spectrum of retinal vascular diseases associated with paracentral acute middle maculopathy. Am J Ophthalmol. 2015;160:26–.e1.

    Article  PubMed  Google Scholar 

  10. Gorczynska I, Migacz JV, Jonnal R, Zawadzki RJ, Poddar R, Werner JS. Imaging of the human choroid with a 1.7 MHz A-scan rate FDML swept source OCT system. In Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 10045, art. no. 1004510 (2017).

  11. Campbell JP, Zhang M, Hwang TS, Bailey ST, Wilson DJ, Jia Y, et al. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci Rep. 2017;7:42201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Scharf J, Freund KB, Sadda S, Sarraf D. Paracentral acute middle maculopathy and the organization of the retinal capillary plexuses. Prog Retin Eye Res. 2021;81:100884.

    Article  PubMed  Google Scholar 

  13. Garrity ST, Paques M, Gaudric A, Freund KB, Sarraf D. Considerations in the understanding of venous outflow in the retinal capillary plexus. Retina. 2017;37:1809–12.

    Article  PubMed  Google Scholar 

  14. Freund KB, Sarraf D, Leong BCS, Garrity ST, Vupparaboina KK, Dansingani KK. Association of optical coherence tomography angiography of collaterals in retinal vein occlusion with major venous outflow through the deep vascular complex. JAMA Ophthalmol. 2018;136:1262–70.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yu DY, Cringle SJ. Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog Retin Eye Res. 2001;20:175–208.

    Article  CAS  PubMed  Google Scholar 

  16. Yu DY, Cringle SJ, Su EN. Intraretinal oxygen distribution in the monkey retina and the response to systemic hyperoxia. Invest Ophthalmol Vis Sci. 2005;46:4728–33.

    Article  PubMed  Google Scholar 

  17. Yu DY, Yu PK, Cringle SJ, Kang MH, Su EN. Functional and morphological characteristics of the retinal and choroidal vasculature. Prog Retin Eye Res. 2014;40:53–93.

    Article  PubMed  Google Scholar 

  18. Hassan M, Sadiq MA, Halim MS, Afridi R, Soliman MK, Sarwar S, et al. Evaluation of macular and peripapillary vessel flow density in eyes with no known pathology using optical coherence tomography angiography. Int J Retin Vitreous. 2017;3:27.

    Article  CAS  Google Scholar 

  19. Grunwald JE, Piltz J, Patel N, Bose S, Riva CE. Effect of aging on retinal macular microcirculation: a blue field simulation study. Invest Ophthalmol Vis Sci. 1993;34:3609–13.

    CAS  PubMed  Google Scholar 

  20. Laatikainen L, Larinkari J. Capillary-free area of the fovea with advancing age. Invest Ophthalmol Vis Sci. 1977;16:1154–7.

    CAS  PubMed  Google Scholar 

  21. Gadde SG, Anegondi N, Bhanushali D, Chidambara L, Yadav NK, Khurana A, et al. Quantification of vessel density in retinal optical coherence tomography ngiography images using local fractal dimension. Invest Ophthalmol Vis Sci. 2016;57:246–52.

    Article  CAS  PubMed  Google Scholar 

  22. Yu J, Gu R, Zong Y, Xu H, Wang X, Sun X, et al. Relationship between retinal perfusion and retinal thickness in healthy subjects: an optical coherence tomography angiography study. Invest Ophthalmol Vis Sci. 2016;57:204–10.

    Article  Google Scholar 

  23. Iafe NA, Phasukkijwatana N, Chen X, Sarraf D. Retinal capillary density and foveal avascular zone area are age-dependent: quantitative analysis using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57:5780–7.

    Article  CAS  PubMed  Google Scholar 

  24. Leng Y, Tam EK, Falavarjani KG, Tsui I. Effect of age and myopia on retinal microvasculature. Ophthalmic Surg Lasers Imaging Retin. 2018;49:925–31.

    Article  Google Scholar 

  25. Shahlaee A, Samara WA, Hsu J, Say EA, Khan MA, Sridhar J, et al. In vivo assessment of macular vascular density in healthy human eyes using optical coherence tomography angiography. Am J Ophthalmol. 2016;165:39–46.

    Article  PubMed  Google Scholar 

  26. Pujari A, Chawla R, Markan A, Shah P, Kumar S, Hasan N, et al. Age‑related changes in macular vessels and their perfusion densities on optical coherence tomography angiography. Indian J Ophthalmol. 2020;68:494–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wei Y, Jiang H, Shi Y, Qu D, Gregori G, Zheng F, et al. Age-related alterations in the retinal microvasculature, microcirculation, and microstructure. Invest Ophthalmol Vis Sci. 2017;58:3804–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Coscas F, Sellam A, Glacet-Bernard A, Jung C, Goudot M, Miere A, et al. Normative data for vascular density in superficial and deep capillary plexuses of healthy adults assessed by optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57:211–23.

    Article  Google Scholar 

  29. Yu J, Jiang C, Wang X, Zhu L, Gu R, Xu H, et al. Macular perfusion in healthy Chinese: an optical coherence tomography angiogram study. Invest Opthalmol Vis Sci. 2015;56:3212–7.

    Article  Google Scholar 

  30. Pinhas A, Linderman R, Mo S, Krawitz BD, Geyman LS, Carroll J, et al. A method for age-matched OCT angiography deviation mapping in the assessment of disease-related changes to the radial peripapillary capillaries. PLoS ONE. 2018;13:e0197062.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ghassemi F, Mirshahi R, Bazvand F, Fadakar K, Faghihi H, Sabour S. The quantitative measurements of foveal avascular zone using optical coherence tomography angiography in normal volunteers. J Curr Ophthalmol. 2017;29:293–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lavia C, Bonnin S, Maule M, Erginay A, Tadayoni R, Gaudric A. Vessel density of superficial, intermediate, and deep capillary plexuses using optical coherence tomography angiography. Retina. 2019;39:247–58.

    Article  PubMed  Google Scholar 

  33. Samara WA, Say EA, Khoo CT, Higgins TP, Magrath G, Ferenczy S, et al. Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography. Retina. 2015;35:2188–95.

    Article  PubMed  Google Scholar 

  34. Hsu ST, Ngo HT, Stinnett SS, Cheung NL, House RJ, Kelly MP, et al. Assessment of macular microvasculature in healthy eyes of infants and children using OCT angiography. Ophthalmology. 2019;126:1703–11.

    Article  PubMed  Google Scholar 

  35. Sato R, Kunikata H, Asano T, Aizawa N, Kiyota N, Shiga Y, et al. Quantitative analysis of the macula with optical coherence tomography angiography in normal Japanese subjects: the Taiwa Study. Sci Rep. 2019;9:8875.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Snodderly DM, Weinhaus RS, Choi JC. Neural-vascular relationships in central retina of macaque monkeys (Macaca fascicularis). J Neurosci. 1992;12:1169–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Paques M, Tadayoni R, Sercombe R, Laurent P, Genevois O, Gaudric A, et al. Structural and hemodynamic analysis of the mouse retinal microcirculation. Invest Ophthalmol Vis Sci. 2003;44:4960–7.

    Article  PubMed  Google Scholar 

  38. Somilleda-Ventura SA, Razo-Blanco-Hernández DM, Reyes-Calderón JA, Ceballos-Reyes GM, Lima-Gómez V. Circularity of the foveal avascular zone and its correlation with parafoveal vessel density, in subjects with and without diabetes. Cir Cir. 2019;87:390–5.

    PubMed  Google Scholar 

  39. Krawitz BD, Mo S, Geyman LS, Agemy SA, Scripsema NK, Garcia PM, et al. Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography angiography. Vis Res. 2017;139:177–86.

    Article  PubMed  Google Scholar 

  40. Tang FY, Ng DS, Lam A, Luk F, Wong R, Chan C, et al. Determinants of quantitative optical coherence tomography angiography metrics in patients with diabetes. Sci Rep. 2017;7:2575.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Falavarjani KG, Shenazandi H, Naseri D, Anvari P, Kazemi P, Aghamohammadi F, et al. Foveal avascular zone and vessel density in healthy subjects: an optical coherence tomography angiography study. J Ophthalmic Vis Res. 2018;13:260–5.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tumlinson AR, Rahman F, Magazzeni S, Pochendorfer P, Shemonski N. The advanced retina imaging network hub online tools for OCT innovation. Invest Ophthalmol Vis Sci 2017;58:1864.

    Google Scholar 

  43. Lavia C, Mecê P, Nassisi M, Bonnin S, Marie-Louise J, Couturier A, et al. Retinal capillary plexus pattern and density from fovea to periphery measured in healthy eyes with swept-source optical coherence tomography angiography. Sci Rep. 2020;10:1474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shahlaee A, Pefkianaki M, Hsu J, Ho AC. Measurement of foveal avascular zone dimensions and its reliability in healthy eyes using optical coherence tomography angiography. Am J Ophthalmol. 2016;161:50–5.e1.

    Article  PubMed  Google Scholar 

  45. Fujiwara A, Morizane Y, Hosokawa M, Kimura S, Shiode Y, Hirano M, et al. Factors affecting foveal avascular zone in healthy eyes: an examination using swept-source optical coherence tomography angiography. PLoS ONE. 2017;12:e0188572.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gariano RF, Provis JM, Hendrickson AE. Development of the foveal avascular zone. Ophthalmology. 2000;107:1026.

    Article  CAS  PubMed  Google Scholar 

  47. Provis JM, Hendrickson AE. The foveal avascular region of developing human retina. Arch Ophthalmol. 2008;126:507–11.

    Article  CAS  PubMed  Google Scholar 

  48. Mintz-Hittner HA, Knight-Nanan DM, Satriano DR, Kretzer FL. A small foveal avascular zone may be an historic mark of prematurity. Ophthalmology. 1999;106:1409–13.

    Article  CAS  PubMed  Google Scholar 

  49. Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1–55.

    Article  PubMed  Google Scholar 

  50. Bresnick GH, Condit R, Syrjala S, Palta M, Groo A, Korth K. Abnormalities of the foveal avascular zone in diabetic retinopathy. Arch Ophthalmol. 1984;102:1286–93.

    Article  CAS  PubMed  Google Scholar 

  51. de Carlo TE, Chin AT, Bonini Filho MA, Adhi M, Branchini L, Salz DA, et al. Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography. Retina. 2015;35:2364–70.

    Article  PubMed  Google Scholar 

  52. Hendrickson A, Possin D, Vajzovic L, Toth CA. Histologic development of the human fovea from mid gestation to maturity. Am J Ophthalmol. 2012;154:767–78.e2.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ogueta SB, Schwartz SD, Yamashita CK, Farber DB. Estrogen receptor in the human eye: influence of gender and age on gene expression. Invest Ophthalmol Vis Sci. 1999;40:1906–11.

    CAS  PubMed  Google Scholar 

  54. Yu MC, Li WW, Liu K, Yew DT. An immunohistochemical study of the c-fos protooncogene in the developing human retina. Neuroscience. 1994;60:983–7.

    Article  CAS  PubMed  Google Scholar 

  55. Henkind P, Bellhorn RW, Murphy ME, Roa N. Development of macular vessels in monkey and cat. Br J Ophthalmol. 1975;59:703–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gariano RF, Sage EH, Kaplan HJ, Hendrickson AE. Development of astrocytes and their relation to blood vessels in fetal monkey retina. Invest Ophthalmol Vis Sci. 1996;37:2367–75.

    CAS  PubMed  Google Scholar 

  57. Hendrickson A, Troilo D, Possin D, Springer A. Development of the neural retina and its vasculature in the marmoset Callithrix jacchus. J Comp Neurol. 2006;497:270–86.

    Article  PubMed  Google Scholar 

  58. Freiberg FJ, Pfau M, Wons J, Wirth MA, Becker MD, Michels S. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2016;254:1051–8.

    Article  CAS  PubMed  Google Scholar 

  59. Cicinelli MV, Carnevali A, Rabiolo A, Querques L, Zucchiatti I, Scorcia V, et al. Clinical spectrum of macular-foveal capillaries evaluated with optical coherence tomography angiography. Retina. 2017;37:436–43.

    Article  PubMed  Google Scholar 

  60. Conrath J, Giorgi R, Raccah D, Ridings B. Foveal avascular zone in diabetic retinopathy: quantitative vs qualitative assessment. Eye. 2005;19:322–6.

    Article  CAS  PubMed  Google Scholar 

  61. Samara WA, Say EA, Khoo CT, Higgins TP, Magrath G, Ferenczy S, et al. Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography. Retina. 2015;35:2188–95.

    Article  PubMed  Google Scholar 

  62. Shiihara H, Terasaki H, Sonoda S, Kakiuchi N, Shinohara Y, Tomita M, et al. Objective evaluation of size and shape of superficial foveal avascular zone in normal subjects by optical coherence tomography angiography. Sci Rep. 2018;8:10143.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lei J, Durbin MK, Shi Y, Uji A, Balasubramanian S, Baghdasaryan E, et al. Repeatability and reproducibility of superficial macular retinal vessel density measurements using optical coherence tomography angiography en face images. JAMA Ophthalmol. 2017;135:1092–8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the collaboration of the Department of Vitreoretina (Shri Bhagwan Mahavir Vitreoretinal Services) and the Department of Optometry in collecting and analyzing the data.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed significantly for data collection, analysis and drafting of the manuscript. KM and AT significantly helped in recruiting the patients, AV and SRS contributed significantly for the study design, and drafting, and formatting the manuscript.

Corresponding author

Correspondence to Aditya Verma.

Ethics declarations

Competing interests

SRS has the following financial disclosures: Consultant: Amgen, Allergan, Genentech/Roche, Iveric, Oxurion, Novartis, Regeneron, Bayer, 4DMT, Centervue, Heidelberg, Optos, Merck, Apellis, Astellas; Speaker Fees: Carl Zeiss Meditec, Nidek; Research Instruments: Nidek, Topcon, Heidelberg, Carl Zeiss Meditec, Optos, Centervue. The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verma, A., Magesan, K., Amose, T. et al. Age-related assessment of foveal avascular zone and surrounding capillary networks with swept source optical coherence tomography angiography in healthy eyes. Eye 36, 1857–1864 (2022). https://doi.org/10.1038/s41433-022-02146-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41433-022-02146-8

Search

Quick links