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Geographic atrophy (GA) is currently an untreatable condition. Emerging evidence from recent clinical trials show that anti-
complement therapy may be a successful treatment option. However, several trials in this therapy area have failed as well. This
raises several questions. Firstly, does complement therapy work for all patients with GA? Secondly, is GA one disease? Can we
assume that these failed clinical trials are due to ineffective interventions or are they due to flawed clinical trial designs,
heterogeneity in GA progression rates or differences in study cohorts? In this article we try to answer these questions by providing
an overview of the challenges of designing and interpreting outcomes of randomised controlled trials (RCTs) in GA. These include
differing inclusion-exclusion criteria, heterogeneous progression rates of the disease, outcome choices and confounders.
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INTRODUCTION
Geographic atrophy (GA) is currently transitioning from an
untreatable condition to a disease area of major interest owing
to emerging evidence from clinical trials that therapies can reduce
its growth rate over time [1]. However, several pivotal trials on the
same class of therapies have failed. For example, complement
pathway in AMD has been researched substantially over the last
fifteen years and recently, anti-complement agents have shown
some evidence of success in reduction of growth rate of GA lesion
compared to sham in pivotal trials [2]. However, other comple-
ment inhibitors have failed all together or after promising results
in early phase trials [3]. This begs the question: Is GA one disease?
To put it in another way, are the investigational products only
biologically effective in certain GA subtypes and if so, is it by
chance that these subtypes represent a larger cohort in some trials
and not others? There is no doubt that both basic and clinical
research have increased our understanding of the pathogenesis
and progression rates of GA. However, the results of clinical trials
highlight gaps in our knowledge. Can we assume that failed
clinical trials in GA are due to ineffective interventions? Or should
we dwell deeper into the subtlety in clinical trial designs,
heterogeneity in GA progression rates or differences in study
cohorts?
We aimed to study these differences by examining some of the

recent Phase II/III clinical trials on GA and provide a perspective on
each question raised.

METHODS
Clinical trials reporting on GA progression and factors associated
with GA progression were identified via a PubMed literature
search and clinical trials.gov using the terms “geographic atrophy,”

“atrophy,” “macular degeneration,” “progression,” “enlargement,”
and “growth”. Primary literature search on PubMed for GA, also
included search terms “complement cascade, “complement
inhibitors”, “gene therapy” in age-related macular degeneration.
All searches were collated and sorted for relevance. We excluded
review articles, case studies, pilot studies (defined as N < 16),
papers reporting on macular atrophy in neovascular AMD,
diseases other than AMD, preclinical studies, pathophysiology/
histology of GA and non-English articles.

RESULTS
Details of the interventions for geographic atrophy that are
currently being investigated in clinical trials or are in the pipeline
are shown in Table 1. Clinical trials on these agents, if available,
show variations in eligibility criteria. These include lesion
characteristics, disease state of the fellow eye, visual function,
age range of included patients and their genetic disposition. In
addition, mode of delivery and mechanisms of actions of
interventions and primary outcome measures differed.

DISCUSSION
Eligibility criteria
GA lesion characteristics. One of the key inclusion criteria for
clinical trials is the lesion size of GA. Most trials include GA sizes
ranging between ≥2.5 and ≤17.5 mm2. However, Elamipretide
(ReCLAIM2, NCT03891875, Stealth Bio) is being evaluated on a
cohort with smaller GA size ≥0.05 and ≤10.16 mm2 while FOCUS
trial (GT005, NCT03846193, Gyroscope) on gene therapy have
included a wider range of lesion sizes from ≥1.25 and ≤17.5 mm2

[4, 5]. When comparing outcomes of GA trials, it is important to
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note these differences [6, 7]. It may be that when the intervention
does not require frequent intravitreal dosing or may be self-
administered, the trial design may focus on earlier disease or
extrafoveal GA or those with smaller lesion sizes. Therefore, the
outcomes of these patients will differ to those of fovea-involving
large lesions. It is understandable that a safety or dose response
study such as FOCUS that is evaluating a subretinal delivery of a
recombinant non-replicating adeno-associated viral (AAV) vector
encoding a human complement factor would require a wider
range of lesion sizes [5, 8]. However, trials that include large range
of lesion sizes can result in wider standard deviations in
progression rates and results of a study cohort may be more
difficult to decipher [9]. In these studies, homogeneous smaller
cohorts or individual outcomes may need to be identified to
understand the effect of the intervention.

GA growth rates. Although the median growth rate of GA is
about 1.78 mm2/year, there are significant variability in individual
enlargement rates in the natural history study by Sunness et al.
[10–12]. In fact, only a small proportion of lesion sizes fell within
the average range of growth rate [12]. Fleckenstein et al. reviewed
the annualised growth rate and highlighted the inter and
intraindividual variations in enlargement rates when only the
baseline lesion size is considered [13]. As there are several well-
characterised GA cohorts that include multimodal imaging, it may
be appropriate to pool them and identify homogeneous cohorts
with similar growth rates. These cohorts can include natural
history studies and sham arms and, in some cases, the failed
intervention arms. As an example, Mones and Biarnes demon-
strated three GA phenotypes with different progression rates at
≥6 months based on data driven cluster analysis of GA lesions in
77 eyes [14]. With new reports on OCT classification of atrophy, it
is now timely to re-visit heterogeneity of GA progression rates to
inform future clinical trials [12, 15, 16]. In addition, for trials that
have shown some success in reducing growth rates compared to
the natural history, an opportunity is provided to identify ‘super
responders’ in terms of reduced growth rate lesser than the lowest

95% confidence interval of the rates observed in the sham group.
Another consideration is the focality of lesions: Multifocal GA

lesions progress faster than unifocal GA [17, 18]. The DERBY/ OAKS
(APL-2, NCT03525613, Apellis), FILLY (APL-2, NCT02503332, Apellis)
and GATHER-1 (Zimura, NCT02686658, IVERIC Bio) recruited
multifocal GA lesions, with at least one focal lesion being at least
1.25 mm2 (0.5 disc areas) [1, 19, 20]. Many other on-going trials
have not included information on this inclusion criterion in clinical
trials.gov. Unless stratified by lesion size and focality, these do
have implications [18]. Another lesion characteristic that may
influence growth rate is the presence of perilesional fundus
autofluorescence (FAF) [21, 22]. This may represent lipofuscin
accumulation in sick RPE cells or heaped RPE cells at the
expanding rim of GA [23, 24]. This sign is a predictor of faster
growth compared to lesions without this sign. The DERBY and
OAKS (APL-2, NCT03525613, Apellis), FILLY (APL-2, NCT02503332,
Apellis) and GATHER-1 (Zimura, NCT02686658, IVERIC Bio)
included this sign as an eligibility criterion but this is not a
universal requirement for GA trials [1, 19, 20]. Another considera-
tion is the proportion of foveal and non-foveal involving GA in
each trial cohort [25]. For example, DERBY and OAKS (APL-2,
NCT03525613, Apellis) included both groups while GATHER-1
(Zimura, NCT02686658, IVERIC Bio) focused on non-foveal invol-
ving GA. Non-foveal, unifocal GA is likely to represent early disease
while foveal involvement indicate long-standing disease [18, 26].
As both C3 and C5 inhibition appeared to be more effective in
reducing growth rate of non-foveal involving lesions, it raises the
question whether complement activation is more relevant in early
disease than late disease, or whether established GA does not
grow as fast hence more difficult to see a treatment effect. Non-
foveal GA that extends towards the periphery grow faster than
those that grow towards the fovea [27]. Therefore, these
directional growths may need to be considered when correlating
growth rates and functional changes in GA trials [28, 29]. Taken
together, if there are two eyes with similar sized GA lesions, but
one is multifocal, non-foveal and has perilesional hyperautofluor-
escence, it is likely to progress faster than the eye with a unifocal,

Table 1. Interventions (current or pipeline) for geographic atrophy.

Interventions Mechanisms of Action ClinicalTrials.gov Identifier

Targeting the complement pathway

Pegcetacoplan (Apellis) C3 inhibition NCT03525613

Avacincaptad pegol (Iveric Bio) C5 inhibition NCT02686658

ANX007 (Annexon) C1q inhibition NCT04656561

NGM621 (NGM Biotherapeutics) C3 inhibition NCT04465955

Danicopan/ALXN-2040 (Alexion Pharmaceuticals/
AstraZeneca)

Factor D inhibition NCT05019521

IONIS-FB-LRx (Ionis/Roche) Factor B Inhibition NCT03815825

HMR-59 (Hemera/Janssen) MAC Inhibitor Gene Therapy NCT03144999

GEM-103 (Gemini Therapeutics) Recombinant CFH therapy NCT04246866

GT005 (Gyroscope) Complement Factor I gene therapy NCT03846193

HTrA1 inhibitor

FHTR2163 (Genentech/Roche) HTrA1 inhibitor NCT03972709

Stems cells

OpRegen (lineage cell therapeutics) Subretinal human embryogenic stem cells -RPE NCT02286089

CPCB-RPE1 implant (Regenerative Patch Technologies) Subretinal human embryogenic stem cells -RPE NCT02590692

MA09-hRPE (Astellas Pharma Inc) Subretinal human embryogenic stem cells -RPE NCT01344993

Neuroprotection

Elamipretide (subcutaneous)/Stealth Biotherapeutics Repair mitochondrial dysfunction NCT03891875

Visual Cycle Modulator

ALK-001 (Alkeus) A2E/Lipofuscin inhibitor NCT03845582
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foveal involving without any rim hyperautofluorescence. There-
fore, considering stratifying by baseline lesion size alone may not
be sufficient. If these lesion characteristics are imbalanced
between the sham and intervention arm, these may affect the
primary outcome of lesion growth. Other lesions that have not
been considered in clinical trials to date is the stratification of arms
based on the presence of subretinal drusenoid deposits (SDD)
[30]. These are associated with rod intercept delays suggesting rod
photoreceptor dysfunction [31, 32]. These lesions may also
represent irreversible functional losses despite its association with
GA progression rates [33].

Fellow-eye features. All GA trials have ensured exclusion of any
current or prior choroidal neovascularisation (CNV) in the study
eyes at baseline. However, including patients with prior or current
neovascular AMD in the fellow eye increases the risk of developing
CNV in the study eye while being treated with the investigational
product for GA [34]. The FILLY study included eyes with
neovascular AMD in fellow eye [6]. The study showed a higher
rate of new-onset CNV in the intervention (Pegcetacoplan, APL-2)
arm compared to sham [35]. The question is whether this is due to
the intervention or is this the expected natural history of
neovascular AMD? A dose related increase in CNV was also seen
in GATHER-1 study (Zimura, C5 inhibitor) but the incidence of CNV
was lower (9.0–9.6%) compared to that of APL-2 (8.9–20.9%). The
reason for this difference in CNV rates between a C3 and C5
inhibitor remains unclear. It may be that C5 inhibition is further
downstream in the alternative pathway, which may minimize the
disturbance of the C3-mediated complement homeostasis. How-
ever, if the FILLY intervention arm included those with no
neovascular AMD in fellow eye in a subanalysis, the rate of CNV
development in FILLY and GATHER-1 are similar [2]. In the
GATHER-1 study on Zimura, the incidence of CNV in the untreated
fellow eye was 11 patients (3.8%), and in the study eye, it was 3
patients (2.7%) in the sham control group, 2 patients (7.7%) in the
Zimura 1 mg group, 8 patients (11.9%) in the Zimura 2 mg group,
and 13 patients (15.7%) in the Zimura 4 mg group [20]. It is also
interesting to note that the rate of CNV in DERBY/OAKS (APL-2,
NCT03525613, Apellis) were lower than in the FILLY trial (Phase 2
trial of the same intervention), despite no differences in eligibility
criteria between these Phase 2 and 3 trials on APL-2 in
clinical trials.gov. These conflicting figures challenge our current
understanding of the effect of complement inhibitors on onset
of CNV.
The pivotal Phase 3 trials of both these agents (DERBY and

OAKS (C3 Inhibitor, NCT03525613) and GATHER-2 (C5 inhibitor,
NCT04435366) have retained eyes that converted to neovascular
AMD during the study while being treated for GA, instead of
censoring them from the analysis [19, 36]. Although it adds value
to maintain the power of the study, development of CNV leads to
reduction of drusen and the reporting of GA growth rate may be
confounded by the influence of CNV related atrophy and anti-
VEGF therapy.
Another point to consider is that GA progression rates in these

eyes with neovascular AMD in fellow eye are slower than those
with bilateral GA [11, 37, 38]. As such, the disease status in
the fellow eye must also be considered if GA growth rate is the
primary outcome. GA eyes with intermediate AMD in the fellow
eye show slower GA growth rates compared to eyes with bilateral
GA [38].

Visual function. Most trials whether focussed on both foveal and
non-foveal GA or only on non-foveal GA had an eligibility criterion
of ≥24 ETDRS letters (Snellen 20/320) [2]. However, Elamipretide
trial (ReCLAIM2, NCT03891875, Stealth Bio) included only GA eyes
with ≥55 ETDRS letters, emphasizing that the eligibility criteria of
this trial differ from the pivotal complement trials to date [4]. In
addition, the FOCUS trial (GT005, NCT03846193, Gyroscope) have

included those with GA and BCVA ≤ 50 letters in cohorts 1to 3 and
≥34 letters in cohorts 4–6 [5]. As BCVA shows no correlation to GA
growth, these differences in BCVA criteria are unlikely to influence
primary outcome of GA growth reduction [26, 39]. However, as the
primary aim of any intervention is to improve patient related
outcomes and visual function, secondary outcome on preventing
vision loss may differ between trials due to the BCVA inclusion-
exclusion criteria.
Natural history studies have shown that GA is associated with

low luminance visual acuity losses [18]. In addition, low luminance
deficit is a marker of future visual loss [40]. Low luminance visual
acuity losses are best highlighted in non-fovea involving GA and
the progression of non-foveal GA may partly explain the
worsening of this visual function [41, 42]. In addition, subretinal
drusenoid deposits are strongly associated with low luminance
deficit and likely signify rod dysfunction and these eyes also have
a faster progression rate [41]. These findings suggest that a GA
subtype with subretinal drusenoid deposits may represent a more
irreversible end of the spectrum.
As BCVA does not correspond directly to GA lesion enlargement

due to possible foveal sparing, alternative assessments are being
explored to capture the relationship between anatomic progres-
sion and visual function decline, including microperimetry, read-
ing speed assessments, and patient-reported outcomes need to
be explored further [43–45]. A recent report from Holz group have
shown how if GA involves the nasal side of fovea, it is likely to
affect reading speed more than the right side [46, 47]. However,
the Food and Drug Administration (FDA) does not currently accept
this endpoint and further studies are required on functional
changes in GA.

Age of patients. Some GA trials included patients aged 50 years
or above while others have gone to as high as 65 years or above at
baseline (AAVCAGsCD59, NCT0314499, J&J and Hemera) [48]. In
addition, the age range is large in most trials extending from 50 to
late 90 s. It is unclear whether age at recruitment is by itself an
independent risk factor or whether younger age groups are likely
to have non-foveal GA or earlier disease compared to participants
in their late 90 s. Although local age-related differences in C3 and
C5 are not well-defined, circulating C5 increases with age in
contrast to age related decrease in factor D and C3 [49]. This may
be an area worth further investigation. Prior growth rate of GA also
determines future growth rate.

Genetic variants. Genetic factors account for approximately 71–80%
of the risks in prediction models of advanced AMD [50–52].
The common genetic variants of CFH, CFI, C3, and C2/CFB in the
alternative complement pathway, may account for 57% of known
disease risk variants [52].
However, the CHROMA and SPECTRI studies on lampalizumab

(Factor D inhibitor) showed that the progression rates of GA lesions in
carriers of the complement factor I (CFI) risk allele did not differ
significantly to their CFI-negative counterparts [3]. Based on the CFI
inhibition studies alone, it seems irrelevant at present to include
genetic variants as eligibility criteria for GA treatment trials. However,
other studies are needed to further inform this decision [3].

Intervention types. When we consider complement inhibitors,
there are GA trials that inhibit C3, C1q, C5, Factor B (IONIS-FB-LRx,
NCT03815825, Ionis) and Factor D [1, 36, 53, 54]. Some have
showed efficacy, and some have not. The aim of C5 inhibitors is to
block C5 cleavage to decrease formation of pro-inflammatory
drive by C5a and MAC formation and NLRP3 inflammasome.
However, we have two failed trials on C5 inhibition and one with
early promising result [20, 36, 53]. The trial on intravitreal LFG316
or Tesidolumab (NCT01527500, Novartis) a fully-human, high
affinity C5 antibody showed no anatomical or visual acuity effect
compared to sham at 18 months [55]. Similarly, eculizumab is
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another C5 monoclonal antibody that was administered intrave-
nously every other month for 6 months in GA patients and
followed up for another 6 months but failed to show any
difference in GA progression rates compared to sham [53].
However, Zimura, also a C5 inhibitor is a chemically synthesized
aptamer (oligonucleotide-based ligand) and showed positive
Phase 2b/3 results with a reduction of mean rate of GA growth
over 12 months by 27.38% (p= 0.0072) for the Zimura 2 mg group
and 27.81% (p= 0.0051) for the Zimura 4 mg group compared to
the corresponding sham control group [20]. Can the results be
explained by differences in GA lesion characteristics or are there
other explanations? The failure of intravenous eculizumab may be
explained by low drug concentration at target tissue, such as
retinal pigment epithelial cells (RPE) due to systemic delivery.
However, one would expect a monoclonal antibody (LFG316) to
have meaningful vitreous half-life and we could assume that the
pre-clinical data would have shown significant drug level at RPE
before progressing to clinical trials. So, is it possible that
pegylation is more advantageous than monoclonal antibodies as
both APL-2 and Zimura are pegylated. Could aptamers be more
stable than monoclonal antibody, although there is no evidence
that is the case?

Primary endpoints. The primary endpoint of most of the GA trials
is the change in total area of GA lesions as measured by FAF.
However, the time points differ: APL-2 (NCT02503332)
−12 months; GT005 (NCT03846193) − 48 months; NGM621
(NCT04014777) − 48 months; IONIS-FB-LRX (NCT03815825) −
49 months; HMR59–24 months (NCT04358471) and RG6147
(NCT03295877) 72 weeks [8, 19, 48, 54, 56, 57]. Both Zimura and
ALK-001 studies have mean rate of change in GA on FAF as the
primary endpoint [20, 58]. Recently, under special protocol
assessment by the FDA, the GATHER 2 primary endpoint has
been changed from mean rate of change of GA area over
12 months (considering 3 timepoints -baseline, 6 and 12 months)
to mean rate of growth (slope) in at least these three timepoints.
This amended analysis assumes a constant rate of growth of GA
lesions over the study period [59]. This may apply to the primary
outcome of all future pivotal GA trials.
When we consider visual function outcomes, BCVA change is a

co-primary for ALK-001 at 48 weeks while elamipretide has chosen
low luminance visual acuity as an endpoint at 48 weeks. In the
FILLY study, C3 inhibitor did not show any significant change in
BCVA or LLVA between arms and in GATHER studies that included
only non-foveal GA, the higher dose of C5 inhibitor (4 mg) showed
similar BCVA outcome to sham at 12 and 18 months despite a
reduction of GA growth rate of 27.81% and 29.97% versus sham at
these timepoints [1, 20]. Reduction of growth rate does not equate
to visual function benefit, but these results question the lesion
characteristics included in these arms. Was the GA growth to
periphery reduced more profoundly? Alternatively, it might take
longer before the effect on visual acuity is shown by delaying
foveal involvement.
An in-depth analysis of the criteria used in GA trials highlights

the major need to refine and improve patient selection. GA
modelling studies should be able to differentiate fast versus slow
progressors based on multiple lesion characteristics and not only
lesion size. Predictors of direction of growth rate may add value to
selecting the patient cohort. Although functional changes may not
be appreciated in short term trials of 12–18 months duration,
post-approval studies may be designed to confirm functional
benefit as well as the subgroup that would benefit most from an
intervention.

CONCLUSION
Here, we provide an overview of the challenges of designing and
interpreting outcomes of randomised controlled trials (RCTs) in

GA. These include differing inclusion-exclusion criteria, hetero-
geneous progression rates of the disease, outcome choices and
confounders. Given the need for as many drugs to be approved
for GA, it is important to encourage simple anatomical endpoints
for drug approval. Although drugs should be evaluated on
generalisable population, broad study eligibility criteria might
lead to an effective drug failing to meet its primary endpoint and
not obtaining approval. Pathway specific inclusion/exclusion
criteria might lead to more positive study results. Outcomes of
RCTs generally represent the average treatment effects across all
included patients. A neutral average effect may represent benefit
in some patients and not others and a beneficial average effect
may differ in magnitude across subgroups. The risk of adverse
events may also vary based on type of route of intervention albeit
the drugs being of the same mechanisms of actions.
Use of these drugs in routine clinical practice and acquiring good

real-world datasets with multimodal imaging will aid in under-
standing these GA subtypes and subtype-based interventions. In
particular, one major unanswered question from these clinical trial
results is whether GA is one disease entity? Having had mixed
success with anti-complement trials, does it inform us that not all GAs
are complement dependent? There may be GA lesions that may be
explained by other pathogenesis such as lipofuscin overload
resembling late onset Stargardt disease. These may likely respond
more to A2E/ lipofuscin inhibitors than complement inhibitors. Eyes
with GA and SDD did adversely in the LEAD trial, and they are
associated with delayed rod intercept time due to rod loss [60, 61].
Would neuroprotection be a better option for eyes with SDD and/or
outer nuclear layer thinning? Or do these GA lesions occur secondary
to impaired visual cycle or mitochondrial defect? Targeting these
pathophysiological pathways might be rewarding. Some GA lesions
are due to thick Bruch’s membrane resembling Sorsby Fundus
Dystrophy [62]. A drug that can remove lipid from lipid laden Bruch’s
membrane might be an option for these subtypes. Finally,
chromosome 10 disease (ARMS2/HTRA1) is associated with retinal
thinning and might need a different intervention.
The recent data from AREDS suggest that GA cannot easily be

subtyped by genotypes or phenotypes and that genetic informa-
tion added little to the high predictive value of baseline severity of
AMD for disease progression [63, 64]. In contrast, the EYE-RISK
Consortium showed a stronger genetic association with late AMD
[65]. Is it possible that AREDS2 was a study of intermediate AMD
with specific inclusion criteria that were biased towards drusen
associated GA while the European study was population based
and allowed more diverse population? In reality, all these
pathophysiological pathways might play some role in an
individual patient pointing towards a need for personalised
medicine.
There remain several avenues of research to be conducted to

better understand GA especially in disease stratification so that
novel interventions may be evaluated more efficiently and
effectively.
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