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A deep learning model established for evaluating lid margin
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OBJECTIVES: To evaluate the feasibility of applying a deep learning model to identify lid margin signs from colour anterior
segment photography.
METHODS:We collected a total of 832 colour anterior segment photographs from 428 dry eye patients. Eight lid margin signs were
labelled by human ophthalmologists. Eight deep learning models were constructed based on VGGNet-13 and trained to identify lid
margin signs. Sensitivity, specificity, receiver operative characteristic (ROC) curves and area under the curve (AUC) were applied to
evaluate the models.
RESULTS: The AUC for rounding of posterior lid margin was 0.979 and was 0.977 and 0.980 for lid margin irregularity and
vascularization. For hyperkeratinization, the AUC was 0.964. The AUCs for meibomian gland orifice (MGO) retroplacement and
plugging were 0.963 and 0.968. For the mucocutaneous junction (MCJ) anteroplacement and retroplacement model, the AUCs were
0.950 and 0.978. The sensitivity and specificity for rounding of posterior lid margin were 0.974 and 0.921. For irregularity, the
sensitivity and specificity were 0.930 and 0.938, and those for vascularization were 0.923 and 0.961. The hyperkeratinization model
achieved a sensitivity and specificity of 0.889 and 0.948. The model identifying MGO plugging and retroplacement achieved a
sensitivity of 0.979 and 0.909 with a specificity of 0.867 and 0.967. The sensitivity of MCJ anteroplacement and retroplacement were
0.875/0.969, with a specificity of 0.966/0.888.
CONCLUSIONS: The deep learning model could identify lid margin signs with high sensitivity and specificity. The study provided
the potentiality of applying artificial intelligence in lid margin evaluation to assist dry eye decision-making.

Eye (2023) 37:1377–1382; https://doi.org/10.1038/s41433-022-02088-1

INTRODUCTION
Dry eye disease (DED) is a prevalent ocular disease involving tear
film instability and/or insufficiency that substantially affects the
quality of life due to ocular discomfort and blurred vision [1]. There
are mainly two types of DED, evaporative and aqueous-deficient
DED, and these two types of DED could coexist in one eye. From
anterior to posterior, the lid margin is about 2mm comprised of the
cutaneous outer lid, ciliary zone, occlusal skin of the appositional
surface, the mucocutaneous junction (MCJ) and marginal con-
junctiva [2]. Normal lid margin structure is essential for tear film
function, and its abnormalities are often observed in DED, especially
in meibomian gland dysfunction (MGD) [3, 4]. The meibomian
gland orifice (MGO) locates on the lid margin that expels meibum
to maintain the tear film stability [5], and its plugging indicates the
obstruction of terminal ducts [4]. The relative location between
MGO and MCJ ensures the meibum to be appropriately delivered to
the skin and tear meniscus [6]. For some patients, anteroplacement
or retroplacement of MCJ or MGO retroplacement causes abnormal
relative location between them that renders corresponding MG
functionally ineffective [7, 8]. Thus, accurate and comprehensive
identification of lid margin signs is crucial for DED classification,
severity assessment, and precise treatment.

Traditionally, the lid margin signs are observed and evaluated
manually with a slit lamp biomicroscope. Because the lid margin
structure from anterior to posterior is complicated and there are
many signs required to be identified, manual assessment is a
significant burden for doctors in a clinical setting. In addition,
manual evaluation might cause inter-and intra-doctor variability
that reduces evaluation accuracy. Though it is necessary for DED
evaluation, many dry eye clinics tend to avoid comprehensive lid
margin assessment due to limited time and learning curve.
Automatic identification of lid margin signs from anterior segment
photography with an advanced algorithm could solve the
problem in DED patients. In recent years, deep learning has been
wildly adopted in the field of ophthalmology [9]. The neural
network is a commonly constructed deep learning model with an
input layer and multiple layers of nonlinear transformations to
obtain an output that can perform image classification directly.
The algorithmic model is trained with input images previously
labelled manually (e.g., colour anterior segment photography
categorized for the lid margin signs), and then the model can
identify new images with similar labels following the training
processes. The algorithmic model has been successfully applied to
identify fundus photographs, optical coherence tomography and
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visual fields to evaluate age-related macular degeneration,
diabetic retinopathy, and glaucoma [10–15]. Moreover, our
previous research has constructed a convolution neural network
to segment sub-basal corneal nerve based on in vivo confocal
microscopy [16]. To the best of our knowledge, few studies have
focused on evaluating lid margin signs in DED patients with a
deep learning model.
The present research aimed to evaluate the feasibility of

applying deep learning models to identify lid margin signs from
colour anterior segment photography. The research potentially
facilitates the rapid and accurate assessment of lid margin for
clinical decision-making in DED patients, and the lid margin signs
identified with the software might serve as an criterion for the
DED evaluation.

MATERIALS AND METHODS
Dataset
The research protocol was approved by the local review board, and the
research was performed following the Declaration of Helsinki. The
informed consent was not obtained from all of the participants due to
the retrospective study design. The individual information for each image
was removed for privacy, and the image could not be linked to an
individual patient.
We collected the colour anterior segment photographs showing the lid

margin from a total of 428 patients diagnosed with DED between Sep 2019
to May 2020 in the Department of Ophthalmology of Peking University
Third Hospital. DED was diagnosed according to the criteria established by
Tear Film and Ocular Surface Society Dry Eye Workshop II [17]. We
excluded patients who previously suffered lid margin trauma or surgeries
that severely damaged the lid margin structure. All of the images were
captured in a standardized way with a digital slit lamp camera system,
consisted of a BX-900 Eyecap system (Haag-Streit, Koeniz, Switzerland) and
a Canon EOS 40 D (Canon Inc., Tokyo, Japan). The photography was taken
with 40× magnification and focused on the central upper or lower lid
margin. Approximately a central 10–15mm lid margin was included in the
middle part of the image. The upper and lower eyelid was slightly opened
manually during the photography for better exposure. Eight hundred fifty-
six images from 428 patients were included initially, including 231 males
and 197 females with an average age of 37.1 ± 8.2 years old. We performed
a preliminary review of the included images and excluded images that did
not focus on the lid margin. Finally, 832 images were eligible in the
subsequent analysis.
The ground truth applied in the deep learning model was marked by

three senior ophthalmologists. Initially, two graders independently
annotated eight lid margin signs using binary classification for each
enroled image. Subsequently, for the disagreement between two graders,
the third senior ophthalmologist would perform the final grade. Graders
were masked from the individual information during the classification
processes, and the order of the images was disrupted for two graders.
Finally, one image had eight labels.
The annotated lid margin signs included rounding of the posterior lid

margin, lid margin irregularity, vascularization, hyperkeratinization, retro-
placement and plugging of MGO, and anteroplacement and retro-
placement of MCJ identified according to The International Workshop on
Meibomian Gland Dysfunction [4]. Multiple signs could coexist in one
image. In detail, rounding defines the thickening of the posterior lid
margin that loses its sharp curve contacting the globe. The irregularity is
the notching of lid margin frequently observed in the region of MGO.
Vascularity is the apparent telangiectasis of lid margin vascular around the
MGO. Hyperkeratinization is observed at the skin zone to depict the
eczematous changes. MCJ observed to spread forward to cover the MGO
or movement posterior with squamous metaplasia is regarded as
anteroplacement or retroplacement. The retroplacement of MGO describes
focal cicatricial processes that tracts orifices to move posteriorly. The
representative of lid margin signs is shown in Fig. 1.

Model
The deep learning model identifying the lid margin signs was constructed
based on VGGNet-13. Eight independent models were established to
detect each sign. VGGNet is one of the convolution neural networks [18]. In
detail, the convolutional layers are divided into five units. Each unit
contains two convolutional layers and a max-pooling layer deployed after

each unit to reduce the size of the output of the convolutional layer for
better generalization. Also, compared to the original structure of VGGNet-
13, we added a batch normalization (BN) layer after each convolutional
layer to avoid gradient vanishing and gradient explosion so that better
performance of gradient propagation could be obtained. Three fully
connected (FC) layers are followed after five units. The last FC layer has
only one artificial neuro whose value represents the probability of suffering
from a particular lid margin sign.
The whole dataset is divided into three parts as training dataset (60%),

validation dataset (20%) and test dataset (20%) with the same images for
each lid margin sign task. For better accuracy of the output result, this
division was stringent so that one image data must not show up in two
datasets. The training dataset was used to train the weight parameters of
the ConvNet to make it fit the labelled image data better. The validation
dataset is used to avoid over-fitting problems, which can be discovered
when the loss function decreases on the training dataset but increases
continuously on the validation dataset. Finally, the test dataset is used to
check whether the ConvNet gradually gains the ability to detect disease
characteristics.
The original image was colour anterior segment photography with

3456 × 2304 pixels. The image was compressed smoothly to a square and
scaled to 256 × 256 pixels with Image ANTIALIAS in the Pillow library
before training. The loss function we applied in this paper was mean
square error shown as followed:

J ¼ 1
Nb

XNb

i¼1

ŷi � yið Þ2

where Nb is the batch size, ŷi is the output of ConvNet and yi is the label
marked manually.
The optimization algorithm in the present research was Adam optimizer

with an initial learning rate of 0.0001. During the ConvNet training process,
the loss function decreased rapidly in the very beginning 100 episodes,
and then it became slow. Around 150 episodes, the best performance on
the test dataset could be achieved. After about 200 episodes, the over-
fitting problem was dominant for accuracy deterioration on the validation
dataset and test dataset. Given this, stopping the training process by
around 150 episodes in time was necessary. The experiments were
performed with Anaconda Python 3.7, TensorFlow 2.1, CUDA Toolkit 10.1
(NVIDIA GPU acceleration toolbox), CUDNN 7.6.5 (NVIDIA GPU deep
learning acceleration toolbox) on a computer with intel I7-10750H, 6C12T
CPU, using RTX2060 GDDR6 6G GPU for training and testing with memory.

Statistical analysis
The statistical analysis was performed with Anaconda Python 3.7. The
result of each model in the testing set was evaluated against the label. The
following metrics were obtained: sensitivity and specificity. The outcomes
were evaluated with receiver operative characteristic (ROC) curves and the
area under the curve (AUC).

RESULTS
The ROC curves from deep learning models for each lid margin
sign are shown in Fig. 2. The AUC value for rounding of posterior
lid margin was 0.979, and the AUC value was 0.977 and 0.980 for
lid margin irregularity and vascularization respectively. For
hyperkeratinization, the AUC value was 0.964. The AUC value for
MGO retroplacement and plugging were 0.963 and 0.968
respectively. Finally, for the model identifying anteroplacement
and retroplacement of MCJ, the AUC value was 0.950 and 0.978,
respectively.
The sensitivity and specificity of the eight models are shown in

Table 1. The sensitivity and specificity for rounding of the posterior
lid margin model were 0.974 and 0.921 respectively. The lid
margin irregularity model achieved a sensitivity of 0.930 and
specificity of 0.938. High sensitivity (0.923) and specificity (0.961)
were also demonstrated in the model for lid margin vasculariza-
tion. For hyperkeratinization, the sensitivity and specificity were
0.889 and 0.948. The model to identify MGO plugging and
retroplacement demonstrated high sensitivity (0.979; 0.909) and
specificity (0.867; 0.967). The model for anteroplacement and
retroplacement of MCJ also manifested a sensitivity of 0.875 and
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0.969 and specificity of 0.969 and 0.888. The analysis speed of the
deep learning model can reach 64 images per second.

DISCUSSION
Lid margin abnormality identification is crucial in dry eye
assessment. The deep learning model in the present research
demonstrated outstanding performance in detecting lid margin
signs from anterior segment photography. Both sensitivity and
specificity were high for identifying the rounding of posterior lid
margin, lid margin irregularity, vascularization, hyperkeratinization,

retroplacement and plugging of MGO, and anteroplacement
and retroplacement of MCJ. The model could be potentially
applied to facilitate DED evaluation in various clinical and research
scenarios.
To further probe the performance of the model identifying lid

margin signs, we conducted an error analysis in the false-negative
and -positive cases, and the results are summarized in Table 2.
Rounding of the posterior lid margin defines the thickening of the
interface between lid margin and globe and loses its original
abrupt curve [4]. The judgement is comparable subjective that
depends on experience and angle of photography. Most of the

Fig. 1 The representative of lid margin signs. A Rounding of the posterior lid margin; B lid margin irregularity; C lid margin vascularization;
D lid margin hyperkeratinization; E retroplacement of The meibomian glands orifices (MGO); F plugging of MGO; G anteroplacement of the
mucocutaneous junction (MCJ); H retroplacement of MCJ.
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false-negative cases occurred when the lid was not slightly
opened during photography. Then, the contact curve was not
sufficiently presented, so that it is difficult to identify the rounding
of the lid margin. Standardizing the degree of lid margin opening
during photography might solve the problem. Irregularity often
occurs in the region of obliterated MGO due to tissue absorption.
The false-negative cases mostly appear when the indentation was
less noticeable. Some small notches at the lid margin might be
difficult to identify and easily confused with MGO plugging. For
the lid margin vascularization, it was the apparent telangiectasis of
vascular around the MGO [4, 19]. False-positive cases mainly occur
when the lid margin is dark, with pigmentation and excessive
demonstration of conjunctival vessels, which might be falsely
identified as vascularization. For the extraordinarily bright images
at the lid margin or blocked with reflection, the model was less
sensitive to the signs. Further training the model with more
images with similar labels might facilitate the identification of
these delicate features.
The MGO plugging pertains to exhibiting elevated orifice due

to obstruction of terminal ducts and extrusion of lipid and

cell debris [20]. For most false-positive cases for MGO plugging,
the MGO manifests an elevation due to clear meibum or
obstructed without elevation. The retroplacement of MGO occurs
in cicatricial processes that tract orifices to move posteriorly. The
lid margin was slightly open during photography. The lid margin
corresponding to the manual force point opens more compared
with the less opened lid margin at other areas. In most false-
positive cases, the disparity in the relative distance between MGO
and the opened edge of the conjunctiva might be falsely
identified as a movement of MGO. The anteroplacement also
causes an unequal distance between MGO and lid margin that
could be judged as retroplacement by the model. MCJ is the line
between the occlusal skin and conjunctiva that might spread
forward to cover the MGO or movement posterior with squamous
metaplasia as anteroplacement or retroplacement [2, 21, 22]. For
the model detecting MCJ retroplacement, high specificity was also
achieved with robust sensitivity. The false-negative identification
occurs mostly accompanied by MGO retroplacement or severe lid
margin vascularization. MGO retroplacement would shorten its
distance to MCJ that might cause a false judgement of MCJ location.
Severe lid margin vascularization could interfere with the clear
identification of MCJ that could cause false-negative cases.
Additionally, the disparity in the proportion of positive and negative
cases in the dataset might affect the model performance. The
negative case takes the majority in images identifying rounding of
the posterior lid margin and MCJ anteroplacement. Thus, the model
is inclined to identify that the image did not have the sign.
In future research, potential approaches to improve the

accuracy of the model to detect lid margin signs include applying
additional datasets, advanced models and label with more details.
Specifically, further training could be performed with more images
from more patients. The photography processes should be
standardized considering the brightness, centration, magnification
and the pressure to open the lid margin. The construction of the
model, including the amount of the convolutional and pooling
layer could be further optimized in identifying lid margin signs.
Detailed labels could be applied to facilitate the training. For
example, the MCJ or the posterior lid margin could be marked on
the image.

Fig. 2 The receiver operative characteristic (ROC) curves for each lid margin sign model. A Rounding of the posterior lid margin; B lid
margin irregularity; C lid margin vascularization; D lid margin hyperkeratinization; E plugging of MGO; F retroplacement of The meibomian
glands orifices (MGO); G anteroplacement of the mucocutaneous junction (MCJ); H retroplacement of MCJ.

Table 1. Sensitivity, specificity and AUC for each lid margin sign.

Sensitivity Specificity AUC

Rounding of posterior
lid margin

0.974 0.921 0.979

Lid margin irregularity 0.930 0.938 0.977

Lid margin vascularization 0.923 0.961 0.980

Hyperferatinization 0.889 0.948 0.964

MGO plugging 0.979 0.867 0.963

MGO retroplacement 0.909 0.967 0.968

MCJ anteroplacement 0.875 0.966 0.950

MCJ retroplacement 0.969 0.888 0.978

MGO meibomian gland orifice, MCJ mucocutaneous junction, ACU area
under the curve.
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The present model is a preliminary model. With further
improvement and validation, the advanced automatic lid margin
signs identification algorithm could be applied in various
scenarios, including clinical practice, trial enrolment, and
population-based screening. Lid margin abnormalities could be
frequently observed in DED patients, especially patients with MGD
[3, 4]. Identifying lid margin abnormality is crucial in dry eye
assessments and treatment decision-making [7, 23–25]. In
traditional clinical settings, ophthalmic doctors applied a slit lamp
biomicroscope with or without anterior segment photography to
detect lid margin signs. However, conducting a comprehensive
evaluation on each lid margin sign is a time-consuming process
due to the complicated lid margin structure, so that many doctors
and specialists would ignore lid margin assessments. The
improved software would rapidly identify various lid margin signs
accurately with anterior segment photography that facilitates a
better evaluation of DED. Nowadays, for clinical trials targeting dry
eye, we could rapidly enrol certain patients with particular lid
margin abnormalities more conveniently with the software and
continue to follow specific lid margin abnormality changes after
the treatment. The application of the software to assess lid margin
signs during clinical trials guarantees the consistency and
repeatability of the assessment that improves the reliability of
the trial. With further improvements, the model might be
presented on mobile terminals. The software would identify the
lid margin signs with photographs captured with a camera by
users themselves on mobile terminals. The outcome could serve
as a referral recommendation for seeking medical care.
Certain limitations exist in the present research. Firstly, the

amount of enrolment images in the dataset and the proportion of
positive cases (i.e., rounding of the posterior lid margin and MCJ
anteroplacement) is relatively small. The model would tend to
identify the image as positive in the testing dataset. Secondly, the
present research only included images from a single machine and
centre. The generalization of the model could not be guaranteed
when test on another external dataset. Thirdly, eight models were
created in the experiment to detect each lid margin sign. These
models might combine into one model that identifies all signs
with one input with further improvement. Fourthly, heatmaps
were not generated due to technical difficulties, and future
research should attempt to demonstrate the features the model
detected.
In conclusion, the present research applied a deep learning

model to detect lid margin signs automatically. The model
achieved robust sensitivity and specificity identifying rounding
of posterior lid margin, lid margin irregularity, vascularization, and

hyperkeratinization, retroplacement and plugging of MGO, ante-
roplacement and retroplacement of MCJ. The study provided the
potentiality of applying the deep learning model in automatic lid
margin signs identification that eliminates the significant burden
on comprehensive DED assessment in a clinical setting. The rapid,
accurate and potential objective lid margin evaluation with the
software facilitates DED evaluation and treatment decision-
making.

SUMMARY

What was known before

● Accurate and comprehensive identification of lid margin signs
is crucial for dry eye classification, severity assessment, and
precise treatment.

● Traditionally, the lid margin signs are observed and evaluated
manually, which is a significant burden for doctors and causes
inter-and intra-doctor variability that reduces evaluation
accuracy.

● Deep learning-based model could be trained to identify
disease-related features in images automatically; however, few
studies have focused on evaluating lid margin signs with it.

What this study adds

● The deep learning model could identify lid margin signs with
high sensitivity and specificity, including rounding of the
posterior lid margin, lid margin irregularity, vascularization,
hyperkeratinization, retroplacement and plugging of meibo-
mian gland orifice, and anteroplacement and retroplacement
of mucocutaneous junction.

● The study provided the potentiality of applying artificial
intelligence in lid margin evaluation to assist dry eye decision-
making.

DATA AVAILABILITY
The datasets used and/or analyzed during the current study are available from the
corresponding author on reasonable request.

Table 2. Error analysis of the false-negative and -positive cases.

Lid margin sign False negative False positive

Rounding of the posterior lid margin 1. Contacting curve presentation
insufficiency

2. Negative case takes the majority

N/A

Lid margin irregularity Less noticeable indentation N/A

Lid margin vascularization Excessive brightness; reflection
light block

Dark lid margin; pigmentation; excessive demonstration of
conjunctival vessel

Hyperferatinization N/A MCJ retroplacement

MGO plugging N/A 1. Elevation due to clear meibum
2. Positive case takes the majority

MGO retroplacement Unclear MGO Disparity in the relative distance between MGO and the
opened edge of the conjunctiva

MCJ anteroplacement Negative case takes the majority N/A

MCJ retroplacement MGO retroplacement; severe lid margin
vascularization

N/A

MGO meibomian gland orifice, MCJ mucocutaneous junction.
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