
ARTICLE

Joint optic disk and cup segmentation for glaucoma screening
using a region-based deep learning network
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OBJECTIVES: To develop and validate an end-to-end region-based deep convolutional neural network (R-DCNN) to jointly segment
the optic disc (OD) and optic cup (OC) in retinal fundus images for precise cup-to-disc ratio (CDR) measurement and glaucoma
screening.
METHODS: In total, 2440 retinal fundus images were retrospectively obtained from 2033 participants. An R-DCNN was presented for joint
OD and OC segmentation, where the OD and OC segmentation problems were formulated into object detection problems. We compared
R-DCNN’s segmentation performance on our in-house dataset with that of four ophthalmologists while performing quantitative,
qualitative and generalization analyses on the publicly available both DRISHIT-GS and RIM-ONE v3 datasets. The Dice similarity coefficient
(DC), Jaccard coefficient (JC), overlapping error (E), sensitivity (SE), specificity (SP) and area under the curve (AUC) were measured.
RESULTS: On our in-house dataset, the proposed model achieved a 98.51% DC and a 97.07% JC for OD segmentation, and a 97.63% DC
and a 95.39% JC for OC segmentation, achieving a performance level comparable to that of the ophthalmologists. On the DRISHTI-GS
dataset, our approach achieved 97.23% and 94.17% results in DC and JC results for OD segmentation, respectively, while it achieved a
94.56% DC and an 89.92% JC for OC segmentation. Additionally, on the RIM-ONE v3 dataset, our model generated DC and JC values of
96.89% and 91.32% on the OD segmentation task, respectively, whereas the DC and JC values acquired for OC segmentation were
88.94% and 78.21%, respectively.
CONCLUSION: The proposed approach achieved very encouraging performance on the OD and OC segmentation tasks, as well as in
glaucoma screening. It has the potential to serve as a useful tool for computer-assisted glaucoma screening.
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INTRODUCTION
Glaucoma is a chronic and painless eye disorder characterized by
progressive degeneration of the optic nerves, which can result in
irreversible vision loss or even permanent blindness [1, 2]. The early
screening and diagnosis of glaucoma are beneficial for preserving
vision and quality of life. Optic nerve head (ONH) assessment is used
as one of the most clinically significant glaucoma screening
techniques, where the cup-to-disc ratio (CDR) serves as the most
representative measurement indicator [3–5]. Accurate optic disc (OD)
and optic cup (OC) segmentation is the premise for precise CDR
computation and a guarantee for correct glaucoma screening and
diagnosis. In general, CDR is obtained by means of manually
delineating the borders of the OD/OC or manually correcting the
contours produced by segmentation algorithms [6–8]. Nevertheless,
the manual contouring of OD/OC borders is laborious, expensive, and
subjected to personal experiences. As a result of the obscure border
information of OD/OC, the CDR value for the same subject is often
subject to substantial inter- and intra-observer variability. Accordingly,
an automatic segmentation technique without human intervention or
manual drawing that can jointly segment OD and OC from retinal
fundus images to achieve precise CDR measurement is highly desired.

OD and OC segmentation are admittedly challenging tasks as a
result of large appearance variations, small target regions, low-
contrast boundaries, blood vessel occlusions, pathological changes,
and variable imaging conditions. It was reported in [9–12] that the
OD and OC boundaries were approximated as elliptical shapes with
vertical diameters and horizontal diameters in most cases, respec-
tively. In terms of a simple yet effective assumption, several ellipse
fitting methods [10–20] have been developed for OD and OC
segmentation. However, the segmentation results predicted by these
approaches needed to be postprocessed through an ellipse fitting
procedure to generate ellipses for the OD and OC regions.
To mitigate that limitation, great efforts have been devoted to

automatically segmenting OD and OC from retinal fundus images,
producing statistical shape models [21–24], multiview and multi-
modal approaches [25–27], and superpixel-based methods
[28–31]. Notwithstanding some specific evaluation criteria, these
methods rely heavily on the utilization of handcrafted OD and OC
features, which lack sufficient discriminative representations. In
practice, it is difficult to design good handcrafted features, which
leads to degraded segmentation performance relative to that
achieved by the powerful layer-by-layer feature learning abilities
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of deep learning networks. In recent years, deep learning,
especially convolutional neural networks, which yield highly
discriminative feature representations and promote the develop-
ment of many computer vision tasks, has yielded heightened
performance in image segmentation tasks. In particular, the fully
convolutional network (FCN) [32–34], modified U-Net [35, 36],
M-Net [12], and cup disc encoder decoder network (CDED-Net)
[37] completely changed the traditional image segmentation field
and have provided excellent OD and OC segmentation results.
Nevertheless, most of these methods still regard a segmentation
problem as the two separate problems, while some prior
knowledge is not fully used (e.g., the OC is located in the OD,
and the OD and OC are approximately ellipses). In addition, many
algorithms require a great deal of time to postprocess the
segmentation results with other strategies, thereby abandoning
the end-to-end learning paradigm.
Inspired by these abovementioned methods, we followed the

core assumption that OD and OC can be approximated by ellipses
and used the impressive object detection ability of deep learning
from the computer vision community to investigate the challenging
OD and OC segmentation problems. In this study, we concentrated
on the joint OD and OC segmentation problems, and developed and
validated an end-to-end region-based deep convolutional neural
network (R-DCNN). We formulated the OD and OC segmentation
problems into object detection problems and designed a disc
proposal network (DPN) and a cup proposal network (CPN) to yield
minimal candidate bounding boxes for OD and OC in a sequential
way. Additionally, we adopted ResNet34 as the backbone while
utilizing dense atrous convolution (DAC) to extract more dense
feature maps which were shared for OD and OC segmentation.
Considering that the OC is located at the center of the OD, we
applied a disc attention module with an attention mechanism to
cascade the DPN and CPN so that the corresponding OD region
could be cropped to further guide the OC localization, which made
the OD and OC positively influence each other. The boundaries of
OD and OC could be determined by calculating an inscribed ellipse
within the corresponding bounding boxes, and then the CDR could
be calculated for glaucoma screening. We evaluated the perfor-
mance of the proposed approach against that of four ophthalmol-
ogists on our in-house test dataset while conducting a comparison
with various types of recently proposed mainstream segmentation
approaches on the publicly available DRISHTI-GS and RIM-ONE v3
datasets. Furthermore, we performed a qualitative evaluation of our
model and investigated its generalization ability to different
datasets. Extensive experiments clearly demonstrated that our
method exceeded the state-of-the-art approaches with respect to
the OD and OC segmentation and glaucoma detection tasks.

METHODS
Datasets
With the aim of algorithm development, 2440 retinal fundus images from
2033 participants were retrospectively retrieved from Shanghai First
People’s Hospital. A further description of the datasets is provided in the
“Datasets” subsection of the eMethods section in the Supplemental
Material. This research was conducted under the Declaration of Helsinki as
revised in 2013 and approved by the local ethics review and institutional
review boards. As a result of the retrospective and anonymized nature of
this study, written consent was waived by the institutional review board. In
addition, two publicly available datasets (DRISHTI-GS and RIM-ONE v3)
were also used for training and testing.

Retinal fundus image annotation
Four ophthalmologists with an average of 7 years of experience in this field
(ranging from 5 to 8 years) were invited from Shanghai First People’s
Hospital to manually annotate the OD and OC and perform image labeling
(glaucomatous/non-glaucomatous labels). We also investigated the
statistical agreement between the ophthalmologists regarding the
examination of identical samples. The details are described in the “Retinal

fundus image annotation” subsection of the eMethods section in the
Supplement. The resulting dataset was divided into three sets at the
patient level: an in-house training set, an in-house validation set, and an in-
house test set in an approximate 7:2:1 ratio. Each set was stratified in such
a way that all datasets contained equal proportions of glaucomatous
(~40%) and non-glaucomatous (~60%) cases, as listed in eTable 1 in the
Supplement. During glaucoma screening, the discrimination between
glaucomatous and non-glaucomatous cases made by the proposed
R-DCNN was based on the estimated vertical CDR. If it exceeded a
threshold value of 0.5, glaucoma was suspected, and a larger CDR value
indicated a greater risk of glaucoma.

Image preprocessing and data augmentation
As a pre-processing, we used contrast limited adaptive histogram
equalization (CLAHE) [38] for the original images within these datasets,
which equalized their contrasts by changing the colors of image areas and
interpolating the results across them. Then, we cropped an 800 × 800
region of interest (ROI) in each retinal fundus image according to the OD
localization algorithm developed in [39]. Taking the limited number of
images in these datasets into account and to prevent overfitting, we
applied data augmentation. All images were subjected to horizontal and
vertical flipping and rotation operations of 90, 180 and 270 degrees.

Development of the R-DCNN architecture
The proposed R-DCNN was composed of ResNet34 for basic feature
extraction, a DPN for OD segmentation, a CPN for OC segmentation, and a
disc attention module with an attention mechanism for connecting the
DPN with CPN and cropping the OD regions from feature maps. To extract
more dense feature representations from the original fundus images and
preserve more spatial information, we inserted DAC into the ResNet34
network, the output feature maps of which were shared among the DPN,
CPN and disc attention module. The DPN and CPN could produce
candidate bounding boxes for OD and OC, respectively. Considering the
prior information that the OC was located at the center of the OD, we
further applied the disc attention module with attention mechanism to link
the DPN with CPN, where the corresponding OD area was trimmed to
assist in guiding the OC detection. The whole framework is presented in
Fig. 1. Initially, the fundus images were fed into DAC-ResNet34 for feature
extraction, where the DAC block is illustrated in eFig. 1 in the Supplement.
Then, the DPN and CPN were designed to segment OD and OC,
respectively. In the DPN/CPN, feature maps were input into a region
proposal network (RPN) and cropped by the ROI pooling mechanism in
accordance with the coordinates of the candidate bounding boxes. These
cropped feature maps were further fed into the classifier, which could offer
the final predictions about the candidate disc/cup regions with the highest
probabilities. Finally, a disc attention module with an attention mechanism
for fusing different feature maps from different stages was designed to
chain the DPN and CPN and trim the corresponding OD region for the CPN.
Further detailed descriptions of the R-DCNN architecture and the model
training process are included in the eMethods section in the Supplement.

Statistical analysis
In this work, the Dice similarity coefficient (DC), Jaccard coefficient (JC),
overlapping error (E), sensitivity (SE) and specificity (SP) were utilized to
evaluate the OD and OC segmentation results. Here, these metrics were
defined as follows:

DiceðDCÞ ¼ 2 ´ TP
2 ´ TP þ FP þ FN

(1)

JaccardðJCÞ ¼ TP
TP þ FP þ FN

(2)

E ¼ 1� AreaðS \ GÞ
AreaðS∪GÞ (3)

SE ¼ TP
TP þ FN

(4)

SP ¼ TN
TN þ FP

(5)
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where TP, FP, TN and FN denote true positives, false positives, true
negatives, and false negatives, respectively. S and G refer to the
segmentation area and ground truth, respectively.
In addition, we calculated the CDR as follows:

CDR ¼ VCD
VDD

(6)

where VCD and VDD represent the vertical cup diameter and disc diameter,
respectively.
Afterwards, we further evaluated the performance of the proposed

R-DCNN with respect to glaucoma screening via receiver operating
characteristic (ROC) curves and the area under the curve (AUC).
Additionally, we performed Student’s t test to measure the significance
levels of the improvements yielded by the major components in our model.

RESULTS
Quantitative results
To see whether the segmentation results of the proposed R-DCNN
were comparable to those hand-annotated by ophthalmologists,
we conducted a consistency comparison between the R-DCNN
and the four ophthalmologists on our in-house test dataset, as
listed in eTable 2 in the Supplement. The results indicated that the
stability of the R-DCNN was slightly weaker than those of the four
different ophthalmologists. Nevertheless, the DC and JC for OD
segmentation between the R-DCNN and each ophthalmologist
were 98.51% and 97.07% on average and 97.63% and 95.39% on
average for OC segmentation, respectively. These results were
higher than the averages of 97.76%/96.41% and 97.05%/95.09%
among the interophthalmologist values.
We also compared the OD and OC segmentation performance

of our model with that of the most competitive segmentation
methods on the DRISHTI-GS dataset and RIM-ONE v3 dataset. The
compared methods included a regression-based method [21], a
superpixel-based method [30], a modified U-Net [36], M-Net [12],
the context encoder network (CE-Net) [40], and CDED-Net [37], as
reported in Table 1 below, as well as in eFig. 2 and eFig. 3 in the
Supplement. As seen, the proposed approach achieved the most
outstanding results on both datasets for the OD and OC
segmentation tasks when compared to the other existing state-
of-the-art methods [12, 21, 24, 30, 36, 37, 40]. This finding
demonstrated the benefits of constructing the OD and OC
segmentation tasks as bounding box detection problems in our
work. In addition, we attributed this improvement to the disc
attention module with an attention mechanism that was used to
chain the DPN and CPN, which enabled the OD and OC results to
influence each other positively.
We measured the accuracy of the proposed segmentation

model on both glaucomatous and non-glaucomatous cases. For
OD and OC segmentation, no significant accuracy differences
were observed. The details are reported in the “Segmentation

performance of the proposed model on both glaucomatous and
non-glaucomatous cases” subsection of the eResults section in the
Supplement. In addition, we also constructed a test dataset
consisting of images of advanced glaucoma symptoms with
notches and compared the OD and OC segmentation results
obtained on these images with those of both ellipse fitting and
anchor point segmentation (see the “Segmentation performance
comparison of the proposed model with ellipse fitting methods”
subsection of the eResults section in the Supplement). It was
evident from these results that our R-DCNN performed better than
the ellipse fitting methods with respect to OD and OC
segmentation for images of advanced glaucoma symptoms with
notches in terms of the DC and JC.

Qualitative results
The qualitative comparison results obtained on the OD and OC
segmentation tasks with the superpixel-based method [30],
modified U-Net method [36], and M-Net method [12] on
DRISHTI-GS and RIM-ONE v3 are shown in Fig. 2a and b,
respectively. As can be clearly observed, our proposed R-DCNN
generated more accurate segmentation results than these cutting-
edge methods. In particular, for the low-contrast sample images in
the fifth row of Fig. 2a and the second row of Fig. 2b, our
approach could still segment OD and OC with more accurate
boundaries that were close to the ground truth. The success of our
R-DCNN was mainly ascribed to the fact that DAC-ResNet34
extracted more feature representations of the objective region
boundaries. Additionally, the disc attention module with an
attention mechanism between the DPN and CPN also contributed
a great deal to our approach’s success, which could guide the CPN
to locate the OC in terms of the output of the DPN.

Utilizing RIM-ONE v3 for training and DRISHTI-GS for testing
To further verify the generalizability of our approach, we also
performed a cross-training experiment by using the RIM-ONE v3
dataset for training and the DRISHTI-GS dataset for testing. The
results are listed in eTable 3 in the Supplement. Among these
cross-training results, the best DC and JC scores of 96.43%/91.17%
and 88.24%/77.93% were achieved by our approach on the OD
and OC segmentation tasks, respectively. Through these results,
we could observe that the proposed approach clearly improved
the DC and JC metrics for OD and OC segmentation over those of
the other state-of-the-art methods [12, 30, 36, 37, 40], demonstrat-
ing the good generalization ability of our method across unseen
retinal fundus images.

Glaucoma screening
We further assessed the performance of the proposed R-DCNN for
glaucoma screening on both the DRISHTI-GS dataset and RIM-ONE
v3 dataset with the help of the computed CDR values. We report

Fig. 1 The overall architecture of our proposed R-DCNN. RPN Region proposal network, DAC Dense atrous convolution, DPN Disc proposal
network, CPN Cup proposal network, ROI Region of interest.
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the ROC curves with their AUC scores as the overall measures of
screening strength, as presented in Fig. 3. It could be observed
that the proposed approach generated obviously higher AUC
values (0.968 and 0.941) than the other state-of-the-art methods
[12, 36, 41] on both datasets. In terms of the AUC metric, our
approach boosted the performance by 8.50%, 7.20% and 4.10%
on the DRISHTI-GS dataset over the modified U-Net [36], M-Net
[12], and fuzzy broad learning system (FBLS) [41], respectively, yet
relative 7.70%, 6.50% and 3.50% improvements were achieved on
the RIM-ONE v3 dataset, respectively. The reason for this finding
may be that the more accurate CDR estimations were derived
from better OD and OC segmentation effects, leading to better
glaucoma screening results. Such encouraging results justified the
efficacy of the proposed algorithm in glaucoma screening. In
addition, it was noteworthy that the performance of our approach
was consistent on both datasets, exhibiting its generalization
capability on unseen data.

Ablation analysis
To investigate the effectiveness of the major components
(including the DAC, DPN and CPN chaining, and disc attention
module with an attention mechanism) in our R-DCNN on OD and
OC segmentation, we carried out thorough ablation experiments,
and the results are listed in Table 2.

Effectiveness of the DAC module. To explore the contribution of
the DAC module, we compared the proposed DAC-ResNet34
network with the ResNet34 network. From the experimental
results reported in Table 2, without the DAC module, the E values
of OD and OC segmentation increased by approximately 0.4% and
0.5%, respectively. We obtained p < 0:001 for OD segmentation
and p ¼ 0:037 for OC segmentation. This suggested that the DAC
module effectively improved the OD and OC segmentation
performance of our deep learning framework.

Effectiveness of chaining the DPN and CPN modules. We directly
fed the features extracted from DAC-ResNet34 into the DPN and
CPN modules to investigate the importance of chaining both
modules. From Table 2, we could observe that when regarding OD
and OC as two completely independent objects in fundus images,
the performances of OD and OC segmentation on E decreased by
0.9% and 1.0%, respectively. Compared with “Without chaining
the DPN and CPN modules”, we attained p < 0:001 for OD and OC
segmentation. This illustrated that chaining the DPN and CPN
modules could enable our model to consider the spatial
connection between OD and OC and generate positive effects
on each other, leading to the significant model performance
improvements on the OD and OC segmentation tasks.

Effectiveness of the disc attention module. Finally, we chained the
DPN and CPN modules and directly employed the cropped feature
maps obtained from DAC-ResNet34 to investigate the contribu-
tion of the disc attention module. As shown in Table 2, it could be
clearly observed that our disc attention module incorporating the
corresponding OD areas from different stages of feature maps,
dropped the error ratios of OD and OC segmentation by 0.1% and
0.6%, respectively. The p values (p ¼ 0:465 for OD segmentation
and p < 0:001 for OC segmentation) revealed that introducing the
disc attention module with an attention mechanism could
significantly decrease the error of OC segmentation, whereas it
exhibited no obvious error reduction for OD segmentation.

DISCUSSION
In the task of OD segmentation, the segmentation results of our
approach matched or exceeded those of other state-of-the-art
methods [12, 21, 30, 36, 37, 40] on both the DRISHTI-GS dataset
and RIM-ONE v3 dataset. This could mainly be because theTa
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Fig. 2 Qualitative comparison of different methods for OC and OD segmentation. Qualitative segmentation results of our proposed
approach in comparison with ground truth, superpixel [30], modified U-Net [36], and M-Net [12] on DRISHTI-GS dataset (a) and RIM-ONE v3
dataset (b), where the yellow and red regions denoted OC and OD segmentations, respectively. GT Ground truth.
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ResNet34 network used for feature extraction loaded an ImageNet
pretrained model as the initialized parameters during training,
while DAC was incorporated into the ResNet34 network to enlarge
the fields of view, densely extract deep feature maps and preserve
more spatial information for objects of various sizes. Benefitting
from the pretrained ResNet34 network and DAC, the hierarchical
deep feature maps of DAC-ResNet34 effectively represented the
complex hidden patterns for the benefit of OD segmentation.
On more challenging OC segmentation tasks, our approach

significantly outperformed other cutting-edge methods
[12, 21, 30, 36, 37, 40]. This approach mainly benefited from the
bounding box detection process performed by the DPN, the CPN
and the disc attention module with an attention mechanism
between them. In our proposed approach, OD and OC were
considered different objects in fundus images, and the original
object segmentation problems were formulated into easier object
detection issues. In addition, we only needed to calculate the
inscribed ellipses without complex postprocessing procedures
when the OD and OC bounding boxes were derived from the DPN
and CPN. Between the DPN and CPN, the disc attention module
with an attention mechanism for integrating the prior OC
information was located at the center of the OD. This module
enabled the OD and OC results to have a positive influence on
each other, leading to a further performance boost for joint OD
and OC segmentation.
Although it is a single decisive clinical indicator for glaucoma

diagnosis, the CDR is the most common indicator used by
ophthalmologists. In general, a higher CDR value indicates a
higher risk of glaucoma. Accordingly, it is desirable to estimate
more accurate CDRs for large-scale glaucoma screening. Our
approach achieved better OD and OC segmentation effects than
other methods [12, 21, 30, 36, 37, 40] so that more accurate CDRs

could be calculated. With the help of the accurately computed
CDRs, our method achieved excellent performance in glaucoma
screening and generated the best AUC scores, which were nearly
7.20% and 6.50% better than those acquired by M-Net [12] on
both datasets, respectively. In addition, a cross-training experi-
ment using the RIM-ONE v3 dataset for training and the DRISHTI-
GS dataset for testing demonstrated the good generalization
capacity of our approach across unseen datasets. Our method
could potentially aid ophthalmologists in glaucoma screening
programs involving fundus images worldwide and was both
scientifically interesting and clinically impactful. A discussion on
calculating neuroretinal rim areas and assessing retinal nerve fiber
layer (RNFL) thickness is described in the “eDiscussion” section in
the Supplement. Compared to the information obtained in a few
minutes based on the optical coherence tomography (OCT) of the
optic nerve, we also discussed the advantages of our approach in
glaucoma screening in the “eDiscussion” section in the
Supplement.
An ablation study regarding the DPN and CPN chaining

indicated that our proposed DAC could make full use of the
spatial connection between OD and OC to make their results
influence each other in a positive fashion, which significantly
decreased the errors in OD and OC segmentation. Through an
ablation study on the disc attention module with an attention
mechanism, we confirmed that this module, which associated the
corresponding OD regions from multiple stages of feature maps,
also reduced the error ratios in OD and OC segmentation. In
particular, the reduction in the OC segmentation error was
obvious. This was reasonable, as the disc attention module with an
attention mechanism concatenated local information derived
from large feature maps and global information derived from
small feature maps for cropping the corresponding OD regions to
further help complete OC segmentation. The ablation study on
DAC showed that DAC contributed a great deal to OD
segmentation as a result of extracting deeper feature maps and
preserving more spatial information.
Despite generating promising results in the joint OD and OC

segmentation, as well as glaucoma screening tasks, the proposed
method has several limitations. First, due to the limited size of the
in-house dataset, we only utilized image rotation and horizontal/
vertical flipping to enlarge the dataset. In future work, we will
apply a generative adversarial network (GAN) [42] or conditional
variational autoencoders (CVAEs) [43] to synthesize more samples
so that the segmentation performance can be further validated.
Second, in the current study, the performance of our approach
was investigated only using our in-house dataset and two publicly
available datasets. In the future, it will be necessary to collect
multiple datasets with corresponding annotations to help improve

Table 2. Ablation experiments for our experiment.

- Edisc p-value Ecup p-value

Without DAC module 8.1 <0.001 10.8 0.037

Without chaining DPN
and CPN

8.6 <0.001 11.3 <0.001

Without disc
attention module

7.8 0.465 10.9 <0.001

Proposed 7.7 – 10.3 –

The bold entries represent the best results on the corresponding metrics.
DAC Dense atrous convolution, DPN Disc proposal network, CPN Cup
proposal network

Fig. 3 ROC curves of the two datasets for glaucomma screening. The ROC curves with AUC scores for glaucoma screening on both DRISHTI-
GS dataset (a) and RIM-ONE v3 dataset (b). ROC Receiver operating characteristic.
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the overall network performance. Finally, we only carried out
experiments on OD and OC segmentation tasks. In future work, we
will extend our approach to other medical image segmentation
tasks to verify its effectiveness.

CONCLUSIONS
In this paper, we developed a novel network called an R-DCNN to
jointly segment OD and OC for precise CDR measurement and
glaucoma screening. This involved constructing the original OD
and OC segmentation problems into object detection issues.
Through quantitative, qualitative and generalization analyses, the
excellent performance of the proposed method on OD and OC
segmentation and glaucoma screening tasks was demonstrated.
The success of the designed approach provided a useful and
efficient tool for computer-assisted glaucoma screening in clinical
practice.

Summary
What was known before

● Traditional segmentation methods heavily rely on the utiliza-
tion of hand-crafted features of OD and OC, and lead to
degrade segmentation performance.

● Segmentation performance is often subject to substantial
inter- and intra-observer variability, even among trained and
professional experts.

● These methods required a great deal of time to post-process
the segmentation results with other strategies, thereby
abandoning the end-to-end learning.

What this study adds

● An end-to-end R-DCNN was proposed to jointly segment OD
and OC for glaucoma screening.

● The proposed approach could automatically learn discrimina-
tive representations from raw input images.

● The proposed approach without post-processing achieved
performance matching to ophthalmologists while exceeded
other advanced methods in OD and OC segmentation, along
with glaucoma screening.

● It provided a useful way to act as an efficient tool for
computer-assisted glaucoma screening in clinical practice.
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