Abstract
Objectives
To establish a potential relationship between diabetic retinopathy (DR) and different stages of cognitive impairment
Methods
Literature searches were conducted on PubMed and EMBASE, with keywords “diabetic retinopathy” and “cognitive impairment”. Inclusion criteria were original human studies, and English language. Quality of studies was assessed by the Newcastle-Ottawa Quality Assessment (NOSGEN). The register number of this study on the International Prospective Register of Systematic Reviews (PROSPERO) is CRD42021236747. The main outcome measures were odds ratios (OR) and risk ratios (RR) for cross-sectional and longitudinal studies, respectively. Meta-regression was performed to evaluate the effects of potential moderator variables, including, age, onset age of diabetes mellitus (DM), duration of DM, and HbA1c.
Results
Twenty-five studies (17 cross-sectional and 8 longitudinal studies) with a total of 1,963,914 subjects, were included. Among the cross-sectional studies, the pooled ORs of any cognitive impairment, early stage of cognitive impairment and dementia in subjects with DR (95% confidence interval) were 1.48 (1.08–2.02), 1.59 (1.01–2.51), and 1.13 (0.86–1.50), respectively. Among the longitudinal studies, the pooled RRs of any cognitive impairment, early stage of cognitive impairment, and dementia in subjects with DR (95% confidence interval) were 1.35 (1.12–1.65), 1.50 (1.06–2.12), and 1.31 (1.03–1.66), respectively. Meta-regression showed age, onset age of DM, duration of DM, and glycated hemoglobin (HbA1c) were not statistically associated with the outcomes.
Conclusions
The presence of DR in DM patients indicates both higher odds of prevalent cognitive impairment and escalated risks of developing cognitive impairment in the future.
摘要
目的
建立糖尿病视网膜病变(DR)与不同阶段认知障碍之间的潜在关联。
方法
PubMde 和 EMBASE数据库中使用“糖尿病视网膜病变”和“认知障碍”两个关键词进行文献检索。纳入标准为临床研究和英文文献, 我们通过Newcastle-Ottawa质量评估(NOSGEN)方法评估研究质量。本研究在国际前瞻性系统性综述登记研究(PROSPERO)中的登记研究编号为CRD42021236747。比值比 (OR) 和风险比 (RR) 分别是横断面研究和纵向研究的主要结局指标。荟萃-回归分析用以评估潜在调节变量带来的影响, 包括年龄、糖尿病(DM)发病年龄、DM病程和HbA1c。
结果
共纳入25项研究 (17项横断面研究和8项纵向研究), 一共1, 963, 914例受试对象。在横断面研究中, DR受试者中任何认知障碍、早期认知障碍及痴呆的合并OR (95%置信区间) 分别为1.48(1.08–2.02)、1.59(1.01–2.51)和1.13(0.86–1.50)。在纵向研究中, DR受试者中任何认知障碍、早期认知障碍及痴呆的合并RR (95%置信区间) 分别为 1.35 (1.12–1.65), 1.50 (1.06–2.12) and 1.31 (1.03–1.66)。荟萃-回归分析显示, 年龄, DM发病年龄, DM病程和糖化血红蛋白 (HbA1c) 与认知障碍结局无统计学相关性。
结论
并发DR的DM患者发生认知障碍的几率高, 且将来发生认知障碍的风险也高。
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 18 print issues and online access
$259.00 per year
only $14.39 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout








References
Wong TY, Sabanayagam C. The war on diabetic retinopathy: where are we now? Asia Pac J Ophthalmol. 2019;8:448–56. https://doi.org/10.1097/APO.0000000000000267.
Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396:413–46. https://doi.org/10.1016/S0140-6736(20)30367-6.
World Health Organization. Dementia [electronic resource]: a public health priority. Geneva: World Health Organization; 2012.
Livingston GO, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396:413–46. https://doi.org/10.1016/S0140-6736(20)30367-6.
Zhang J, Chen C, Hua S, Liao H, Wang M, Xiong Y, et al. An updated meta-analysis of cohort studies: Diabetes and risk of Alzheimer’s disease. Diabetes Res Clin Pract. 2017;124:41–7. https://doi.org/10.1016/j.diabres.2016.10.024.
Biessels GJ, Nobili F, Teunissen CE, Simó R, Scheltens P. Understanding multifactorial brain changes in type 2 diabetes: a biomarker perspective. Lancet Neurol. 2020;19:699–710. https://doi.org/10.1016/S1474-4422(20)30139-3.
Amidei CB, Fayosse A, Dumurgier J, Machado-Fragua MD, Tabak AG, van Sloten T, et al. Association between age at diabetes onset and subsequent risk of dementia. JAMA. 2021;325:1640–9. https://doi.org/10.1001/jama.2021.4001.
Cukierman T, Gerstein HC, Williamson JD. Cognitive decline and dementia in diabetes-systematic overview of prospective observational studies. Diabetologia. 2005;48:2460–9.
Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol. 2006;5:64–74.
van Sloten TT, Sedaghat S, Carnethon MR, Launer LJ, Stehouwer CDA. Cerebral microvascular complications of type 2 diabetes: stroke, cognitive dysfunction, and depression. Lancet Diabetes Endocrinol. 2020;8:325–36. https://doi.org/10.1016/S2213-8587(19)30405-X.
London A, Benhar I, Schwartz M. The retina as a window to the brain-from eye research to CNS disorders. Nat Rev Neurol. 2013;9:44–53. https://doi.org/10.1038/nrneurol.2012.227.
Trost A, Lange S, Schroedl F, Bruckner D, Motloch KA, Bogner B, et al. Brain and retinal pericytes: origin, function and role. Front Cell Neurosci. 2016;10:20. https://doi.org/10.3389/fncel.2016.00020.
Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC. Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res. 2016;51. https://doi.org/10.1016/j.preteyeres.2015.06.003.
Cheung CY, Chan VTT, Mok VC, Chen C, Wong TY. Potential retinal biomarkers for dementia: what is new? Curr Opin Neurol. 2019;32:82–91. https://doi.org/10.1097/WCO.0000000000000645.
Cheung CY-L, Ikram MK, Chen C, Wong TY. Imaging retina to study dementia and stroke. Prog Retin Eye Res. 2017;57:89–107. https://doi.org/10.1016/j.preteyeres.2017.01.001.
van der Flier WM, Skoog I, Schneider JA, Pantoni L, Mok V, Chen CLH, et al. Vascular cognitive impairment. Nat Rev Dis Primers. 2018;4:18003. http://europepmc.org/abstract/MED/2944676910.1038/nrdp.2018.3.
Hendrikx D, Smits A, Lavanga M, De Wel O, Thewissen L, Jansen K, et al. Measurement of Neurovascular Coupling in Neonates. Front Physiol. 2019;10. https://doi.org/10.3389/fphys.2019.00065.
Bruce DG, Davis WA, Starkstein SE, Davis TM. Mid-life predictors of cognitive impairment and dementia in type 2 diabetes mellitus: the Fremantle Diabetes Study. J Alzheimers Dis. 2014;42:S63–70. https://doi.org/10.3233/JAD-132654.
Jacobson AM, Ryan CM, Braffett BH, Gubitosi-Klug RA, Lorenzi GM, Luchsinger JA, et al. Cognitive performance declines in older adults with type 1 diabetes: results from 32 years of follow-up in the DCCT and EDIC Study. Lancet Diabetes Endocrinol. 2021. https://doi.org/10.1016/S2213-8587(21)00086-3.
Crosby-Nwaobi RR, Sivaprasad S, Amiel S, Forbes A. The relationship between diabetic retinopathy and cognitive impairment. Diabetes Care. 2013;36:3177–86. https://doi.org/10.2337/dc12-2141.
Pedersen HE, Sandvik CH, Subhi Y, Grauslund J, Pedersen FN. Relationship between diabetic retinopathy and systemic neurodegenerative diseases: a systematic review and meta-analysis. Ophthalmol Retina. 2021. https://doi.org/10.1016/j.oret.2021.07.002.
Cheng D, Zhao X, Yang S, Wang G, Ning G. Association between diabetic retinopathy and cognitive impairment: a systematic review and meta-analysis. Front Aging Neurosci. 2021;13. https://doi.org/10.3389/fnagi.2021.692911.
Hill NTM, Mowszowski L, Naismith SL, Chadwick VL, Valenzuela M, Lampit A. Computerized cognitive training in older adults with mild cognitive impairment or dementia: a systematic review and meta-analysis. Am J Psychiatry. 2017;174:329–40. https://doi.org/10.1176/appi.ajp.2016.16030360.
Jacova C, Peters KR, Beattie BL, Wong E, Riddehough A, Foti D, et al. Cognitive impairment no dementia—neuropsychological and neuroimaging characterization of an amnestic subgroup. Dement Geriatr Cogn Disord. 2008;25:238–47. https://doi.org/10.1159/000115848.
Campbell NL, Unverzagt F, LaMantia MA, Khan BA, Boustani MA. Risk factors for the progression of mild cognitive impairment to dementia. Clin Geriatr Med. 2013;29:873–93. https://doi.org/10.1016/j.cger.2013.07.009.
Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:280–92. https://doi.org/10.1016/j.jalz.2011.03.003.
Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14:535–62. https://doi.org/10.1016/j.jalz.2018.02.018.
Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283:2008–12.
Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa Hospital Research Institute 2014. http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm. Accessed 3 Feb 2020.
Modesti PA, Reboldi G, Cappuccio FP, Agyemang C, Remuzzi G, Rapi S, et al. Panethnic differences in blood pressure in Europe: a systematic review and meta-analysis. PLoS ONE. 2016;11:e0147601. https://doi.org/10.1371/journal.pone.0147601.
Gorska-Ciebiada M, Saryusz-Wolska M, Borkowska A, Ciebiada M, Loba J. Adiponectin, leptin and IL-1 β in elderly diabetic patients with mild cognitive impairment. Metab Brain Dis. 2016;31:257–66. https://doi.org/10.1007/s11011-015-9739-0.
Gorska-Ciebiada M, Saryusz-Wolska M, Borkowska A, Ciebiada M, Loba J. C-reactive protein, advanced glycation end products, and their receptor in type 2 diabetic, elderly patients with mild cognitive impairment. Front Aging Neurosci. 2015;7:209. https://doi.org/10.3389/fnagi.2015.00209.
Gorska-Ciebiada M, Saryusz-Wolska M, Ciebiada M, Loba J. Mild cognitive impairment and depressive symptoms in elderly patients with diabetes: prevalence, risk factors, and comorbidity. J Diabetes Res. 2014;2014:179648. https://doi.org/10.1155/2014/179648.
Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 2020;16:377–90. https://doi.org/10.1038/s41581-020-0278-5.
Moran EP, Wang Z, Chen J, Sapieha P, Smith LEH, Ma J-X. Neurovascular cross talk in diabetic retinopathy: Pathophysiological roles and therapeutic implications. Am J Physiol Heart Circ Physiol. 2016;311:H738–49. https://doi.org/10.1152/ajpheart.00005.2016.
Gardner T, Davila J. The neurovascular unit and the pathophysiologic basis of diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2017;255. https://doi.org/10.1007/s00417-016-3548-y.
Duh EJ, Sun JK, Stitt AW. Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight. 2017;2:e93751. https://doi.org/10.1172/jci.insight.93751.
Nakahara T, Mori A, Kurauchi Y, Sakamoto K, Ishii K. Neurovascular interactions in the retina: physiological and pathological roles. J Pharmacol Sci. 2013;123:79–84. https://doi.org/10.1254/jphs.13R03CP.
Nian S, Lo ACY, Mi Y, Ren K, Yang D. Neurovascular unit in diabetic retinopathy: pathophysiological roles and potential therapeutical targets. Eye Vis. 2021;8:15. https://doi.org/10.1186/s40662-021-00239-1.
Tang Z, Chan MY, Leung WY, Wong HY, Ng CM, Chan VTT, et al. Assessment of retinal neurodegeneration with spectral-domain optical coherence tomography: a systematic review and meta-analysis. Eye. 2021;35:1317–25. https://doi.org/10.1038/s41433-020-1020-z.
Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci. 2011;12:723–38. https://doi.org/10.1038/nrn3114.
Arvanitakis Z, Capuano AW, Leurgans SE, Bennett DA, Schneider JA. Relation of cerebral vessel disease to Alzheimer’s disease dementia and cognitive function in elderly people: a cross-sectional study. Lancet Neurol. 2016;15:934–43. https://doi.org/10.1016/S1474-4422(16)30029-1.
Iturria-Medina Y, Sotero RC, Toussaint PJ, Mateos-Pérez JM, Evans AC, Weiner MW, et al. Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat Commun. 2016;7:11934. https://doi.org/10.1038/ncomms11934.
Nelson AR, Sweeney MD, Sagare AP, Zlokovic BV. Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer’s disease. Biochim Biophys Acta. 2016;1862:887–900. https://doi.org/10.1016/j.bbadis.2015.12.016.
Alzheimer’s A. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement. 2016;12:459–509. https://doi.org/10.1016/j.jalz.2016.03.001.
Cortes-Canteli M, Iadecola C. Alzheimer’s disease and vascular aging: JACC focus seminar. J Am Coll Cardiol. 2020;75:942–51. https://doi.org/10.1016/j.jacc.2019.10.062.
Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV. Establishment and dysfunction of the blood-brain barrier. Cell. 2015;163:1064–78. https://doi.org/10.1016/j.cell.2015.10.067.
Kisler K, Nelson AR, Montagne A, Zlokovic BV. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci. 2017;18:419–34. https://doi.org/10.1038/nrn.2017.48.
Dubois B, Hampel H, Feldman HH, Scheltens P, Aisen P, Andrieu S, et al. Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement. 2016;12:292–323. https://doi.org/10.1016/j.jalz.2016.02.002.
Beck J, Greenwood DA, Blanton L, Bollinger ST, Butcher MK, Condon JE, et al. National standards for diabetes self-management education and support. Diabetes Care. 2017;40:1409–19. https://doi.org/10.2337/dci17-0025.
Feil DG, Zhu CW, Sultzer DL. The relationship between cognitive impairment and diabetes self-management in a population-based community sample of older adults with Type 2 diabetes. J Behav Med. 2012;35:190–9. https://doi.org/10.1007/s10865-011-9344-6.
Crane PK, Walker R, Hubbard RA, Li G, Nathan DM, Zheng H, et al. Glucose levels and risk of dementia. New Engl J Med. 2013;369:540–8. https://doi.org/10.1056/NEJMoa1215740.
Ruamviboonsuk P, Cheung CY, Zhang X, Raman R, Park SJ, Ting DSW. Artificial intelligence in ophthalmology: evolutions in asia. Asia Pac J Ophthalmol. 2020;9:78–84.
Bellemo V, Lim G, Rim TH, Tan GSW, Cheung CY, Sadda S, et al. Artificial intelligence screening for diabetic retinopathy: the real-world emerging application. Curr Diabetes Rep. 2019;19:72. https://doi.org/10.1007/s11892-019-1189-3
Cheung CY, Tang F, Ting DSW, Tan GSW, Wong TY. Artificial intelligence in diabetic eye disease screening. Asia Pac J Ophthalmol. 2019;8:158–64.
Funding
Health and Medical Research Fund, Hong Kong (Grant Number: 04153506). The funding organization had no role in the design or conduct of this research.
Author information
Authors and Affiliations
Contributions
RNFC was responsible for registering the protocol, conducting literature search, screening potentially eligible studies, extracting and analysing data, interpreting results, and writing the paper. ZT and VTTC contributed to data analysis, results interpretation, and writing the paper. RNCC, ETWC, and NCYN were responsible for designing the review protocol, writing the protocol, screening potentially eligible studies, and extracting and analysing data. CYC was responsible for designing the study, provided instructions on the paper, and supervised the entire process.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Chan, R.N.F., Tang, Z., Chan, V.T.T. et al. The cross-sectional and longitudinal relationship of diabetic retinopathy to cognitive impairment: a systematic review and meta-analysis. Eye 37, 220–227 (2023). https://doi.org/10.1038/s41433-022-02033-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41433-022-02033-2