Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The effect of atropine 0.01% eyedrops on relative peripheral refraction in myopic children

Abstract

Background

Relative peripheral refraction (RPR) is a significant factor that participates in myopic development. Here, we evaluated the effects of atropine 0.01% eyedrops, as an antimyopia drug, on RPR.

Methods

Seventy-three children were enrolled from a randomized, double-blinded, placebo-0.01% atropine eyedrops cross-over trial. The study group had used the placebo for one year and then crossed over to atropine 0.01% eyedrops for half a year. The control group had used 0.01% atropine for one year and then crossed over to placebo eyedrops for half a year. Central and horizontal peripheral refractions (15° and 30° at the temporal and nasal retina) were measured under non-cycloplegia and cycloplegia.

Results

No significant differences in age, gender, and central refraction were identified between the two groups (P > 0.05). Under non-cycloplegia, the control group showed significant relative hyperopia in the temporal 30° retina and the nasal retina (P = 0.031; P < 0.001; P < 0.001). In the study group, the relative hyperopia in the temporal 30° retina disappeared (P = 0.983). After cycloplegia, the control group had less myopia in central refractions and less hyperopia in temporal RPR (P < 0.001; P = 0.039; P < 0.001). The study group did not present significant changes in central refractions and temporal RPR (P = 0.122; P = 0.222; P = 0.475).

Conclusions

For myopic children, atropine 0.01% eyedrops can alleviate relative hyperopia in the temporal retina and the hyperopic shift before cycloplegia. The effect might participate in myopia control.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The differences in relative peripheral refractions between myopic children with and without atropine 0.01% eyedrops.
Fig. 2: The differences in relative peripheral refractions between the non-cycloplegic and cycloplegic refractions in myopic children.

References

  1. Holden B, Fricke T, Wilson D, Jong M, Naidoo K, Sankaridurg P, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123:1036–42.

    Article  Google Scholar 

  2. Wei S, Sun Y, Li S, Hu J, Yang X, Lin C, et al. Refractive errors in University Students in Central China: the Anyang University students eye study. Invest Ophthalmol Vis Sci. 2018;59:4691–700.

    Article  Google Scholar 

  3. Quek T, Chua C, Chong C, Chong J, Hey H, Lee J, et al. Prevalence of refractive errors in teenage high school students in Singapore. Ophthalmic Physiol Opt. 2004;24:47–55.

    Article  Google Scholar 

  4. Gimbel H. The control of myopia with atropine. Can J Ophthalmol. 1973;8:527–32.

    CAS  Google Scholar 

  5. Yen M, Liu J, Kao S, Shiao C. Comparison of the effect of atropine and cyclopentolate on myopia. Ann Ophthalmol. 1989;21:180–2.

    CAS  Google Scholar 

  6. Chia A, Chua W, Wen L, Fong A, Goon Y, Tan D. Atropine for the treatment of childhood myopia: changes after stopping atropine 0.01%, 0.1% and 0.5%. Am J Ophthalmol. 2014;157:451–7.

    Article  CAS  Google Scholar 

  7. Gong Q, Janowski M, Luo M, Wei H, Chen B, Yang G, et al. Efficacy and adverse effects of atropine in childhood myopia: a meta-analysis. JAMA Ophthalmol. 2017;135:624–30.

    Article  Google Scholar 

  8. Faria-Ribeiro M, Queirós A, Lopes-Ferreira D, Jorge J, González-Méijome J. Peripheral refraction and retinal contour in stable and progressive myopia. Optom Vis Sci. 2013;90:9–15.

    Article  Google Scholar 

  9. Hoogerheide J, Rempt F, Hoogenboom W. Acquired myopia in young pilots. Ophthalmologica. 1971;163:209–15.

    Article  CAS  Google Scholar 

  10. Smith E, Kee C, Ramamirtham R, Qiao-Grider Y, Hung L. Peripheral vision can influence eye growth and refractive development in infant monkeys. Invest Ophthalmol Vis Sci. 2005;46:3965–72.

    Article  Google Scholar 

  11. Irving E, Yakobchuk-Stanger C. Myopia progression control lens reverses induced myopia in chicks. Ophthalmic Physiol Opt. 2017;37:576–584.

    Article  Google Scholar 

  12. Kang P, Swarbrick H. Peripheral refraction in myopic children wearing orthokeratology and gas-permeable lenses. Optom Vis Sci. 2011;88:476–482.

    Article  Google Scholar 

  13. Sankaridurg P, He X, Naduvilath T, Lv M, Ho A, Smith E, et al. Comparison of noncycloplegic and cycloplegic autorefraction in categorizing refractive error data in children. Acta Ophthalmol. 2017;95:e633–e640.

    Article  CAS  Google Scholar 

  14. Lin Z, Vasudevan B, Ciuffreda K, Zhou H, Mao G, Wang N, et al. The difference between cycloplegic and non-cycloplegic autorefraction and its association with progression of refractive error in Beijing urban children. Ophthalmic Physiol Opt. 2017;37:489–97.

    Article  Google Scholar 

  15. Zhao J, Mao J, Luo R, Li F, Pokharel G, Ellwein L. Accuracy of noncycloplegic autorefraction in school-age children in China. Optom Vis Sci. 2004;81:49–55.

    Article  Google Scholar 

  16. Wei S, Li S, An W, Du J, Liang X, Sun Y, et al. Safety and efficacy of low-dose atropine eyedrops for the treatment of myopia progression in chinese children: a randomized clinical trial. JAMA Ophthalmol. 2020;138:1178–84.

    Article  Google Scholar 

  17. Thibos L, Wheeler W, Horner D. Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error. Optom Vis Sci. 1997;74:367–75.

    Article  CAS  Google Scholar 

  18. Radhakrishnan H, Allen P, Calver R, Theagarayan B, Price H, Rae S, et al. Peripheral refractive changes associated with myopia progression. Invest Ophthalmol Vis Sci. 2013;54:1573–81.

    Article  Google Scholar 

  19. Li S, Li S, Liu L, Zhou Y, Yang Z, Kang M, et al. Peripheral refraction in 7- and 14-year-old children in central China: the Anyang Childhood Eye Study. Br J Ophthalmol. 2015;99:674–79.

    Article  Google Scholar 

  20. Flitcroft D. The complex interactions of retinal, optical and environmental factors in myopia aetiology. Prog Retin Eye Res. 2012;31:622–60.

    Article  CAS  Google Scholar 

  21. Mallen E, Kashyap P. Technical note: measurement of retinal contour and supine axial length using the Zeiss IOLMaster. Ophthalmic Physiol Opt. 2007;27:404–11.

    Article  Google Scholar 

  22. Schmid G. Association between retinal steepness and central myopic shift in children. Optom Vis Sci. 2011;88:684–90.

    Article  Google Scholar 

  23. Verkicharla P, Mathur A, Mallen E, Pope J, Atchison D. Eye shape and retinal shape, and their relation to peripheral refraction. Ophthalmic Physiol Opt. 2012;32:184–99.

    Article  Google Scholar 

  24. Rynders M, Lidkea B, Chisholm W, Thibos LN. Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle psi in a population of young adult eyes. J Opt Soc Am A Opt Image Sci Vis. 1995;12:2348–57.

    Article  CAS  Google Scholar 

  25. Pande M, Hillman JS. Optical zone centration in keratorefractive surgery. Entrance pupil center, visual axis, coaxially sighted corneal reflex, or geometric corneal center? Ophthalmology. 1993;100:1230–7.

    Article  CAS  Google Scholar 

  26. Niyazmand H, Read S, Atchison D, Collins M. Anterior eye shape in emmetropes, low to moderate myopes, and high myopes. Cont Lens Anterior Eye. 2021;44:101361.

    Article  Google Scholar 

  27. Fadel D. The influence of limbal and scleral shape on scleral lens design. Cont Lens Anterior Eye. 2018;41:321–28.

    Article  Google Scholar 

  28. Consejo A, Llorens-Quintana C, Bartuzel M, Iskander D. Rozema. J Rotat asymmetry Hum sclera Acta Ophthalmol. 2019;97:e266–e270.

    Google Scholar 

  29. Ritzmann M, Caroline P, Börret R, Korszen E. An analysis of anterior scleral shape and its role in the design and fitting of scleral contact lenses. Cont Lens Anterior Eye. 2018;41:205–13.

    Article  Google Scholar 

  30. Kaufman P, Lütjen Drecoll E, Croft M. Presbyopia and glaucoma: two diseases, one pathophysiology? The 2017 Friedenwald lecture. Invest Ophthalmol Vis Sci. 2019;60:1801–12.

    Article  Google Scholar 

  31. Stone R, Pendrak K, Sugimoto R, Lin T, Gill A, Capehart C, et al. Local patterns of image degradation differentially affect refraction and eye shape in chick. Curr Eye Res. 2006;31:91–105.

    Article  Google Scholar 

  32. Sun H, Lu W, You J, Kuo H. Peripheral refraction in myopic children with and without atropine usage. J Ophthalmol. 2020;2020:4919154.

    Google Scholar 

  33. Lan W, Lin Z, Yang Z, Artal P. Two-dimensional peripheral refraction and retinal image quality in emmetropic children. Sci Reps. 2019;9:16203.

    Article  Google Scholar 

  34. Campbell F, Westheimer G. Dynamics of accommodation responses of the human eye. J Physiol. 1960;151:285–95.

    Article  CAS  Google Scholar 

  35. Ciuffreda K, Vasudevan B. Nearwork-induced transient myopia (NITM) and permanent myopia–is there a link? Ophthalmic Physiol Opt. 2008;28:103–14.

    Article  Google Scholar 

  36. Guo L, Fan L, Tao J, Hua R, Yang Q, Gu H, et al. Use of topical 0.01% atropine for controlling near work-induced transient myopia: a randomized, double-masked, placebo-controlled study. J Ocul Pharm Ther. 2020;36:97–101.

    Article  Google Scholar 

  37. Loughman J, Flitcroft D. The acceptability and visual impact of 0.01% atropine in a Caucasian population. Br J Ophthalmol. 2016;100:1525–9.

    Article  Google Scholar 

  38. Yam J, Jiang Y, Tang S, Law A, Chan J, Wong E, et al. Low-concentration atropine for myopia progression (LAMP) study: a randomized, double-blinded, placebo-controlled trial of 0.05%, 0.025%, and 0.01% atropine eye drops in myopia control. Ophthalmology. 2019;126:113–24.

    Article  Google Scholar 

  39. Chiang S, Phillips J. Effect of atropine eye drops on choroidal thinning induced by hyperopic retinal defocus. J Ophthalmol. 2018;2018:8528315.

    Google Scholar 

  40. Sander B, Collins M, Read S. Short-term effect of low-dose atropine and hyperopic defocus on choroidal thickness and axial length in young myopic adults. J Ophthalmol. 2019;2019:4782536.

    Google Scholar 

  41. Wu H, Chen W, Zhao F, Zhou Q, Reinach P, Deng L, et al. Scleral hypoxia is a target for myopia control. Proc Natl Acad Sci USA. 2018;115:E7091–E7100.

    Article  CAS  Google Scholar 

  42. Benavente-Pérez A, Nour A, Troilo D. Axial eye growth and refractive error development can be modified by exposing the peripheral retina to relative myopic or hyperopic defocus. Invest Ophthalmol Vis Sci. 2014;55:6765–73.

    Article  Google Scholar 

  43. Berntsen D, Barr C, Mutti D, Zadnik K. Peripheral defocus and myopia progression in myopic children randomly assigned to wear single vision and progressive addition lenses. Invest Ophthalmol Vis Sci. 2013;54:5761–70.

    Article  Google Scholar 

  44. Rotolo M, Montani G, Martin R. Myopia onset and role of peripheral refraction. Clin Optpm. 2017;9:105–11.

    Google Scholar 

  45. Atchison DA, Li SM, Li H, Li SY, Liu LR, Kang MT, et al. Relative peripheral hyperopia does not predict development and progression of myopia in children. Invest Ophthalmol Vis Sci. 2015;56:6162–70.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank support and help from Beijing Tongren Hospital, Capital Medical University.

Funding

The work was supported by Beihang University-CMU, Advanced Innovation Center for Big Data-Based Precision Medicine, Ophthalmic subcenter and Sanming Project of Medicine in Shenzhen (No. SZSM201512045).

Author information

Authors and Affiliations

Authors

Contributions

JT, SW, SL and NW: study concept and design and manuscript revision. JT, SW, WA, WB, XL and JD: performed the study. JT: drafted manuscript. JT and SW: statistical analysis. SW, SL and NW: revised the manuscript. NW: administrative, technical, material support, or study supervision. All authors participated in and provided help for the study.

Corresponding author

Correspondence to Ningli Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Wei, S., Li, S. et al. The effect of atropine 0.01% eyedrops on relative peripheral refraction in myopic children. Eye 37, 356–361 (2023). https://doi.org/10.1038/s41433-021-01923-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41433-021-01923-1

This article is cited by

Search

Quick links