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BACKGROUND: Relative peripheral refraction (RPR) is a significant factor that participates in myopic development. Here, we
evaluated the effects of atropine 0.01% eyedrops, as an antimyopia drug, on RPR.

METHODS: Seventy-three children were enrolled from a randomized, double-blinded, placebo-0.01% atropine eyedrops cross-over
trial. The study group had used the placebo for one year and then crossed over to atropine 0.01% eyedrops for half a year. The
control group had used 0.01% atropine for one year and then crossed over to placebo eyedrops for half a year. Central and
horizontal peripheral refractions (15° and 30° at the temporal and nasal retina) were measured under non-cycloplegia and
cycloplegia.

RESULTS: No significant differences in age, gender, and central refraction were identified between the two groups (P > 0.05). Under
non-cycloplegia, the control group showed significant relative hyperopia in the temporal 30° retina and the nasal retina (P = 0.031;
P <0.001; P <0.001). In the study group, the relative hyperopia in the temporal 30° retina disappeared (P = 0.983). After cycloplegia,
the control group had less myopia in central refractions and less hyperopia in temporal RPR (P < 0.001; P = 0.039; P < 0.001).
The study group did not present significant changes in central refractions and temporal RPR (P = 0.122; P=0.222; P = 0.475).
CONCLUSIONS: For myopic children, atropine 0.01% eyedrops can alleviate relative hyperopia in the temporal retina and the
hyperopic shift before cycloplegia. The effect might participate in myopia control.

Eye (2023) 37:356-361; https://doi.org/10.1038/541433-021-01923-1

INTRODUCTION

As a public health problem, myopia has an increasing impact on
the quality of people’s lives, especially in Asia [1]. In China, over
82.3% of university students had myopia and 11.1% from high
myopia [2]. In Singapore, the prevalence of myopia exceeded 70%
in young teenagers [3]. With the rising incidence and related
complications, like glaucoma, myopic macular degeneration, and
choroidal neovascularization, more and more attention has been
paid to myopia control. In 1920, atropine was first proposed to
prevent myopia progression [4]. Compared with cyclopentolate
1% eyedrops, atropine 1% eyedrops had better effectiveness on
retarding myopia progression after a year of observation [5]. Up to
now, many researchers have found low-concentration atropine
can effectively relieve myopia and reduce side effects, like poor
visual feeling, photophobia, and progression rebound after
stopping treatment [6, 7]. However, the mechanism of atropine
control of myopia is still obscured.

Relative peripheral refraction (RPR), up to the dioptric situation
and retinal shape, was the difference between central and
peripheral visual refraction [8]. Since the 1970s, Hoogerheide
et al. firstly found that relative peripheral hyperopia was a risk
factor for myopia development and proposed its meaning in the
prognosis of myopia [9]. The animal studies demonstrated that
relative peripheral hyperopia and peripheral form deprivation
promoted axial elongation in ocular growth [10, 11]. Soft contact
lenses and orthokeratology are also considered to retard myopia

progression by changing RPR [12]. However, studies about the
influence of atropine on RPR are rare. Previous studies have
testified that children have a difference between cycloplegic and
non-cycloplegic refraction, resulting from a temporary ciliary
muscle spasm and an active accommodation response in a
habitual accommodative state [13-15]. Lin et al. regarded the
difference spherical equivalent (DSE) between cycloplegic and
non-cycloplegic autorefraction as an evaluation for excessive
accommodation. They proposed that it could contribute to
myopic progression [14]. Given the whole refraction state in
the horizontal visual field, if there is a DSE in the central refraction,
then there should also be a DSE in RPR. However, the
characteristics of DSE in RPR are obscure. As a nonselective
muscarinic receptor antagonist, atropine is helpful to relieve the
ciliary muscle spasm and may further affect the integral refraction
state. Therefore, based on a randomized, double-blinded, placebo-
0.01% atropine eyedrops cross-over trial, we explore the influence
of atropine 0.01% eyedrops, as an antimyopia drug, on RPR, DSE,
and the two factors combined [16].

METHODS

Study design

The study was conducted at the 1.5-year follow-up of the randomized,
double-blinded, placebo-0.01% atropine eyedrops cross-over trial per-
formed in Beijing Tongren Hospital [16]. All children were recruited and
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Table 1.

The study group

Non-cycloplegia Cycloplegia
0° refraction, mean + SD, (D) —3.67 £1.45 —349+1.41
15° temporal RPR, mean+SD, (D) —0.19+0.75 —0.27 £0.59
30° temporal RPR, mean = SD, (D) 0.00+1.39 —0.11+1.48
15° nasal RPR, mean +SD, (D) 0.58 +0.70 0.42+0.82
30° nasal RPR, mean + SD, (D) 1.80+1.25 1.76 +1.35

The central refraction and RPRs of subjects in horizontal visual field under non-cycloplegia and cycloplegia.

The control group P value P value
P value Non-cycloplegia Cycloplegia P value
0.122° —3.82+1.24 —3.57+1.16 <0.001* 0.650° 0.796%
0.222% —0.17 £0.59 —0.43+0.77 0.039° 0934° 0.336°
0.475° 0.56 +£1.43 —050+1.68 <0.001° 0.101° 0.634°
0.157° 0.68 £0.75 0.65+0.74 0.716°  0.581°¢ 0.241°¢
0.697° 2.32+1.46 2.14+£1.61 0.137°  0.104° 0.115¢

SD standard deviation, RPR relative peripheral refraction, D dioptres.

@Paired-samples T tests were used to analyze the differences between non-cycloplegic and cycloplegic refractions in each group.
PWilcoxon rank sum tests were used to analyze the differences between non-cycloplegic and cycloplegic refractions in each group.
‘Independent-sample T-tests were used to analyze the differences in non-cycloplegic refractions between the two groups.
YIndependent-sample T-tests were used to analyze the differences in cycloplegic refractions between two the groups.
*Mann-Whitney U-tests were used to analyze the differences in cycloplegic refractions between two the groups.

randomized to receive either atropine 0.01% or placebo eyedrops in both
eyes once daily for one year in phase 1. The schedule generated by SAS
program (SAS Institute Inc) was used to operate the randomization
independently. At the end of the first year, the atropine 0.01% group will
be crossed over to the placebo group, and the placebo group will be
crossed over to the atropine 0.01% group for one year in phase 2. Here, the
children in the study group had used the placebo for one year in Phase 1
and then crossed over to atropine 0.01% eyedrops for half a year. The
children in the control group had used 0.01% atropine for one year in
Phase 1 and then crossed over to placebo eyedrops for half a year. All the
subjects were randomly enrolled from the cross-over trial. The study
adhered to the tenets of the declaration of Helsinki and was approved by
the Ethics Committee of Beijing Tongren Hospital. All participants provided
written informed consent after agreeing to participate. Inclusion criteria
included: aged 6-12 years, refractive error of spherical equivalent (SE)
range of —1.00 D to —6.00 D in both eyes, astigmatism of —1.50 D or less in
both eyes, best-corrected distance visual acuity 0.20 logMAR or better in
both eyes, intraocular pressure <21 mm Hg. Exclusion criteria were:
children with other combined ocular diseases (e.g., amblyopia, strabismus,
corneal scar, cataract, glaucoma, or ocular tumor), allergy to atropine,
cyclopentolate, or excipients. The trial was registered on the Chinese
Clinical Trial Registry (http://www.chictr.org.cn/index.aspx). The registration
number is ChiCTR-IOR-17013898 [16].

Measurement
An open-field autorefractor (WAM5500; Grand Seiko, Hiroshima, Japan)
was used to measure the central and peripheral refraction of the right eyes
with occluding left eyes by a patch under non-cycloplegia. Children were
instructed to keep their heads stationary and fixate the central target first,
and temporal targets and nasal targets followed. Five sighting targets were
placed at 0, 15° temporal (—15), 30° temporal (—30), 15° nasal (+15), 30°
nasal (+30) horizontal visual field angles with 5 meters radius, which
correspond to the central, 15° temporal (—15), 30° temporal (—30), 15°
nasal (+15), 30° nasal (4+30) retina, respectively. Average values of five
measurements were recorded for each angle. Cycloplegia was produced
with three drops 1% cyclopentolate (Alcon) administered at 5-minute
intervals. Thirty minutes after the last drop, if pupillary light reflex was still
present or the pupil size was less than 6.0 mm, the fourth drop of 1%
cyclopentolate was administered, and the examination was repeated
15 min later. Under cycloplegia, the refractions at five visual field angles
were measured again.

SE was calculated through conventional formulas to express refractive
power at different positions [17]. RPR was calculated by subtracting central
SE from peripheral SEs.

SE=S+C/2

where S is the sphere, C the cylinder.

Statistical analysis

Categorical data were present as counts (frequencies). Mean (standard
deviation) values were used to describe continuous variables. The
Kolmogorov-Smirnov test was used to examine the distributions of
continuous data. Continuous data with normal distributions were analyzed

Eye (2023) 37:356-361

with independent-samples T-tests or paired-samples T-tests. Continuous
variables with abnormal distributions were analyzed with Mann-Whitney
U-tests or Wilcoxon rank-sum tests. The Chi-square test was used to assess
the difference in gender between the two groups. We took independent-
samples T-tests and Mann-Whitney U-tests to analyze the two groups’
differences in continuous variables. Paired-samples T-tests and Wilcoxon
rank-sum tests were performed to evaluate the difference between
cycloplegic and non-cycloplegic SE at each position and the difference
between peripheral refractions and central refractions in each group. A P
value < 0.05 with two-sided was considered statistically significant. All
statistical analyses were performed using commercial software (SPSS
version 24.0; SPSS, Inc., Chicago, IL, United States).

RESULTS

Seventy-three myopic children from the trial were enrolled. Thirty-
nine subjects were in the study group and 34 subjects in the
control group. The age of subjects was 11.61+ 1.69 years and
11.33 £ 1.51 years in the study and the control group, respectively.
The percentage of boys was 53.8% in the study group and 47.1%
in the control group. No significant differences in age, gender, and
central refractions no matter under non-cycloplegia or cycloplegia
were identified between the two groups (P =0.470; P=0.563; P =
0.650; P = 0.796; Table 1).

Under non-cycloplegia, the control group presented significant
relative hyperopia at the temporal 30° and the nasal 15° and 30°
retina (P=0.031; P<0.001; P<0.001). In comparison, the sig-
nificant relative hyperopia in the temporal retina disappeared in
the study group. The subjects with atropine 0.01% eyedrops
presented significant relative hyperopia at the nasal 15° and 30°
retina (P < 0.001; P <0.001; Table 2). Besides, all relative peripheral
refractions (RPRs) in the study group were less hyperopic (or more
myopic) than those in the control group (P> 0.05 for all) (Table 1;
Fig. 1a).

Under cycloplegia, the RPRs at —15°, —30°, +15° and +30°
retina were —0.27+0.59D, —0.11+1.48D, 0.42+0.82D, and
1.76 £1.35D in the study group and —0.43+0.77D, —0.50+
1.68D, 0.65+0.74D, and 2.14+1.61D in the control group
(Table 1). Both groups have significant relative myopia at the
temporal 15° retina and significant relative hyperopia in the nasal
retina (P<0.05 for all; Table 2). Furthermore, all the absolute
values of RPRs were smaller in the study group than those in the
control group (P> 0.05 for all; Table 1; Fig. 1b).

No matter under non-cycloplegia or cycloplegia, both groups
had more significant hyperopia in the nasal retina (P<0.01;
Table 2).

In the control group, there was significantly less myopia in
central refraction after cycloplegia (P < 0.001). As a hyperopic shift
in the central refraction, there were significantly myopic shifts,
which meant less hyperopia in temporal RPRs (P < 0.001; P = 0.039).
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E “58 N NS % No significant changes in nasal RPRs occurred (Table 1; Fig. 2a). In
$3S 2828 the study group, the distributions of RPRs under non-cycloplegia
a vV Vv and cycloplegia were close to overlap. There were no significant

refraction changes presented after cycloplegia, no matter in central
or peripheral visual fields (Table 1; Fig. 2b).

DISCUSSION

As far as we know, this is the first time to evaluate the effect of
atropine 0.01% eyedrops on RPR and DSE in the horizontal visual
field. We performed the study based on a randomized, double-
blinded, cross-over trial, which enhanced the credibility of the
results. Radhakrishnan et al. demonstrated that myopes pre-
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The differences in relative peripheral refractions between myopic children with and without atropine 0.01% eyedrops. a Mean
relative peripheral refractions in myopic children with and without atropine 0.01% eye drops under non-cycloplegia. Error bars are 95% Cls of
the means. b Mean relative peripheral refractions in myopic children with and without atropine 0.01% eyedrops under cycloplegia. Error bars
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Fig. 2 The differences in relative peripheral refractions between the non-cycloplegic and cycloplegic refractions in myopic children.
a Mean relative peripheral refractions in myopic children without atropine 0.01% eye drops under non-cycloplegia and cycloplegia. Error bars
are 95% Cls of the means. The marks show the significant differences between the non-cycloplegic and cycloplegic refractions: *P < 0.05.
b Mean relative peripheral refractions in myopic children with atropine 0.01% eye drops under non-cycloplegia and cycloplegia. Error bars are
95% Cls of the means. There were no significant differences between the non-cycloplegic and cycloplegic refractions.

According to the previous study, a flatter RPR pattern was prone
to occur in emmetropic eyes [33].

Furthermore, the once-nightly dose of atropine 0.01% eye-
drops reduced the DSE in the central refraction. Previous studies
regarded DSE as an over-active accommodation or excessive
accommodation due to a ciliary muscle spasm, which usually
occurred after sustained near work. The study by Lin et al. further
proposed that a larger baseline DSE was associated with more
significant myopia progression through increasing myopic retinal
defocus in myopic children [14]. Near work-induced transient
myopia, as accommodation tonus of the ciliary muscle after near
work, has resemblance with DSE and could be a risk factor in
myopia progression [34, 35]. The study conducted by Guo et al.
demonstrated that atropine 0.01% eyedrops effectively reduced
the magnitude of initial near work-induced transient myopia,
which indirectly supported our findings [36]. For the effect of
atropine 0.01% on accommodation amplitude, some studies
suggested that atropine 0.01% could lower accommodation
amplitude. The change was not significant [37, 38]. Here, we
believed atropine 0.01% still influenced accommodation, espe-
cially on the over-active accommodation resulting from a
temporary ciliary muscle spasm in distant vision.

In the meantime, the once-nightly dose of atropine 0.01%
eyedrops also reduced the DSE in peripheral refractions. For
temporal RPRs, myopic children with the placebo had significant
myopic shifts after cycloplegia. However, these changes were not
significant in myopic children with atropine 0.01% eyedrops. The
RPR patterns under cycloplegia and non-cycloplegia were close to
overlapping in children with atropine. As a visual stimulus,
hyperopic defocus could lead to thinning choroidal thickness
and scleral hypoxia [39-41]. Previous studies also showed that
atropine could alleviate the choroidal thinning caused by
hyperopic defocus [39, 40]. Therefore, we speculated that atropine
0.01% eyedrops could relieve relative temporal hyperopia and
corresponding ocular reactions resulting from DSE, which was one
of the mechanisms of atropine 0.01% eyedrops in myopia control.

Eye (2023) 37:356-361

At present, the meaning of RPR in myopia development and
progression is debatable. Many animal studies have testified that
peripheral vision plays an important role in ocular growth.
Benavente-Pérez et al. proved that peripheral hyperopic defocus
could induce axial myopia, and conversely, peripheral myopic
defocus could induce axial hyperopia [42]. The study conducted
by Smith et al. testified that peripheral form deprivation in the
ocular development phase could lead to myopic refractive errors
and accelerate eye growth [10]. Irving fitted chicks with myopia
progression control lenses covering peripheral positive power and
conventional lenses to verify whether lens-induced myopia could
be reversed by peripheral myopic defocus. The results showed
that the treated eyes with special peripheral designs had
significantly negative axial length changes than control eyes
[11]. Population-based studies also demonstrated that lens with
reducing relative peripheral hyperopia could effectively lower
myopia progression [43]. However, most studies showed that no
matter under cycloplegia or non-cycloplegia, baseline RPR could
not predict myopia development and progression in Asian and
European children [18, 44, 45]. Further analyzing the previous
studies, we found that most of the relevant cohort studies used
the static values of RPR under cycloplegia or non-cycloplegia to
predict myopia progression. Just as we can't predict myopia
development through central refraction, it's probably hard to
detect the relationship between static RPR and myopia progres-
sion. As a dynamic indicator, DSE in peripheral refraction could be
a novel and useful method to study the relationship between RPR
and myopia.

In the current study, myopic children in the control group has
used atropine 0.01% for one year and then crossed over to
placebo eyedrops for six months. According to the research by
Chia et al., the effect of atropine 0.01% eyedrops on accom-
modation disappeared entirely after six months of stopping the
drug [6]. Therefore, we considered that the control group could
be used as a blank control to compare subjects using atropine
0.01% eyedrops. Some limitations of the study also should be
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recognized. The sample size was limited. Given that the subjects
were on continuous medication and the RPR examination
operation took some time, it was hard to enlarge the sample
size. Besides, as a cross-sectional study, the study is hard to
reflect the effect of atropine 0.01% eye drops on RPR and DSE in
myopic development directly. A large, longitudinal study can
provide more sound evidence for the association in myopia
control with RPR and DSE.

In conclusion, we firstly assessed the impacts of atropine 0.01%
eyedrops on RPR, DSE, and two factors combined in myopic children.
The study shows that atropine 0.01% may alter the horizontal RPR
pattern. Compared with myopic children with placebo eyedrops,
atropine 0.01% eyedrops had myopic shifts (less hyperopia or more
myopia) in all RPRs under non-cycloplegia and a flatter horizontal
RPR pattern under cycloplegia. After cycloplegia, as a hyperopic shift
in the central refraction, there were less hyperopia in temporal RPR
and no significant changes in nasal RPR. Atropine 0.01% eye drops
can alleviate the shifts in the central visual field and temporal RPR.
According to the study, we speculated that atropine 0.01% eyedrops
could control the myopia development and progression through
adjusting over-active accommodation and peripheral visual signals in
distant vision. The temporal RPR might have more crucial influences
on myopic progression. Moreover, the difference between non-
cycloplegic RPR and cycloplegic RPR could become a new, helpful
indicator investigating the relationship between RPR and myopia. A
study with greater sample size and longer observation could be
performed to evaluate the effect of atropine 0.01% eyedrops on RPR
and DSE and the related mechanism in myopic control.

Summary
What was known before

® Atropine 0.01% eyedrops can effectively relieve myopia
progression and reduce the side effects.

What this study adds

® Atropine 0.01% eyedrops can alleviate relative peripheral
hyperopia in the temporal retina and the difference between
cycloplegic and non-cycloplegic autorefraction in myopic
children.
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