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BACKGROUND/OBJECTIVES: Systemic levels of pro-inflammatory cytokines and activated complement components affect the risk
and/or progression of neovascular age-related macular degeneration (AMD). This study investigated the effect of serum pro-
inflammatory cytokine levels and complement pathway activity on the clinical response to vascular endothelial growth factor
(VEGF) inhibition in neovascular AMD.
METHODS: Sixty-five patients with a new diagnosis of neovascular AMD were observed over a six-month period in a single-centre,
longitudinal cohort study. At each visit, the visual acuity score (VAS), central macular thickness (CMT), serum levels of CRP, pro-
inflammatory cytokines (TNF-α, IL-1β, IL-2, IL-6 and IL-8), and complement pathway activity were measured. Participant DNA
samples were sequenced for six complement pathway single nucleotide polymorphisms (SNPs) associated with AMD.
RESULTS: A statistically significant difference in VAS was observed for serum levels of TNF-α only: there was a gain in VAS (from
baseline) of 1.37 for participants below the 1st quartile of mean concentration compared to a reduction of 2.71 for those above the
3rd quartile. Statistical significance was maintained after Bonferroni correction (P value set at <0.006). No significant differences in
CMT were observed. In addition, statistically significant differences, maintained after Bonferroni correction, were observed in serum
complement activity for participants with the following SNPs: CFH region (rs1061170), SERPING1 (rs2511989) and CFB (rs641153).
Serum complement pathway components did not significantly affect VAS.
CONCLUSIONS: Lower serum TNF-α levels were associated with an increase in visual acuity after anti-VEGF therapy. This suggests
that targeting pro-inflammatory cytokines may augment treatment for neovascular AMD.
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INTRODUCTION
Age-related macular degeneration (AMD), a progressive retinal
disease that results in the loss of central vision, is predicted to
affect 288 million people worldwide by 2040 [1]. Neovascular AMD
(nAMD) is a result of choroidal neovascularisation (CNV) and leads
to rapid vision loss. The mainstay of current treatment is inhibition
of vascular endothelial growth factor (VEGF) [2]. The evidence
base for a genetic component in AMD is significant, and numerous
single nucleotide polymorphisms (SNPs) have been associated
with a patient’s risk of developing AMD [3]. SNPs in genes of the
complement pathway, including the complement factor B (CFB)
gene region [4, 5], the C2 [4, 5] and C3 [6] genes have been
reported to affect the risk of developing AMD.
Uncontrolled activation of the complement pathway is limited

by a set of complement regulatory proteins: Factor H and Factor I
(encoded by the CFH and CFI genes, respectively), regulate the
alternative complement pathway [7], whereas the C1 inhibitor is a
regulator of the classical pathway [8]. Genetic variants at the
Regulators of Complement Activation (RCA) locus on chromosome

1, which contains the CFH gene, contributes to AMD risk [9–11], in
addition to the CFI gene region on chromosome 4 [12–14], and the
SERPING1 gene that encodes the C1 inhibitor [15, 16].
Studies have shown elevated levels of complement activation

fragments to be independently associated with AMD [17–19].
Furthermore, complement activation has been demonstrated to
be associated with stage of AMD [20]. In addition, systemic
activation of the alternative complement pathway and comple-
ment components is associated with AMD genotypes [21],
including the CFH SNP rs1061170 (Y402H) [19] and the CFI region
SNP rs10033900 [17, 21]. A meta-analysis by Hong et al. reported
that treatment-naïve patients carrying the CFH SNP, rs1061170
(Y402H), were more likely to achieve an improved outcome to
anti-VEGF treatment [22]. Furthermore, visual outcome was
improved after anti-VEGF treatment for patients carrying a low-
risk CFH genotype and low CFH risk score [23].
Expression of acute phase proteins and pro-inflammatory

cytokines can also affect the risk of AMD development and/or
progression: CRP is an acute phase protein and marker of systemic
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inflammation that is an independent risk factor for AMD [24]. IL-6
is a known cytokine stimulus of CRP release by the liver [25], and
both have been associated with AMD progression [26]. CRP has
been demonstrated to induce IL-8 expression by human retinal
pigment epithelium (RPE) cell lines [27], and both IL-6 and IL-8 are
expressed by RPE cells on complement activation [28], by
degenerating RPE cells [29], and are associated with drusen
formation [30]. Systemic levels of IL-6 have been found to be
associated with the progression rate of geographic atrophy
secondary to AMD [31]. In addition, patients with AMD have been
shown to express higher levels of circulating IL-1β than age-
matched controls [32]. IL-2 has been implicated in the pathogen-
esis of AMD as activation of IL-2 signalling pathways has been
observed [33] and IL-2 contributes to extracellular matrix
formation and the development of fibrosis in AMD [34]. TNF-α, a
pro-inflammatory cytokine that is known to mediate CNV
formation in experimental models by upregulating VEGF expres-
sion by RPE cells [35], has also been demonstrated to promote the
angiogenic drive of active CNV lesions [36]. Patients with elevated
levels of serum TNF-α have been shown to respond favourably to
VEGF inhibition [32].
Although the studies mentioned above have investigated the

role of complement pathway SNPs, complement pathway activity
and systemic concentrations of pro-inflammatory cytokines on
AMD pathogenesis, relatively few studies have investigated their
functional effect on outcomes of VEGF inhibition. The primary aim
of this study was to investigate the effect of serum levels of pro-
inflammatory cytokines (TNF-α, IL-1β, IL-2, IL-6 or IL-8) and
complement pathway activity on the clinical response to VEGF
inhibition in neovascular AMD. A secondary aim was to investigate
the effect of complement pathway SNPs, associated with AMD, on
serum complement activity in the same cohort of patients.

MATERIALS AND METHODS
Study approval, registration and regulation
This study was conducted in accordance with the Research Governance
Framework for Health and Social Care (2005) and Good Clinical Practice.
Ethical approval was obtained from the National Research Ethics
Committee (NRES) South Central- Southampton A. This study adhered to
the tenets of the Declaration of Helsinki. The University Hospital
Southampton NHS Foundation Trust was the sponsor of this study, and
The University of Southampton undertook the research study. All patient
samples and data were anonymised for the purpose of this study. Patient
DNA and serum samples were stored for future studies. Procedures for
handling, processing and storage of patient data were in compliance with
the UK Data Protection Act (1998).

Patient recruitment, consent, and investigation
Patients were recruited to the study after informed consent by the
ophthalmology department of University Hospital Southampton NHS
Foundation Trust. Patients were invited to take part if they met the
principle inclusion criteria for the study: (1) over the age of 50; (2) a new
diagnosis of neovascular AMD in one eye, treated with an initial loading
dose of three, monthly Ranibizumab intravitreal injections; (3) White
ethnicity (to limit any effects of ethnic variation on outcomes of VEGF
inhibition in neovascular AMD). The exclusion criteria were: (1) bilateral
diagnosis of neovascular AMD (one of the exploratory endpoints of the
study was the development of nAMD in the second eye); (2) a macular co-
pathology; (3) poor venous access that prevents a peripheral blood
samples being taken.
All patients recruited to this study had a diagnosis of neovascular AMD,

confirmed on fundus fluorescein angiography, that was made by a
consultant ophthalmologist specialising in medical retina diseases.
Indocyanine green angiography was carried out for patients to rule out
polypoidal choroidal vasculopathy (PCV)- patients with PCV were not
invited to take part in the study. Patients were eligible to enrol for the
study after their third intravitreal Ranibizumab injection and subsequently
invited to a baseline visit (Fig. 1). Informed consent was taken from
participants at this visit, and their demographic details, medical history and
baseline LogMAR visual acuity score (VAS) was recorded (number of letters

on an ETDRS chart). A baseline central macular thickness (CMT) was also
measured using optical coherence tomography (OCT) (Topcon, Berkshire,
UK). A blood sample was taken at the baseline visit for serum cytokine and
genetic analysis. Participants were reviewed by a study investigator and
received treatment with an intravitreal ranibizumab injection if they had
active neovascular AMD. Following the baseline visit, participants attended
for six, monthly follow-up visits. At each visit, the VAS and CMT was
recorded, a blood sample was taken, and the patient reviewed by a study
investigator before any treatment for active disease.

Detection of serum cytokine levels and activated end
components of complement pathways
Serum was isolated from participant blood samples using standard
density-gradient ultracentrifugation at 1355 × g for 10 min at 21 °C
(Eppendorf, Stevenage, UK). Patient serum cytokine levels were measured
using semi-quantitative assays by Meso Scale Discovery (Rockville,
Maryland, USA) as per the manufacturer’s instructions. All cytokine
measurements were undertaken in triplicate using the assay, and cytokine
measurements were within the reading range of the kit. Functional
assessment of classical and alternative pathway complement activity in
patient serum samples was undertaken using Wieslab semi-quantitative
ELISA Assays (SVAR Life Sciences, Malmo, Sweden) as per the manufac-
turer’s instructions. Measurement of activated end components of classical
and alternative complement pathways was expressed as a percentage
relative to the fluorescence intensity of the positive control, derived from
human serum components, supplied with the testing kit.

Genetic analysis
DNA was extracted from peripheral blood mononuclear cells of patient
blood samples using erythrocyte lysis buffer (Fisher Scientific, Loughbor-
ough, UK) as previously described [37]. DNA concentrations were
measured using the Nanodrop ND1000 spectrophotometer (Thermo
Scientific, Wilmington, DE, USA). Sequence analysis of participant DNA
samples was undertaken by LGC Genomics (Hoddesdon, UK) on the
following six SNPs associated with the complement pathway and AMD risk:
CFH region: rs1061170; CFI region: rs10033900; SERPING1/C1-INH:
rs2511989; CFB: rs641153; C2: rs9332739; C3: rs2230199.

Statistical analyses
The GraphPad Prism software version 8.2 (GraphPad Software, Lo Jolla, Ca,
USA) was used for statistical analyses and graphical representation of the
data obtained in this study. Assessment of normality of continuous

Fig. 1 A flowchart diagram summarising the investigation path-
way of 65 study participants with a new diagnosis of neovascular
age-related macular degeneration (AMD). Peripheral blood sam-
ples were taken at seven visits (baseline visit and six follow-up visits),
for serum and genotypic analysis.
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variables was determined by quantile–quantile plots of the residuals using
GraphPad Prism. The unpaired t test with Welch’s correction was used to
determine statistically significant differences in changes of visual acuity
scores, central macular thickness and percentage activity of activated end
components of complement pathways compared to positive controls.
Statistical significance was set at the P < 0.05 value. As this is a preliminary/
pilot study, the patient sample size was determined using a rationale laid
out by S.A. Julious where a sample size of at least 12 is recommended [38].
Our patient cohort was stratified into quartiles of ~16 in line with this
recommendation.

RESULTS
Serum classical or alternative complement pathway activity
and functional response to anti-VEGF intravitreal injections
A total of 65 patients with a new diagnosis of neovascular AMD
were recruited to participate in this study (Fig. 1). Participant
demographics are summarised in Table 1. Study participants were
stratified into quartiles according to average serum concentration
of an inflammatory protein over seven study visits, in order to
amplify the functional effects of small changes in serum

concentration (Table 1). The study first investigated any significant
differences in the visual acuity score (VAS) or central macular
thickness (CMT) change from baseline at each visit between
participants who had a mean serum concentration of classical
pathway (Supplementary Fig. 1A, B) or alternative pathway
(Fig. 2A, B) complement components below the first quartile
and above the third quartile. There was a statistically significant
difference in the VAS change from baseline, −2.78 (SD= 7.01) vs.
−0.34 (SD= 8.51) for mean serum alternative pathway compo-
nents (P= 0.048), using an unpaired t test with Welch’s correction
(Fig. 2A), but significance was not maintained after a Bonferroni
correction was applied (P value set at <0.006).

Serum inflammatory protein concentration and functional
response to anti-VEGF intravitreal injections
Study participants were also stratified into quartiles according to
mean serum concentration of CRP or a pro-inflammatory cytokine
(TNF-α, IL-1β, IL-2, IL-6 or IL-8) over the seven study visits.
Statistically significant differences initially observed for VAS
change (Fig. 2C) for mean CRP concentration were not maintained

Table 1. Study participant demographics and summary table.

Demographics

Number of patients recruited to study 65

Patient sex 48% (n= 31) male: 52% (n= 34) female

Patient age (mean, SD) 79.7 (SD= 8.6)

Smoking Status Current Smoker: 11% (n= 7)

Ex-Smoker: 46% (n= 30)

Non-smoker: 43% (n= 28)

Body Mass Index (BMI) (mean, SD) 26.8 (SD= 3.94)

Co-morbidities Hypertension: 47.7% (n= 31)

Asthma or COPD: 13.8% (n= 9)

Hyperlipidaemia: 13.8% (n= 9)

Diabetes (Type I or II): 12.3% (n= 8)

Nil co-morbidities declared: 16.9% (n= 11)

Mean Ranibizumab intravitreal injections over six, monthly follow-ups (mean, SD) 1.94 (SD= 0.98)

Serum Inflammatory Protein; Units Serum Concentration (Cohort): 1st Quartile; Median; 3rd
Quartile; Variance

C-Reactive Protein (CRP) 1.23mg/L; 2.81mg/L; 7.82mg/L; 571.21mg/L

Tumour Necrosis Factor-α (TNF-α) 0.098 pg/ml; 0.136 pg/ml; 0.179 pg/ml; 0.078 pg/ml

Interleukin-1β (IL-1β) 0.004 pg/ml; 0.010 pg/ml; 0.023 pg/ml; 0.012 pg/ml

Interleukin-2 (IL-2) 0.009 pg/ml; 0.017 pg/ml; 0.033 pg/ml; 0.010 pg/ml

Interleukin-6 (IL-6) 0.180 pg/ml; 0.300 pg/ml; 0.492 pg/ml; 2.723 pg/ml

Interleukin-8 (IL-8) 0.964 pg/ml; 1.462 pg/ml; 2.067 pg/ml; 61.87 pg/ml

Complement Pathway Activity* Percentage activity relative to positive control (Cohort) 1st
Quartile; Median; 3rd Quartile

Classical Complement Pathway (CP) 95.57%; 102.2%; 117.1%;

Alternative Complement Pathway (AP) 89.29%; 97.27%; 115.7%;

Gene sequencing analysis undertaken on patient cohort

Gene/DNA region Reference SNP Chromosome and Position (bp) Major/Minor Allele MAF OR Reference

CFH region rs1061170 Chr 1; 196,659,237 T/C 0.61 2.41 11

CFI region rs10033900 Chr 4; 110,659,067 C/T 0.52 1.18 11

SERPING1/C1-INH rs2511989 Chr 11; 57,134,901 G/A 0.45 0.63 15

CFB rs641153 Chr 6; 31,914,180 C/T 0.05 0.54 11

C2 rs9332739 Chr 6; 31,903,804 G/C 0.02 0.46 11

C3 rs2230199 Chr 19; 6,718,387 G/C 0.24 1.53 11

SD standard deviation, SNP single nucleotide polymorphism, MAF minor allele frequency, OR odds ratio of AMD.
*Measurement of classical or alternative complement pathway activity is expressed as a percentage relative to the fluorescence intensity of a positive control.
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Fig. 2 Change in visual acuity score (VAS) and central macular thickness (CMT) associated with serum concentration of alternative
complement pathway components and inflammatory proteins. Study participants were stratified into quartiles according to average serum
concentration of an investigated inflammatory protein (including pro-inflammatory cytokine) or complement pathway-specific components
over seven study visits. The change in VAS from baseline at each visit is plotted for all study patients who had a mean serum concentration of
inflammatory protein or complement pathway component below the first quartile and above the third quartile. The percentage change in
CMT from baseline at each visit is also plotted for the same study participants. Shown in parts (A,B) are the results for alternative complement
pathway components and change in VAS or CMT from baseline at each study visit for patients below or above the indicated quartiles; *P=
0.048. Shown in parts (C,D) are the results for C-Reactive Protein (CRP) and change in VAS or CMT from baseline at each study visit for patients
below or above the indicated quartiles; *P= 0.029. Shown in parts (E,F) are the results for Tumour Necrosis Factor-α (TNF-α) and change in VAS
or CMT from baseline at each study visit. **P= 0.0024. The unpaired t test, two-tailed, with Welch’s correction, was used to determine whether
there was a statistically significant difference in VA or CMT change from baseline between groups.
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after Bonferroni correction (P value was set at <0.006), and there
were no significant differences in CMT change (Fig. 2D) using the
unpaired t test with Welch’s correction.
Of the pro-inflammatory cytokines assessed, there was a

statistically significant difference observed in the VAS change
from baseline, 1.37 (SD= 9.40) vs. −2.71 (SD= 7.79), between
participants for mean serum TNF-α concentration below the first
quartile and above the third quartile, respectively (P= 0.0024),
Fig. 2E. Significance was maintained after a Bonferroni correction
was applied (P value was set at <0.006). No significant difference
was observed in CMT change in these participants (Fig. 2F). In
addition, no significant differences were observed in the VAS or
CMT change from baseline between participants for mean serum
concentration of IL-1β (Supplementary Fig. 1C, D), IL-2 (Supple-
mentary Fig. 1E, F), IL-6 (Supplementary Fig. 1G, H), or IL-8
(Supplementary Fig. 1I, J).

Complement pathway SNPs and activated complement end
components
All 65 study participants underwent DNA sequencing for the
detection of six complement pathway SNPs reported to affect
AMD risk. Measurement of classical or alternative pathway
complement activity in the serum was undertaken at each study
visit. Complement activity was expressed as a percentage relative
to the positive control (based on human serum components) of
the assay and could thus exceed 100%. For the CFH SNP
rs1061170, a statistically significant reduction was observed: (1)
in mean classical pathway complement activity in homozygous
participants (16.7% reduction; n= 24; P= 0.0016) (Fig. 3A); (2) in
mean alternative pathway activity in both homozygous (20.1%
reduction; n= 24; P= 0.0019) and heterozygous participants
(19.4% reduction; n= 35; P= 0.0025), Fig. 3B. For the CFI region
SNP rs10033900, there was a statistically significant increase of
7.7%, after Bonferroni correction, in mean classical pathway
activity, in both homozygous (n= 16; P= 0.0037) and hetero-
zygous (n= 32; P= 0.0002) participants, Supplementary Fig. 2A, B.
For the SERPING1 / C1-INH SNP rs2511989, there was a significant
increase in only the mean alternative pathway complement
activity of 11.8% in homozygous participants (n= 11; P= 0.005),
maintained after Bonferroni correction Fig. 3C, D.
A significant increase in mean classical pathway complement

activity of 16.3% was observed, after Bonferroni correction (P value
set at <0.008), in patients who were homozygous for the CFB SNP
rs641153 (n= 2; P < 0.0001) and 9.7% who were heterozygous
(n= 10; P < 0.0001), Fig. 3E. Similarly, a significant increase in
alternative complement pathway activity of 7.3% was observed,
after Bonferroni correction, in heterozygous patients (n= 10; P=
0.0069), Fig. 3F. No differences were observed for the C2 SNP
rs9332739 or C3 SNP rs2230199 (Supplementary Fig. 2C–F).

DISCUSSION
The primary aim of this study was to investigate the effect of
serum pro-inflammatory cytokine levels and complement path-
way activity on the clinical response to VEGF inhibition in
neovascular AMD. After Bonferroni correction, a statistically
significant difference was observed only in VAS (change from
baseline) between participants stratified into quartiles by mean
TNF-α serum concentration [a gain of 1.37 for participants below
the 1st quartile compared to a reduction of 2.71 above the 3rd
quartile]. This was not associated with significant changes in CMT.
This study supports both pre-clinical and clinic findings showing a
small, but significant overall impact of systemic levels of TNF-α on
CNV lesions and clinical responses to VEGF inhibition. In a previous
study using a murine model of laser-induced CNV, inhibition of
TNF-α with intraperitoneal injections of infliximab or etanercept
led to significantly reduced CNV lesion size and pathological
fluorescein leakage [39]. Furthermore, in a non-controlled trial,

infusions of the anti-TNF-α chimeric monoclonal antibody,
infliximab, in neovascular AMD demonstrated non-progression
of the disease in almost half of the treated patients and regression
of exudative lesions without significant fibrous scarring [40]. There
was, however, no placebo group in this trial. Other small studies
using intravitreal anti-TNF-α therapy combined with bevacizumab
showed beneficial effects [41].
This study also investigated the effect of complement pathway

SNPs, associated with AMD, on serum classical or alternative
pathway complement activity in the same cohort of patients. A
statistically significant, but modest, reduction (after Bonferroni
correction) of classical pathway activity was observed in partici-
pants who were homozygous for the CFH region SNP rs1061170,
in addition to a reduction in alternative pathway activity in
participants who were either homozygous or heterozygous for this
SNP. Furthermore, participants who were either homozygous or
heterozygous for the CFI region SNP rs10033900 had a statistically
significant increase in classical pathway activity, despite Factor I
being better recognised as a regulator of the alternative pathway
[7]. Despite these differences, this study demonstrated no
significant differences in VAS or CMT change from baseline
between participants below the 1st quartile and above the 3rd
quartile of mean serum classical or alternative pathway comple-
ment components. Therefore, although statistically-significant,
modest, differences in serum complement activity were observed
in participants with CFI, CFH and other complement pathway SNPs
tested, this did not translate to real-world, significant differences
in visual response to anti-VEGF treatment.
A recent study by Heesterbeek et al. demonstrated higher

systemic levels of activated complement in patients with
intermediate AMD (who demonstrated the highest serum
complement activation), geographic atrophy and inactive neovas-
cular AMD compared to patients with active nAMD [20]. This raises
the question of whether significant increases in complement
activity were not observed in this study as all patients had active
nAMD. Interestingly, it was demonstrated in a study by Keir et al.,
that anti-VEGF intravitreal injections in neovascular AMD patients
resulted in increased levels of complement components (C3a, C4a
and C5a) in the aqueous humour [42], and this was elevated in
patients with earlier relapses of active nAMD compared to those
with later relapses.
This study focused on measuring overall complement pathway

activation (via the activated end products of complement
activation) rather than a specific activated complement compo-
nent, e.g. C3d. Commercially-available Wieslab assays (Svar Life
Sciences) were used in this study, which are optimised to detect
activation of the complement pathway using human serum. This
assay was previously used to demonstrate a significant elevation
in the activity of the alternative complement pathway in AMD
patients with genetic variants in CFB and C3 compared to controls
[19]. An alternative method to detect elevated systemic comple-
ment activation in our study could have been to calculate the
C3d/C3 ratio from the plasma concentration of these complement
components. This method was also used (in addition to the
Wieslab assays) in recent studies to detect systemic complement
activation in AMD patients with genetic variants [19, 20]. It will be
interesting to see whether there is any difference between the
Wieslab assay method and C3d/C3 ratio to measure systemic
complement activation in our cohort of participants.
This study analysed individual genetic variants and their effect

on complement pathway activation, which demonstrated some
statistically-significant effects. Previous studies have demonstrated
that the association of gene variants with complement activation
in AMD patients may be stronger when undertaking haplotype
analysis [43] compared to single variant analysis. An additive effect
of complement pathway risk SNPs has been suggested to lead to
an additive risk of disease [44]. In the recent study by Heesterbeek
et al. the association of AMD stage with complement activation
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was greatest in patients with haplotypes that were associated with
the highest levels of complement activation [20]. It will be
interesting to undertake haplotype analysis to investigate the
effect of overall complotype on the outcomes of VEGF inhibition
in AMD in our patient cohort.
Studies have suggested that AMD pathogenesis is driven

primarily by dysregulation of immune mediators locally within
the eyes rather than circulating levels of these mediators. A study
by Agawa et al. demonstrated that intravitreal anti-VEGF treat-
ment (with bevacizumab) itself significantly raised intraocular

levels of IL-6 and IL-8 [45], both implicated in AMD pathogenesis.
A subsequent study, in contrast, demonstrated a reduced
intraocular concentration of IL-6 after intravitreal aflibercept
injection [46]. Peripheral blood mononuclear cells (PBMCs),
particularly monocytes, from AMD patients have been demon-
strated to produce higher levels of IL-8 than age-matched controls
[47], and it has been speculated that these cells could migrate to
the macula to secrete additional IL-8.
The concept of AMD being a disease of systemic or local

complement dysregulation was previously discussed by our group

Fig. 3 Classical or alternative complement pathway activity associated with single nucleotide polymorphisms (SNPs) in study
participants. Study participants underwent DNA sequencing for the detection of six SNPs associated with the complement pathway and AMD
risk. Assessment of serum levels of classical or alternative pathway complement components was undertaken on the same participants. The
bar graphs (A–F) show the measurement of classical or alternative pathway complement activity on participants who express no SNP, are
heterozygous, or homozygous for the following SNPs: CFH region: rs1061170 (A, B). SERPING1/C1-INH: rs2511989 (C, D). CFB: rs641153 (E, F).
Measurement of activated end components specific for the classical or alternative complement pathway in serum samples is expressed as a
percentage relative to the activity of the positive control. The unpaired t test, two-tailed, with Welch’s correction, was used to determine
whether there was a statistically significant difference in classical or alternative pathway components between groups who had no SNP, were
heterozygous for the indicated SNP, or homozygous for the indicated SNP. *P < 0.05; **P < 0.005; ***P < 0.0001.
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nearly eight years ago [48]. Studies have suggested that SNPs
associated with complement activation increase AMD risk by a
combination of systemic activation of complement and dysregu-
lation of complement activation in local tissues [49]. It is unknown
whether altered, systemic levels of complement in AMD are the
result of AMD-associated gene variants whose effects are
expressed in all tissues, or the result of circulating levels of
complement that reach the choroid and retina to contribute to
AMD pathogenesis. It is also thought that AMD pathogenesis is
driven by a combination of locally-expressed complement factors
[50, 51] in addition to systemic complement proteins which lead
to local effects in tissues, e.g. the FH-related proteins (FHR) such as
FHR-4 [52]. This study did not demonstrate any statistically-
significant functional effects, after Bonferroni correction, of
elevated or reduced systemic complement pathway activity on
outcomes of VEGF inhibition.
There were several limitations to this study, the most significant

being the small cohort size of 65 participants. The primary reason
for this is the challenge in recruiting a large number of patients for
a study in which blood tests are taken every visit over seven
months, in addition to an intravitreal injection where required.
Fortunately, no participants dropped out of this study and all
participant data from each visit was used in the analysis. Another
limitation to this study was taking blood tests (for serum cytokine
and complement pathway activity) after the loading dose of three,
monthly intravitreal ranibizumab injections. The ethical regula-
tions of this study meant that the priority was for patients to
receive their loading dose of intravitreal anti-VEGF injections prior
to enrolment in the study and for blood tests to be undertaken
subsequently. Although the biggest gains in visual activity usually
take place during the loading phase of intravitreal anti-VEGF
injections, measurement of visual outcomes took place in this
study from the starting point of all participants having received
their three, monthly intravitreal injections. Although there is
emerging evidence of intravitreal ranibizumab injections affecting
serum concentrations of pro-inflammatory cytokines (including a
transient reduction of serum TNF-α levels) in patients with diabetic
macular oedema [53], similar/significant evidence has not been
demonstrated in the context of nAMD. Similarly, increased serum
levels of TNF-α have been demonstrated in treatment-naïve
patients with diabetic macular oedema [54], but not in nAMD
patients [32].
In light of serum TNF-α levels being associated in this study with

small, but significant effects on visual acuity after treatment with
anti-VEGF intravitreal injections, it would be worth investigating
this cytokine in larger cohorts to determine if this effect can be
replicated. This would determine if systemic levels of TNF-α could
be used to identify non-responders to anti-VEGF treatment.

Summary
What was known before

● Systemic levels of pro-inflammatory cytokines affect the risk
and/or progression of neovascular AMD.

● Elevated levels of complement components and SNPs in the
complement pathway are associated with AMD risk.

What this study adds

● Systemic levels of TNF-alpha could be used to identify non-
responders to anti-VEGF treatment in neovascular AMD.

● Although AMD risk SNPs in the complement pathway affected
serum complement activity, there was no direct effect of
serum complement levels on outcomes of VEGF inhibition in
this study.
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