Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Retinal structure–function correlation in type 2 diabetes

Abstract

Objective

To examine the relationship of visual function as assessed by visual acuity, contrast sensitivity, and multifocal electroretinography (mfERG) to macular structural and microvascular measures on optical coherence tomography (OCT) and angiography (OCTA) in individuals with diabetes.

Methods

This is a prospective observational study conducted at a tertiary eye care centre in India. Right eyes of 121 adults with type 2 diabetes with no diabetic retinopathy (DR), mild or moderate nonproliferative DR (NPDR) were examined. Severe NPDR, proliferative DR and diabetic macular oedema were excluded. Participants underwent assessment of glycated haemoglobin (HbA1C), blood pressure, best corrected visual acuity (LogMAR), contrast sensitivity (CS), mfERG, ultrawide field fundus photography, OCT and OCTA. Correlations were assessed by Spearman’s rank correlation (rho).

Results

Of the total of 121 eyes, 89 had No DR, 32 had mild to moderate NPDR. In the No DR group, the LogMAR acuity was significantly and negatively correlated to central subfoveal thickness (CST) (rho = −0.420), macular vessel density (rho = −0.270) and perfusion (rho = −0.270). (ii) Contrast sensitivity correlated to foveal avascular zone circularity (rho = 0.297); (iii) mfERG P1 response densities were better with higher macular perfusion index (rho = 0.240). In the NPDR group, the LogMAR acuity also showed a significant negative correlation to CST (rho = −0.379). Other correlations were not significant.

Conclusion

Retinal and visual functional changes are evident in diabetic patients with No DR and are correlated to subclinical retinal structural changes detectable using multimodal imaging.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1

References

  1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes, estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–53.

    Article  Google Scholar 

  2. Cusick M, SanGiovanni JP, Chew EY, Csaky KG, Hall-Shimel K, Reed GF, et al. Central visual function and the NEI-VFQ-25 near and distance activities subscale scores in people with type 1 and 2 diabetes. Am J Ophthalmol. 2005;139:1042–1050.

    Article  Google Scholar 

  3. Roh M, Selivanova A, Shin HJ, Miller JW, Jackson ML. Visual acuity and contrast sensitivity are two important factors affecting vision-related quality of life in advanced age-related macular degeneration. PLoS One. 2018;13:e0196481 https://doi.org/10.1371/journal.pone.0196481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Antonetti DA, Barber AJ, Bronson SK, Freeman WM, Gardner TW, Jefferson LS, et al. Diabetic retinopathy, seeing beyond glucose-induced microvascular disease. Diabetes. 2006;55:2401–11.

    Article  CAS  Google Scholar 

  5. Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest. 1998;102:783–91.

    Article  CAS  PubMed Central  Google Scholar 

  6. Han Y, Bearse MA, Schneck ME, Barez S, Jacobsen CH, Adams AJ. Multifocal electroretinogram delays predict sites of subsequent diabetic retinopathy. Invest Ophthalmol Vis Sci. 2004;45:948–54.

    Article  Google Scholar 

  7. Shapley R, Enroth-Cugell C. Visual adaptation and retinal gain controls. Prog Retinal Res. 1984;3:263–346.

    Article  Google Scholar 

  8. Chylack LT, Wolfe JK, Singer DM, Leske MC, Bullimore MA, Bailey IL, et al. The lens opacities classification system III. The Longitudinal Study of Cataract Study Group. Arch Ophthalmol. 1993;111:831–6.

    Article  Google Scholar 

  9. Wilkinson CP, Ferris FL, Klein RE, Lee PP, Agardh CD, Davis M, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110:1677–82.

    Article  CAS  Google Scholar 

  10. Hood DC, Bach M, Brigell M, Keating D, Kondo M, Lyons JS, et al. ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc Ophthalmol. 2012;124:1–13.

    Article  Google Scholar 

  11. Sen P, Roy R, Maru S Ravi. Evaluation of focal retinal function using multifocal electroretinography in patients with X-linked retinoschisis. Can J Ophthalmol. 2010;45:509–13.

    Article  Google Scholar 

  12. Poh S, Tham YC, Chee ML, Dai W, Majithia S, Soh ZD, et al. Association between macular thickness profiles and visual function in healthy eyes: The Singapore Epidemiology of Eye Diseases (SEED) Study. Sci Rep. 2020;10:1–7.

    Article  Google Scholar 

  13. Bressler SB, Qin H, Beck RW, Chalam KV, Kim JE, Melia M.Diabetic Retinopathy Clinical Research Network et al. Factors associated with changes in visual acuity and central subfield thickness at 1 year after treatment for diabetic macular edema with ranibizumab. Arch Ophthalmol.2012;130:1153–61.

    Article  CAS  PubMed Central  Google Scholar 

  14. Noma H, Funatsu H, Harino S, Nagaoka T, Mimura T, Hori S. Influence of macular microcirculation and retinal thickness on visual acuity in patients with branch retinal vein occlusion and macular edema. Jpn J Ophthalmol. 2010;54:430–4.

    Article  Google Scholar 

  15. Samara WA, Shahlaee A, Sridhar J, Khan MA, Ho AC, Hsu J. Quantitative optical coherence tomography angiography features and visual function in eyes with branch retinal vein occlusion. Am J Ophthalmol. 2016;166:76–83.

    Article  Google Scholar 

  16. Jeon SJ, Park HYL, Park CK. Effect of macular vascular density on central visual function and macular structure in glaucoma patients. Sci Rep. 2018;8:16009 https://doi.org/10.1038/s41598-018-34417-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hyvärinen L, Laurinen P, Rovamo J. Contrast sensitivity in evaluation of visual impairment due to macular degeneration and optic nerve lesions. Acta Ophthalmol. 1983;61:161–170.

    Article  Google Scholar 

  18. Sokol S, Moskowitz A, Skarf B, Evans R, Molich M, Senior B. Contrast sensitivity in diabetics with and without background retinopathy. Arch Ophthalmol. 1985;103:51–54.

    Article  CAS  Google Scholar 

  19. Marmor MF. Contrast sensitivity versus visual acuity in retinal disease. Br J Ophthalmol. 1986;70:553–9.

    Article  CAS  PubMed Central  Google Scholar 

  20. Bursell SE, Clermont AC, Kinsley BT, Simonson DC, Aiello LM, Wolpert HA. Retinal blood flow changes in patients with insulin-dependent diabetes mellitus and no diabetic retinopathy. Invest Ophthalmol Vis Sci. 1996;37:886–97.

    CAS  PubMed  Google Scholar 

  21. Ismail GM, Whitaker D. Early detection of changes in visual function in diabetes mellitus. Ophthalmic Physiol Opt. 1998;18:3–12.

    Article  CAS  Google Scholar 

  22. Heravian J, Shoeibi N, Azimi A, Yasini S, Ostadimoghaddam H, Yekta AA, et al. Evaluation of contrast sensitivity, color vision and visual acuity in patients with and without diabetes. Iran J Ophthalmol. 2010;22:33–40.

    Google Scholar 

  23. Shoshani YZ, Harris A, Rusia D, Spaeth GL, Siesky B, Pollack A, et al. Contrast sensitivity, ocular blood flow and their potential role in assessing ischaemic retinal disease. Acta Ophthalmol. 2011;89:e382–395.

    Article  Google Scholar 

  24. Gella L, Raman R, Pal SS, Ganesan S, Sharma T. Contrast sensitivity and its determinants in people with diabetes, SN-DREAMS-II, Report No 6. Eye. 2017;31:460–466.

    Article  CAS  Google Scholar 

  25. Harris A, Arend O, Danis RP, Evans D, Wolf S, Reim M. Hyperoxia improves contrast sensitivity in early diabetic retinopathy. Br J Ophthalmol. 1996;80:209–13.

    Article  CAS  PubMed Central  Google Scholar 

  26. Arend A, Remky D, Evans R, Stüber A. Harris. Contrast sensitivity loss is coupled with capillary dropout in patients with diabetes. Invest Ophthalmol Vis Sci. 1997;38:1819–24.

    CAS  PubMed  Google Scholar 

  27. Liu L, Gao J, Bao W, Hu C, Xu Y, Zhao B, et al. Analysis of foveal microvascular abnormalities in diabetic retinopathy using optical coherence tomography angiography with projection artifact removal. J Ophthalmol. 2018. https://doi.org/10.1155/2018/3926745

  28. Pescosolido N, Barbato A, Stefanucci A, Buomprisco G. Role of electrophysiology in the early diagnosis and follow-up of diabetic retinopathy. J Diabetes Res. 2015. https://doi.org/10.1155/2015/319692

  29. Bearse MA Jr, Adams AJ, Han Y, Schneck ME, Ng J, Bronson-Castain K, et al. A multifocal electroretinogram model predicting the development of diabetic retinopathy. Retinal Eye Res. 2006;25:425–48.

    Google Scholar 

  30. Fortune B, Schneck ME, Adams AJ. Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy. Invest Ophthalmol Vis Sci. 1999;40:2638–51.

    CAS  PubMed  Google Scholar 

  31. Frydkjaer-Olsen U, Soegaard Hansen R, Simó R, Cunha-Vaz J, Peto T, Grauslund J.EUROCONDOR Correlation between retinal vessel calibre and neurodegeneration in patients with type 2 diabetes mellitus in the European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR). Ophthalmic Res. 2016;56:10–16.

    Article  Google Scholar 

  32. Sampson DM, Gong P, An D, Menghini M, Hansen A, Mackey DA, et al. Axial length variation impacts on superficial retinal vessel density and foveal avascular zone area measurements using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2017;58:3065–72.

    Article  Google Scholar 

Download references

Funding

This work was supported by the DBT/Wellcome Trust India Alliance Fellowship [grant number IA/CPHE/16/1/502670] awarded to Dr Sangeetha Srinivasan.

Author information

Authors and Affiliations

Authors

Contributions

SS and RRN were responsible for designing the study; SS obtained funding, screened, examined patients, performed data analysis, interpreted results, wrote the paper; SS, SSD, MB interpreted the results, critically reviewed the manuscript. SS, SSD, RRN, RR, AM, RAM, VK, MB approved the content of the manuscript.

Corresponding author

Correspondence to Muna Bhende.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Srinivasan, S., Sobha Sivaprasad, Rajalakshmi, R. et al. Retinal structure–function correlation in type 2 diabetes. Eye 36, 1865–1871 (2022). https://doi.org/10.1038/s41433-021-01761-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41433-021-01761-1

Search

Quick links