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BACKGROUND: Retinal exudates and/or drusen (RED) can be signs of many fundus diseases that can lead to irreversible vision loss.
Early detection and treatment of these diseases are critical for improving vision prognosis. However, manual RED screening on a
large scale is time-consuming and labour-intensive. Here, we aim to develop and assess a deep learning system for automated
detection of RED using ultra-widefield fundus (UWF) images.
METHODS: A total of 26,409 UWF images from 14,994 subjects were used to develop and evaluate the deep learning system. The
Zhongshan Ophthalmic Center (ZOC) dataset was selected to compare the performance of the system to that of retina specialists in
RED detection. The saliency map visualization technique was used to understand which areas in the UWF image had the most
influence on our deep learning system when detecting RED.
RESULTS: The system for RED detection achieved areas under the receiver operating characteristic curve of 0.994 (95% confidence
interval [CI]: 0.991–0.996), 0.972 (95% CI: 0.957–0.984), and 0.988 (95% CI: 0.983–0.992) in three independent datasets. The
performance of the system in the ZOC dataset was comparable to that of an experienced retina specialist. Regions of RED were
highlighted by saliency maps in UWF images.
CONCLUSIONS: Our deep learning system is reliable in the automated detection of RED in UWF images. As a screening tool, our
system may promote the early diagnosis and management of RED-related fundus diseases.
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INTRODUCTION
Retinal exudates and/or drusen share similar appearances while
being signs of different vision-threatening fundus diseases [1–3]. For
example, retinal exudates in diabetic patients indicate diabetic
retinopathy (DR) severity level of moderate or worse [4]. and these
patients require to be referred to retina specialists for further clinical
evaluation [5, 6]. In addition, retinal exudates can also result from
other retinal vasculopathy (e.g., hypertensive retinopathy and retinal
vein occlusion) and retinal inflammation (e.g., acute retinal necrosis
syndrome and uveoencephalitis), and drusen can be a sign of age-
related macular degeneration (AMD) [1–3]. These RED-related fundus
diseases often lead to irreversible visual impairment, and early
diagnosis and timely medical intervention of these diseases help to
prevent visual loss and blindness [7–11]. Digital imaging of the retina
examined by retina specialists is sensitive in detecting RED [12].
However, manual examination of fundus images is time-consuming
and labour-intensive, especially when applied to a large scale.
To enhance the early detection of RED in screening programs,

various computer-based artificial intelligence (AI) systems
have been developed to automatically detect RED in fundus
images [13–18]. Those systems were developed based on DR and

AMD datasets [13–18] and therefore can only be applied to detect
the RED-related DR and AMD with limited application to other
types of RED-related fundus diseases, such as intermediate and
posterior uveitis, Coats’ disease, and acute retinal necrosis
syndrome [19–23].
Currently, all of the computer-based systems for detecting RED

were based on traditional fundus images [2, 3, 13–19, 24]. This
type of image only provides a 30 to 60-degree visible scope of the
retina, and it is mainly used to detect lesions at the posterior pole
region with limited information about the peripheral retina
[25, 26]. RED that initially appears in the peripheral retina, such
as exudates caused by intermediate uveitis [27], is easy to be
undetected when applying these systems. Ultra-widefield fundus
(UWF) imaging provides a 200-degree panoramic review of the
retina, and it can be applied to identify fundus lesions in almost
the entire retina, including both the posterior pole and peripheral
regions [28]. Several studies have developed AI systems using
UWF images for identifying lattice degeneration, retinal detach-
ment, idiopathic macular holes, DR, pathological myopia, etc
[29–34]. To date, no automated intelligent systems for detecting
RED using UWF images have been reported.
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In this study, we developed a system with deep learning for the
automated detection of RED-related fundus diseases using UWF
images. In addition, we evaluated this system in three indepen-
dent datasets and compared the performance of the system to
that of retina specialists.

METHODS
Data acquisition
A total of 22,411 UWF images (13,258 subjects) were collected from the
Chinese Medical Alliance for Artificial Intelligence (CMAAI), a union of
medical organizations, computer science research groups, and related
enterprises in the AI field with the purpose of improving the research and
translational applications of AI in medicine. The CMAAI dataset includes
subjects who underwent retinopathy examinations, ophthalmology con-
sultations, and routine ophthalmic health evaluations. The UWF images
were captured between June 2016 and June 2019 using an OPTOS
nonmydriatic camera (OPTOS Daytona, Dunfermline, UK) with 200-degree
fields of view. The subjects were examined without mydriasis. All of the
UWF images were anonymized before being transferred to research
investigators. This study was approved by the Institutional Review Board of
Zhongshan Ophthalmic Center (ZOC) and performed in accordance with
the tenets of the Declaration of Helsinki.

Image classification and reference standard
All UWF images were classified into two groups: RED and non-RED. The RED
group included images of various types of retinal exudates (e.g., DR,
intermediate and posterior uveitis, and Coats’ disease) and drusen (e.g.,
AMD and optic nerve drusen). The non-RED group included images of the
normal retina and other retinal lesions, such as retinal detachment,
glaucomatous optic neuropathy, lattice degeneration, and retinal haemor-
rhages. Poor-quality images were automatically excluded from the study by
our previously established deep learning-based image filtering system [35].
Training a deep learning system requires a reliable reference standard

[36]. The reference standard for all included UWF images was obtained by
consensus annotation by three board-certified retina specialists with over
five years of experience. Any disputed images were adjudicated by another
senior retina specialist with over twenty years of experience. The
performance of the deep learning system in detecting RED was compared
to this reference standard.

Image preprocessing and augmentation
We performed image standardization before deep learning. The pixel
values of the UWF images were scaled to a range of 0–1, and the size of
the images was resampled to a resolution of 512 × 512 pixels. Data
augmentation was conducted to increase the diversity of a training dataset
and thus reduce the chance of overfitting during a deep learning process.
The training dataset was augmented 5-fold via a combination of the

random horizontal and vertical flip, random rotation up to 90 degrees
around the image centre, and random brightness shift within the range of
0.8 to 1.6. A total of 69,925 UWF images were used as training data.

Development and evaluation of the deep learning model
The whole pipeline of our deep learning model development is shown in
Fig. 1. The UWF images from the CMAAI dataset were randomly divided
into the training set, validation set, and test set with a ratio of 7:1.5:1.5 (no
overlapping subjects). The training set was used to optimize the
parameters of the deep learning model; the validation set was used to
guide the selection of hyperparameters, and the test set was used to
evaluate the selected model. Two external datasets were used to further
verify the effectiveness of the model. One was obtained from the
outpatient clinics at ZOC in Guangzhou (southeast China), consisting of
1311 UWF images from 676 subjects, and the other was obtained from the
outpatient clinics and health screening centre at Xudong Ophthalmic
Hospital (XOH) in Inner Mongolia (northwest China), consisting of 2687
UWF images from 1060 subjects. The reference standard of these two
datasets was the same as the CMAAI dataset.
Our deep learning model was trained in TensorFlow by a state-of-the-art

deep convolutional neural network (CNN) architecture, InceptionResNetV2,
which mimics the architectural characteristics of two previous CNNs (the
Residual Network and the Inception Network) [37]. CNN architectures were
initialized by the weights pretrained for ImageNet classification [38].
The model was trained up to 180 epochs. In the training process,

validation loss was assessed using the validation set after each epoch and
performed as a reference for model choice. Early stopping was employed,
and if the validation loss was not improved over 60 consecutive epochs,
the training process was ceased. The model state with the lowest loss was
selected as the final state of the model.

Model explanation
The saliency map visualization technique was used to understand which
areas in the UWF image had the most influence on our deep learning
system when detecting RED. This technique calculates the gradient of the
output of the CNN with regard to each pixel in the image to identify the
pixels with the greatest impact on the final classification. The intensity
value of the heatmap is a direct indication of the pixels’ impact on the
system’s classification. Using this approach, the heatmap traces back to a
specific location in the UWF image to highlight features that positively
contributed to the classification. The effectiveness of the heatmap was
determined by a senior retina specialist based on whether the highlighted
regions were colocalized with the regions of the RED.

Characteristics of misclassified images
To analyse misclassified images, a senior retina specialist reviewed them
and categorized false-negative images and false-positive images according
to the most commonly observed characteristics.

Fig. 1 The pipeline of developing and evaluating a deep learning system for the detection of retinal exudates and/or drusen based on
ultra-widefield fundus (UWF) images. CMAAI Chinese Medical Alliance for Artificial Intelligence, ZOC Zhongshan Ophthalmic Center, XOH
Xudong Ophthalmic Hospital.
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Comparisons between the deep learning system and retina
specialists
To evaluate our deep learning system in the context of RED screening, we
recruited 2 retina specialists who had 3 and 6 years of experience,
respectively, in UWF image analysis, and then we compared the
performance of the system to retina specialists with the reference standard
using the ZOC dataset. Notably, to reflect the level of the retina specialists
in normal clinical practices, they were not told that they competed with
the deep learning system to avoid bias from the competition.

Statistical analyses
Receiver operating characteristic (ROC) curves and areas under the curve
(AUCs) with 95% confidence intervals (CIs) were used to estimate the
performance of the deep learning system in different datasets. The
sensitivity, specificity, accuracy, positive predictive value (PPV), and
negative predictive value (NPV) were calculated according to the reference
standard for each dataset. Unweighted Cohen’s kappa coefficients were
applied to compare the results of the system to the reference standard. All
statistical analyses were conducted using Python 3.7.3 (Wilmington,
Delaware, USA).

RESULTS
Baseline characters
In total, 26,409 UWF images from 14,994 subjects were used to
develop and evaluate the deep learning system. The demo-
graphics and image characteristics of the datasets from the
CMAAI, ZOC, and XOH are summarized in Table 1.

Performance of the deep learning system
The AUCs of the system in detecting RED were 0.994 (95% CI:
0.991–0.996), 0.972 (95% CI: 0.957–0.984), and 0.988 (95% CI:
0.983–0.992) in the CMAAI test set, ZOC set, and XOH set,
respectively (Fig. 2). Further information on the system’s
performance, including the sensitivity, specificity, accuracy, PPV,
and NPV of each dataset, is shown in Supplementary Table 1.
Compared to the reference standard of the CMAAI test set, ZOC
set, and XOH set, the unweighted Cohen’s kappa coefficients of
the system were 0.878 (95% CI: 0.853–0.902), 0.876 (95% CI:
0.841–0.911), and 0.815 (95% CI: 0.772–0.857), respectively.

Interpretability of the deep learning system
To investigate the interpretability of the deep learning system in
detecting RED from UWF images, the network was visualized by
saliency maps. We found that heatmaps effectively highlighted
regions of RED, regardless of the number, location, and shape of
the RED. Typical examples of heatmaps for RED images are shown
in Fig. 3.

False-negative and false-positive findings
In the CMAAI test set, ZOC set, and XOH set, a total of 44
RED images were misclassified into the non-RED group by the
deep learning system (false-negative classification), among
which 14 images showed RED under obscured optical media, 16
images showed unclear RED due to underexposure, and 14
images showed tiny RED (Supplementary Figure 1A). In contrast, a
total of 164 non-RED images were erroneously assigned to the
RED group, among which 41 images had flash artifacts, 73 images
had harsh reflections from the internal limiting membrane, and 50
images had several flecks of white dust (Supplementary
Figure 1B).

Retina specialists vs. the deep learning system
In the ZOC dataset, for detecting RED in UWF images, the retina
specialist with 6 years of experience achieved a sensitivity of
93.5% (95% CI: 90.2–96.8) and specificity of 97.4% (95% CI:
96.4–98.4), and the retina specialist with 3 years of experience
achieved a sensitivity of 86.6% (95% CI: 82.1–91.1) and specificity
of 94.4% (95% CI: 93.3–95.8), while the deep learning system
achieved a sensitivity of 94.9% (95% CI: 92.0–97.8) and specificity
of 96.5% (95% CI: 95.4–97.6) (Fig. 4).

Table 1. Demographics and image characteristics of datasets.

CMAAI dataset ZOC dataset XOH dataset

Total no. of images 22411 1311 2687

Total no. of gradable images 19891 1222 2500

No. of subjects 13258 676 1060

Age, mean/range (years) 47.6/5–86 46.5/3–75 49.3/3–89

No. (%) of women 5983 (45.1) 294 (43.5) 582 (54.9)

Ethnicity Han Han Mongol

Location of institution South of China Southeast of China Northwest of China

Camera model OPTOS Daytona OPTOS 200TX OPTOS Daytona

Training Set Validation Set Test set

RED* 1972/13985 (14.1) 406/2954 (13.7) 415/2952 (14.1) 216/1222 (17.7) 182/2500 (7.3)

Non-RED* 12013/13985 (85.9) 2548/2954 (86.3) 2537/2952 (85.9) 1006/1222 (82.3) 2318/2500 (92.7)
*Data are no. of images/total no. (%) unless otherwise indicated. CMAAI Chinese Medical Alliance for Artificial Intelligence, ZOC Zhongshan Ophthalmic Center,
XOH Xudong Ophthalmic Hospital, RED retinal exudates and/or drusen.

Fig. 2 Receiver operating characteristic (ROC) curves of the deep
learning system in detecting retinal exudates and/or drusen from
ultra-widefield fundus images obtained at multiple sites. AUC area
under the ROC curve, CI confidence interval, CMAAI Chinese Medical
Alliance for Artificial Intelligence, ZOC Zhongshan Ophthalmic
Center, XOH Xudong Ophthalmic Hospital.
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DISCUSSION
In this study, we developed and evaluated a deep learning system
based on 26,409 UWF images. The system exhibited robust
performance in automated RED screening. In addition, the system
showed broad generalizability, since the AUCs in all of the external
validation datasets were greater than 0.97. Also, the unweighted
Cohen’s kappa coefficients indicated high agreement between the
system outcomes and the reference standard, further demonstrat-
ing the effectiveness of our system. Compared with the
performance of retina specialists in detecting RED, that of the
system was comparable to that of a retina specialist with six years
of experience and was better than a retina specialist with three
years of experience.
Due to the automation characteristics and reliable performance,

this deep learning-based system can be applied in primary care
centres and undeveloped areas that lack retina specialists for the
early detection of RED-related fundus diseases (e.g., uveoence-
phalitis, referable DR, and AMD), providing timely referrals for
positive cases. In addition, our previously established UWF image-
based screening system would detect more fundus lesions if
combining this system [39–42], which can be deployed in
hospitals with large numbers of patients to assist retina specialists

by avoiding examinations of evidently normal eyes, saving time
for patients in need.
Several automated techniques for detecting RED have been

published. Sánchez et al. [16] built a computer-aided diagnosis
system using active learning based on 4000 retinal images and
reported an AUC of 0.823. Rocha et al. [43] developed a machine
learning-based approach using 1014 retinal images, which
achieved an AUC of 0.953. Sadek et al. [13] developed a deep
learning method based on 1113 retinal images and described an
accuracy rate of 92.0%. Compared with these studies, our study
has several unique features. First, all previous studies were based
on traditional fundus images that had a high possibility of missing
lesions located in the peripheral retina due to the limited visible
scope of these images. Our study has developed the first deep
learning system to detect RED using UWF images covering almost
the entire retina. Second, we developed a lesion-based screening
system rather than a disease-based screening system, to screen
for the RED-related fundus diseases. As a preliminary screening
tool, it might be more reasonable and reliable to detect RED
instead of making a specific diagnosis of RED simply by fundus
images without considering other clinical information (e.g., age,
lifestyle, and medical history) and examinations. Third, to enhance

Fig. 3 Typical examples of positive images and corresponding heatmaps. Drusen of age-related macular degeneration shown in A1
correspond to the highlighted areas displayed in heatmap A2. Retinal exudates of diabetic retinopathy shown in B1 correspond to the
highlighted areas displayed in heatmap B2. Retinal exudates of Coats’ disease shown in C1 correspond to the highlighted areas displayed in
heatmap C2.

Fig. 4 Comparisons between the deep learning system and retina specialists for the detection of RED in the dataset of the Zhongshan
Ophthalmic Center. Retina specialist A, 6 years of experience in ultra-widefield fundus (UWF) image analysis. Retina specialist B, 3 years of
experience in UWF analysis. RED, retinal exudates and drusen. AUC, area under the receiver operating characteristic curve. The figure on the
right side is the enlarged portion of the yellow shadow of the figure on the left side.
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the performance, the datasets that we used to train and validate
the system were substantially large (26,409 UWF images from
14,994 subjects). Fourth, our datasets were acquired at multiple
medical centres with different UWF cameras and thereby were
more representative of the real world.
Deep learning algorithms are often deemed a “black box”

because they use millions of image features to make a
classification [44]. To interpret the decision-making rationales of
our system, a heatmap was generated to indicate the location on
which the decision of the system was based. Inspiringly, the
regions of RED in UWF images were highlighted, further
substantiating the effectiveness of our system. This interpretability
feature could further promote the application of our system in
real-world settings and could assist retina specialists in efficiently
localizing the lesion sites.
Although our system has high accuracy in detecting RED,

misclassification still exists. When investigating the reasons for
false-negative classifications, approximately 63.6% of the mis-
classified images resulted from unclear RED features caused by
obscured optical media or underexposure. The remaining false-
negative images were attributable to RED that were too small to
be identified. When analysing the reasons for false-positive
classifications, misclassified images were due to flash artifacts,
white dust, or harsh reflections from the internal limiting
membrane, all of which had a similar appearance of RED. To
reduce false-negative and false-positive results of the system,
more studies are needed to explore how these happened and to
find strategies to minimize the misclassifications.
There are several limitations to this study. First, the system was

developed based on two-dimensional images lacking stereoscopic
qualities, thus rendering the differentiation between dot RED and
white dust on the camera lens challenging. Therefore, it is
necessary to keep the lens clean prior to taking an image. In
addition, although UWF imaging can capture the largest visible
scope of the retina when compared to other existing technologies,
this equipment could still not cover the whole retina. Accordingly,
our system may miss a few REDs that are not captured by UWF
imaging. Third, as this study was retrospective and the images
were collected retrospectively from multiple medical centres, the
nature of the lesions (drusen or exudates) in most UWF images
could not be determined due to lack of other clinical information
and examinations. Therefore, this study did not establish a system
to differentiate between drusen and exudates.

CONCLUSIONS
We have developed and evaluated a deep learning system
capable of detecting RED using UWF images obtained from
multiple clinical settings. This system achieves high sensitivity and
specificity, comparable to those of an experienced retina
specialist. Our system has great potential to provide a timely
referral for positive cases, promoting the early detection and
treatment of RED-related fundus diseases. Prospective multicentre
validation is expected to obtain high-level evidence for real-world
application in subsequent studies.

Summary

What was known before

● Retinal exudates and drusen (RED) are signs of many ocular
fundus diseases (e.g., uveoencephalitis, referable diabetic
retinopathy [DR], and age-related macular degeneration
[AMD]) that can result in irreversible vision loss. Early
detection and treatment of these RED-related diseases can
help reduce retinal damage and improve vision prognosis.
Manual screening for RED is time-consuming and labor-
intensive, and automated diagnosis systems based on

traditional fundus images (30- to 60-degree visible scope of
the retina) often miss RED located in the peripheral retina.

What this study adds

● We developed a deep learning system to detect the RED of a
variety of ocular fundus diseases from ultra-widefield fundus
images (200-degree) that can provide information of almost the
entire retina. This system achieves high sensitivity and specificity,
comparable to an experienced retinal specialist. Due to the
automation characteristics and reliable performance, our deep
learning-based system has the high potential to be applied to
screen for RED from UWF images as a part of ophthalmic health
evaluations in physical examination centres or be applied in
undeveloped areas that lack retinal specialists to provide timely
referrals for cases with RED-related ocular fundus diseases, such
as uveoencephalitis, referable DR, and AMD.

DATA AVAILABILITY
The datasets generated and/or analysed during the current study are available from
the corresponding author on a reasonable request. Correspondence and requests for
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