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OBJECTIVES: To demonstrate the feasibility of a deep learning-based vascular segmentation tool for UWFA and evaluate its ability
to automatically identify quality-optimized phase-specific images.
METHODS: Cumulative retinal vessel areas (RVA) were extracted from all available UWFA frames. Cubic splines were fitted for serial
vascular assessment throughout the angiographic phases of eyes with diabetic retinopathy (DR), sickle cell retinopathy (SCR), or
normal retinal vasculature. The image with maximum RVA was selected as the optimum early phase. A late phase frame was
selected at a minimum of 4 min that most closely mirrored the RVA from the selected early image. Trained image analysts evaluated
the selected pairs.
RESULTS: A total of 13,980 UWFA sequences from 462 sessions were used to evaluate the performance and 1578 UWFA sequences
from 66 sessions were used to create cubic splines. Maximum RVA was detected at a mean of 41 ± 15, 47 ± 27, 38 ± 8 s for DR, SCR,
and normals respectively. In 85.2% of the sessions, appropriate images for both phases were successfully identified. The individual
success rate was 90.7% for early and 94.6% for late frames.
CONCLUSIONS: Retinal vascular characteristics are highly phased and field-of-view sensitive. Vascular parameters extracted by
deep learning algorithms can be used for quality assessment of angiographic images and quality optimized phase selection. Clinical
applications of a deep learning-based vascular segmentation and phase selection system might significantly improve the speed,
consistency, and objectivity of UWFA evaluation.
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INTRODUCTION
Retinal vasculature features provide crucial information for the
diagnosis and severity assessment of various ophthalmic diseases.
Visualization of retinal vessels enables the detection of manifesta-
tions of systemic conditions such as diabetes mellitus and
hypertension [1, 2]. Early studies of machine learning (ML)
applications in retinal photography identified vascular architecture
as the primary dictating factor of computer-based diagnosis and
risk factor predictions [3]. Progress in image analysis and deep
learning-based algorithms have significantly advanced the accu-
racy and feature extraction of retinal vessels on color fundus
photography [4–6]. Identification of vascular biomarkers is
promising not only for expanding the understanding of patho-
physiology but also for introducing new possibilities for persona-
lized treatments by connecting specific pathologic features with
optimal treatments.
Ultra-widefield fluorescein angiography (UWFA) can capture a

200° field of view (FOV) compared to conventional imaging with
30–60° FOV, enabling a more comprehensive disease evaluation
[7, 8]. As such, UWFA has become an essential tool for posterior

segment disorders due to its ability to identify near-panretinal
abnormalities within the retinal vasculature. Fluorescein angio-
graphic features such as retinal vascular non-perfusion, leakage,
and microaneurysms are indicators of disease severity [9].
Therefore, quantitative analysis of UWFA images offers significant
potential for both clinical and research applications. However,
studies on ML vessel extraction from UWFA images are
significantly limited in number compared to those of color fundus
photography [10–12]. Large fluorescein angiography imaging
datasets with detailed manual annotations of blood vessels are
required to perform this analysis.
One major limitation of UWFA imaging for rapid image

assessment is the large number of images that are obtained in a
given UWFA session. Often, only a small number of key images are
needed for clinician review or automated analysis. Ophthalmol-
ogists in clinics and image analysis laboratories manually review
the entire set of images to choose the optimal image to assess the
angiographic features of interest. Identifying the highest quality
phase-specific (e.g., arteriovenous (early), late) images requires
significant time and may be highly subjective. In addition, media
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opacities (e.g., vitreous debris, hemorrhage, and cataract), lid
artifacts, optimal eye-camera distance, sufficient fluorescein dye
infusion, injection-to-image time, and centration may impact the
image quality. An automated arteriovenous and late phase pair
selection tool could be the first step in improving efficiency and
reducing variability in UWFA image selection.
In this report, we provide a feasibility assessment of an ML-

based UWFA vascular segmentation platform and utilize this
system to evaluate changes in vascular areas across the entire
UWFA sequence in eyes with various underlying pathologies (e.g.,
normal, diabetic retinopathy (DR), and sickle cell retinopathy
(SCR)). In addition, this tool was utilized as a basis for developing
an automated quality-optimized phase selection tool for both
arteriovenous (i.e., early) and late phase angiograms.

METHODS
UWFA retinal vessel segmentation and vascular area
extraction
A convolutional deep learning model was trained using manual annotations
of the vasculature. The training set for vascular segmentation developed for
the current platform consisted of the arteriovenous phase UWFA frames with
optimal visualization of vascular structures with various pathologies, including
non-perfusion, leakage, and neovascularization. Annotators varied the
contrast to compensate for variable background fluorescence. The sections
with low confidence of segmentation were omitted to have highly accurate
ground truth [13, 14]. Early generation vessel masks were extracted from the
training set images with conventional image processing algorithms (Fig. 1C)
as previously described and were used as initial templates for manual
segmentation to facilitate efficiency and prevent annotator fatigue [15]. A
total of 7787, 256 × 256-pixel patches were extracted from 17 angiograms and
angiogram sections. Randomly selected 10% of the patches were not
included in the training and were reserved for performance assessment by F
score calculation and qualitative comparison. NVIDIA GeForce GTX 1080 was
used to train this model that is consisted of 18 convolutional layers, with
concatenation to provide lower-level information to higher levels of the
model. This was based on the U-Net architecture previously reported by
Ronneberger et al. [16]. One key difference was the use of 12 × 12
convolutional kernels. This kernel size allowed for more contextual
information to improve performance [17]. Grayscale images created by the
deep learning model were post-processed to achieve binary vessel masks
with minimum artifacts. Retinal vessel areas (RVA) were computed from retinal
vessel masks using a custom Python script.

UWFA image selection
This retrospective image analysis study included IRB-approval at the Cleveland
Clinic for retinal vascular assessment and at Johns Hopkins for the SCR image
analysis portion of the study. Given the retrospective nature of these analyses,
the informed consent requirement was waived. In addition, this study
included images from the intravitreal aflibercept as indicated by real-time
objective imaging to achieve DR improvement (PRIME) clinical trial
(NCT03531294) that was IRB-approved by the Sterling IRB. As this was a

prospective clinical trial, informed consent was obtained from all subjects. This
analysis adhered to the tenets of the Declaration of Helsinki.
Complete UWFA sessions were identified for 492 individual sessions for

eyes that were imaged on either the 200Tx or California UWFA imaging
systems (Optos, Dunfermline, Scotland, United Kingdom). When both eyes
were imaged, the eye with more UWFA frames available is included in the
study. Intra-study changes in vascular area were examined in a total of 63
eyes: 33 with DR, 18 with SCR, and 12 with normal retinal vasculature.
Arteriovenous and late pair selection tool performance was evaluated using
UWFA images from 462 sessions eyes with DR from the PRIME clinical trial.

Assessment of intra-study changes in the vascular area
RVA and timestamps converted to seconds were calculated for each
image in UWFA sessions of eyes with DR, SCR, and normal retina. The
areas detected were graphed overtime after dye injection using R
software (Vienna, Austria). Peak RVA and corresponding timestamp
were identified for each eye. Mean RVA was calculated for each cohort
using the UWFA frames with maximum vasculature detection for each
eye. The selected frames were corrected by a previously described de-
warping transformation algorithm to convert the vessel area measure-
ments from pixels to mm2 [18]. Meantime for optimal vasculature
detection for each cohort was calculated using timestamps correspond-
ing to maximum vessel area detection in each eye. Cubic smoothing
splines with 10 degrees of freedom were fit to each dataset to visualize
the trend.

Arteriovenous and late pair selection and performance
evaluation
All frames of UWFA were run through retinal vessel extraction and area
calculation algorithm without any manual input. The image that
corresponded to the mask with maximum RVA was identified as the
optimal arteriovenous phase image. Among the frames with later than 4-
min timestamp, the image with retinal vessels which were closest to the
vessel area of the arteriovenous phase was selected as the optimal
late image.
Two trained image analysts (DDS and MO) independently evaluated

automatically selected pairs for individual and combined successes of
arteriovenous and late phase image selection. Evaluation criteria included
contrast, the FOV, obscuring artifacts, centering, and appropriate phase for
angiographic feature evaluation such as non-perfusion in arteriovenous
phase images and leakage in late-phase images. If an automatically
selected image was graded as non-optimal according to at least one
evaluation criteria, readers reviewed the remaining UWFA sequences to
determine if a superior image existed. The automated selection was
considered unsuccessful when a preferable image was identified by the
readers. In cases of disagreement, an independent ophthalmologist (JPE)
evaluated the images for the final decision. Inter-rater and inter-machine
agreements were evaluated.

RESULTS
RVA extraction performance
Seven hundred seventy-nine (10%) patches randomly selected
from the training set were used to evaluate model performance

Fig. 1 Evolution of retinal vasculature segmentation. Retinal vessel segmentation by deep neural networks (A) and conventional algorithms
(C) of an arteriovenous phase UWFA frame of an eye with diabetic retinopathy (B). Microvasculature detail is significantly greater in the mask
created with deep learning, enhancing the demonstration of non-perfused areas. In the temporal periphery, more microvasculature is
detected due to decreased background brightness caused by inadequate retinal perfusion.
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and found an F-score of 0.77. Retinal vessel masks created
by our deep learning model were highly accurate and superior
in capturing details of vessels with small diameters as
compared with masks created by conventional algorithms or
unsupervised methods (Fig. 1) [12, 14]. Accurate detection of
blood vessels and manual blood vessel annotations in
UWFA images were challenged by changes in observable
vasculature as the dye perfuses the retina, variable contrast,
labor-intensive nature of the manual segmentation, and image
quality [10].

Intra-study changes in the vascular area
A total of 1578 UWFA sequential images from 66 sessions of eyes
with DR (33 eyes, 787 frames), SCR (18 eyes, 462 frames), and
normal retina (12 eyes, 329 frames) were used to graph ML
detected RVA overtime after dye injection. The maximum RVA was
detected in the arteriovenous phase with means 104 ± 22, 96 ± 25,
105 ± 13mm2 in DR, SCR, and normal cohorts respectively. Cubic
smoothing splines fitted to the UWFA sessions of the groups were
shown in Fig. 2. The mean timestamp for the maximum retinal
vessel detection was 41 ± 15, 47 ± 27, 38 ± 8 s for DR, SCR, and
normal retina groups, respectively.

Arteriovenous and late pair selection and performance
The automated selection tool was evaluated to be successful in
identifying appropriate images for both phases in 394 out of 462
visits (85.2%). Readers (DDS and MO) agreed in 441 out of 462
(95.5%) visits. Following adjudication, success rates for identify-
ing early and late images individually were 90.7% (419/462) and
94.6% (437/462) respectively. Figure 3 demonstrates an example
of successful pair selection. Of the 43 images that were
considered unsuccessful for early phase image selection, the
algorithm was unable to identify an early image in 6 sessions; in
the remaining 37 visits the images selected were not considered
optimal because of image quality issues such as non-central
FOV, contrast or inappropriate angiographic phase for non-
perfusion evaluation. Of the sessions where the algorithm did
not detect an optimal late image, the algorithm failed to identify
a late image in 10 images; in the remaining 15, a superior late
phase image was available based on image focus (Fig. 4) and
FOV.

DISCUSSION
This study demonstrates the change in deep learning-assisted
retinal vessel detection by the UWFA phase and its successful
application as an automated arteriovenous late pair selection tool.
To our knowledge, this is the first proposed automated UWFA
image selection method based on retinal vascular segmentation
area assessments.
Accurately detecting changes in small blood vessels is critical

when dealing with diseases that result in microvascular
abnormalities, such as DR. RVA-timestamp graphs demonstrate
a peak in retinal detection within the first minute of injection.
Approximately 2 min after dye injection, detected vessel areas
change only minimally as the background fluorescein increased
with the dye perfusion. Increased background brightness
decreases the contrast and interferes with the detection of small
vessels. Figure 2 suggests that the optimal timeframe to measure
vascular change is within the first minute after injection.
Similarly, frames captured later than 2 min after the injection
may not be appropriate for non-perfusion analysis because of
the increased background fluorescence (Fig. 3). RVA-timestamp
graphs are helpful in identifying images with images that have

artifacts or anomalous FOVs since obstructions or changes in FOV
result in significant changes in detected vascular area (Fig. 5).
The arteriovenous late pair selection algorithm using these
principles is successful in identifying both optimal arteriovenous
and late phase pairs in 85.2% of sessions. As part of the imaging
protocol in the PRIME clinical trial, peripheral sweeps were
performed after 1 min with the UWFA device. The FOV changes
due to peripheral sweeps introduced irregularities in detectible
vessel area graphs and at times resulted in selection errors
(Fig. 5).
There are several potential uses of this tool in the clinical

setting. At the time-image acquisition, real-time assessment of
vasculature could provide immediate feedback to photographers
regarding image optimization. For the clinician, automated
selection of the optimum early and late phase frame for review
may increase the efficiency by potentially eliminating the need to
review the entire UWFA sequence. In addition, an automated
image selection platform is essential for fully automated clinical
deployment of quantitative UWFA analysis of clinically important
features including leakage, non-perfusion, and microaneurysms.
Automated real-time quantification of these features in a clinical
setting has the potential to serve as a clinician decision-support
tool. The role of this tool in real-time patient care is currently
being explored in ongoing studies.
There are several limitations to this study. In this methodology,

vessel areas were calculated through the whole image without
determining a region of interest. This resulted in the inclusion of
artifacts such as eyelids and eyelashes in area measurements.
The variability in FOV from subject to subject limited the
comparison between groups. Another limitation for cross-
sectional comparison is that the background brightness in
well-perfused areas prevents visualization and detection of
microvasculature compared to the areas where perfusion is
compromised. This phenomenon results in increased vessel area
detection in the early stages of non-perfusion. RVA-timestamp
graphs are limited by the small sample size and unequal
distribution of available UWFA frames. Typically, more frames
are captured in the arteriovenous phase compared to the late
phase. An additional potential limitation of segmentation
includes leakage interference. The presence of large leakage
foci in the late phase images may result in loss of local vessel
segmentation due to obscuration of the underlying vasculature.
This measurement error does not appear to affect the
performance of the late selection algorithm as the leakage
location is the same in all late frames of a given UWFA session.
Future studies with more frequent frame capture from the first
sign of dye through complete venous filling are required to
better understand how the detectable RVA over time is affected
by different pathologies. Another limitation of the current
automated platform is that the stratification of the phase
distribution is timestamp-dependent. Timestamp accuracy is
dependent on the photographer and is therefore prone to error
and may not be available in similar formats.
This study confirms the feasibility of automated quality

optimized phase selection tool using retinal vessel detection by
deep learning algorithms. This is demonstrated by sufficiently high
accuracy, speed, and reliability when interrogating pathologic
eyes in a clinical setting. In addition, an optimal window for retinal
vessel analysis is demonstrated. Further studies are needed to
create a timestamp independent selection tool, and further
explore the relationship between detectable vasculature and
retinal pathologies. Automating the image selection process saves
significant time in image analysis and eliminates subjectivity. It has
the potential for multi-level improvements to clinical workflow
and automated systems for image interpretation.
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Fig. 2 Change in detectable retinal vessel areas by angiographic phase. Blue, gray, and green circles represent the data extracted from
UWFA sequences of eyes with diabetic retinopathy (DR), sickle cell retinopathy (SCR), and normal retinal vasculature respectively. Blue, red,
and green lines represent the spline curves fitted to the data from DR, SCR, and normal groups respectively. In the healthy dataset, the lack of
data from 100 to 200 s, affected the shape of the peak in the spline curve fit.
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Fig. 5 Outlier example based on angiographic phase graph. The yellow circle represents the optimal early UWFA frame with the largest vessel
segmentation. The abrupt decrease in vessel area marked by a red circle is due to a change in anomalous FOV that is obstructed by the eyelid.

Fig. 3 Successful automated image selection. Automatically selected early (A) and late (B) phase angiographic frames and corresponding
retinal vessel masks (C), (D) created with deep neural networks. Non-perfused areas are more pronounced in the early phase frame whereas
leakage is more pronounced in the late phase frame. Increased background fluorescence in the late phase conceals some areas of non-perfusion.

Expert selection Automated Selection

Fig. 4 Representative discordant automated image selection examples. Expert selection of optimal early and late images compared to
automated image selection. The automated early phase selection (top right) was evaluated as discordant due to a slightly noncentral field-of-view
compared to expert image selection. The automated late selection was evaluated as discordant due to reduced focus compared to expert selection.
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Summary
What was known before

● One major limitation of UWFA imaging for rapid image
assessment is the large number of images that are obtained in
a given UWFA session.

● Often, only a small number of key images are needed for
clinician review or automated analysis.

● Identifying the highest quality phase-specific (e.g., arteriove-
nous (early), late) images requires significant time and may be
highly subjective.

What this study adds

● This study provides an assessment of a machine learning-
based UWFA vascular segmentation platform and utilizes this
system to evaluate changes in vascular areas across the
entire UWFA sequence in eyes with various underlying
pathologies.

● In addition, this tool was utilized as a basis for developing an
automated quality-optimized phase selection tool for both
arteriovenous (i.e., early) and late phase angiograms.
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