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Abstract
Sickle cell retinopathy is often initially asymptomatic even in proliferative stages, but can progress to cause vision loss due
to vitreous haemorrhages or tractional retinal detachments. Challenges with access and adherence to screening dilated fundus
examinations, particularly in medically underserved areas where the burden of sickle cell disease is highest, highlight the
need for novel approaches to screening for patients with vision-threatening sickle cell retinopathy. This article reviews the
existing literature on and suggests future research directions for coupling artificial intelligence with multimodal retinal
imaging to expand access to automated, accurate, imaging-based screening for sickle cell retinopathy. Given the variability
in retinal specialist practice patterns with regards to monitoring and treatment of sickle cell retinopathy, we also discuss
recent progress toward development of machine learning models that can quantitatively track disease progression over time.
These artificial intelligence-based applications have great potential for informing evidence-based and resource-efficient
clinical diagnosis and management of sickle cell retinopathy.

Introduction

Sickle cell disease is the most common genetically inherited
haematologic disorder, with a birth prevalence of over
300,000 new cases per year worldwide [1]. The most
common causes of vision loss in patients with sickle cell
disease stem from complications of proliferative sickle cell
retinopathy (PSR), a condition in which chronic peripheral
retinal microvascular occlusion and ischaemia stimulate the
proliferation of sea fan neovascularization, which can cause
vision-threatening vitreous haemorrhage or tractional retinal
detachment [2, 3]. School- and working-age patients are
disproportionately susceptible to these vision-threatening
changes; by the age of 26 years, up to 43% of patients with

Haemoglobin SC disease and 14% of patients with Hae-
moglobin SS disease have been found to develop PSR [4].

To enable early detection and possible prophylactic
treatment with scatter laser photocoagulation prior to
development of vision loss, consensus guidelines published
in 2014 by an expert panel on multi-organ management of
sickle cell disease included a strong recommendation to
commence routine screening with dilated fundus examina-
tions at age 10 years [5]. However, the globally low rates of
adherence to these guidelines, as revealed by publications
from Toronto [6], Jamaica [3], and Saudi Arabia [7],
underscore the need for new approaches to increasing
access and adherence to screening retinal examinations for
sickle cell retinopathy (SCR). Moreover, a recent survey of
practicing retina specialists demonstrated variable practice
patterns for treating vision-threatening PSR, highlighting a
need to build evidence-based treatment guidelines through
existing data and clinical trials [8]. There is rapidly growing
literature on the use of artificial intelligence to aid auto-
mated classification of retinal photographs for a variety of
retinal conditions. The recent FDA approval of the artificial-
intelligence-enabled IDx-DR [9] and EyeArt systems
[10, 11] for screening for referrable diabetic retinopathy
from fundus photographs has paved the way for application
of similar systems to augment screening for other retinal
diseases, such as SCR.
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This review aims to summarize published literature on
and highlight future research directions for the possible
coupling of artificial intelligence and multimodal retinal
imaging to enhance the diagnosis and management of SCR.
For the purposes of this review, artificial intelligence refers
to the broad field that includes the subsets of machine
learning, whereby machines learn from data without human
supervision, and deep learning, the subset of machine
learning that employs multi-layered neural networks that
mimic human cognitive processing without human super-
vision [12].

Search methodology

We evaluated the current literature on artificial intelligence
and sickle cell retinopathy by searching PubMed and
Google for studies published in English up to 30 December
2020, using keywords such as ‘deep learning’, ‘machine
learning’, ‘artificial intelligence’ and ‘sickle cell retino-
pathy’. We also used reference lists and performed similar
searches using specific search terms such as ‘fluorescein
angiography’, ‘optical coherence tomography’ and ‘optical
coherence tomography angiography’ to find applications of
artificial intelligence to these types of retinal imaging in
other retinal diseases.

Results

Artificial intelligence for screening for sickle cell
retinopathy from ultra-widefield fundus
photographs

One of the most important potential applications of artificial
intelligence to SCR lies in the use of automated inter-
pretation of ultra-widefield fundus photographs (UWF-FPs)
to enhance access and adherence to screening for the dis-
ease. The combination of automated artificial-intelligence-
based algorithms with point-of-care fundus photography,
which could be obtained at primary care or haematology
office visits as has been previously demonstrated for dia-
betic retinopathy screening [9], may help consolidate care
for visually asymptomatic patients with sickle cell disease
who have difficulty juggling routine ophthalmology visits
with school or work obligations and medical appointments
or hospitalizations associated with their systemic disease
burden [13]. Moreover, the convenience and scalability of
automated screening systems have the potential to help
overcome disparities in access to retinal screening exam-
inations in Africa and other medically underserved regions
of the world, where the prevalence of sickle cell disease far
exceeds the availability of retinal specialists [14].

UWF-FPs are particularly amenable to artificial
intelligence-based detection of SCR, given their ability to
image the retinal periphery in a single frame and established
advantages for SCR staging. For example, several retro-
spective and prospective studies have reported that graders
of UWF-FPs more often detect nonproliferative SCR than
clinicians performing dilated fundus examinations on the
same patients [15–17]. Although the current standard of
care for SCR screening relies on expert clinician inter-
pretation of dilated fundus examinations and ancillary ret-
inal imaging, well-validated artificial intelligence
algorithms may offer unique advantages in terms of
increased speed, accessibility and accuracy of image clas-
sification compared to human interpretation [18, 19].

Toward the goal of using artificial intelligence to auto-
mate screening for vision-threatening SCR from retinal
photographs, our group recently developed a deep learning
convolutional neural network that achieved 97.4% sensi-
tivity and 97.0% sensitivity compared to retinal specialists
in classifying Optos (Optos plc, Dunfermline, UK) UWF-
FPs from patients with sickle cell haemoglobinopathy for
presence or absence of sea fan neovascularization [20]. We
trained, validated and tested this convolutional neural net-
work using 1182 images from 190 adult patients with sickle
cell haemoglobinopathy imaged at the Wilmer Eye Institute,
of whom 53% were women, 94% were of Black American
or African descent, 63% had Haemoglobin SS disease, 24%
had Haemoglobin SC disease, and 30% had sea fan neo-
vascularization in one or both eyes captured on Optos
UWF-FP. Because some patients had multiple imaging
encounters and most patient eyes had more than one image
per eye included in this study, the performance of the deep
learning algorithm was also assessed after clustering images
from the same eyes and imaging encounters, yielding a
sensitivity of 100% and specificity of 94.3% in detecting
sea fan neovascularization from ‘eye encounters’.

The promising performance of this first application of
deep learning to the automated detection of PSR from fun-
dus photographs sets the stage for further work validating
and refining our algorithm for real-world screening for SCR.
A few limitations merit follow-up study. First, a common
limitation to many deep learning algorithms is their “black
box” nature, meaning that there is not a direct means for
determining how the algorithms generated their final output
classifications from the input images [19, 21–23]. Without
transparency into the features of the input images that
determine the final outputs, a concern is that potentially
erroneous confounding features could affect the performance
of the deep learning algorithm. For example, if a particular
type of imaging artefact is often associated with sea fan
neovascularization in a certain dataset, it is possible that a
deep learning algorithm could learn to recognize the imaging
artefact rather than sea fans themselves when classifying
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fundus photographs for presence or absence of PSR. To
address this concern, a variety of saliency map visualization
techniques have been developed to generate colorized
heatmaps that visually highlight pixels of the input image
that may be most important for the convolutional neural
network output [24]. In our study, we used two different
saliency map visualization techniques, called Guided Grad-
CAM [25] and SmoothGrad [26], to assess which parts of
the input UWF-FPs, when changed, most affected the final
convolutional neural network output classifications of pre-
sence or absence of sea fan neovascularization [20]. On
average, both saliency map types highlighted the relative
importance of the peripheral retina, and especially temporal
peripheral retina, for the convolutional neural network out-
put classifications, which is consistent with the clinically
observed predilection for sea fan neovascularization to arise
in the temporal retinal periphery (Fig. 1) [2]. While this
correspondence between the saliency map findings and
clinical experience is encouraging, it is important to keep in
mind the absence of standardized methods for reporting and
comparing visualization methods for explaining how deep
learning algorithms translate inputs into outputs.

A second challenge for interpreting the performance of a
deep learning model for classifying UWF-FPs for presence
or absence of referable SCR lies in the need to assess
whether UWF-FPs can reliably image with high resolution
the areas of peripheral retina where sea fan neovascular-
ization is most likely to occur. Peripheral retinal visualiza-
tion can be limited on Optos UWF-FPs by eyelid artefact,
peripheral image blurring and peripheral distortion [27]. In
our study, 10% of included patients had at least one Optos
colour UWF-FP graded as not having sea fan neovascu-
larization but also a corresponding UWF-FA revealing an
area of leakage not well captured on the UWF-FP due to
image artefact, poor image resolution and/or image decen-
tration [20]. Since repeated imaging from a single session,

particularly with different centration, can increase the like-
lihood of adequately capturing peripheral retinal pathology,
further research is needed to determine the best protocol for
repeated images to optimize the sensitivity of detecting
referable SCR. With larger multicentre databases of UWF-
FPs, it should be possible to use machine learning algo-
rithms to automate classification of UWF-FPs as being of
sufficient or insufficient quality for grading of SCR. To the
best of our knowledge, deep learning has previously been
applied to the problems of automated retinal image quality
classification for posterior pole fundus [28, 29] and Retcam
images [30], but an analogous automated system for ultra-
widefield images awaits development.

A third area important to assess before applying a deep
learning algorithm for detection of PSR to real-world settings
is its generalizability to different ethnic populations, patient
ages and imaging systems. The patient population included
in our study [20] was of predominantly Black American or
African descent, consistent with the population with the
highest rate of sickle cell disease worldwide [1]. Further
research is needed to assess whether different fundus pig-
mentation patterns in patient populations from different
ethnic backgrounds may differentially affect the sensitivity
and specificity of machine learning models for detecting SCR
from fundus photographs. In addition, given the recom-
mendations to begin screening for SCR in childhood, it is
important to assess the performance of deep learning models
for sickle cell screening in the paediatric population. In
particular, paediatric UWF-FPs are especially susceptible to
the challenges of eyelid artefacts and image decentration,
although a single-institutional prospective study of children
aged 3 to 17 years suggested that paediatric UWF-FPs can
capture an average of 50% greater retinal area than indirect
ophthalmoscopic examination [31]. Finally, although the
literature on ultra-widefield imaging in SCR has been
dominated to date by Optos imaging, more research is

Fig. 1 Representative Optos ultra-widefield fundus photograph
and corresponding saliency maps for deep learning detection of
sea fan neovascularization. The Optos image (left) is from a patient
with Haemoglobin SC-associated proliferative sickle cell retinopathy.
The color-coded Guided Grad-CAM (centre) and SmoothGrad (right)

saliency maps highlight in red the regions of the input fundus pho-
tograph (including the temporal retina and in particular the two sea fan
neovascularization complexes) most relevant to our convolutional
neural network [20] for correctly classifying this fundus photograph as
having sea fan neovascularization.
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needed to assess the potential value of the more recently
developed Clarus (CLARUS 500, Carl Zeiss Meditec AG,
Jena, Germany) ultra-widefield imaging system for imaging
pathologic changes in SCR [27]. Relative advantages of the
Clarus compared to Optos are true-colour imaging and
reduced eyelid or eyelash artefact, but relative disadvantages
of the Clarus are a brighter light flash and a smaller field of
capture of 133° from individual images – although monta-
ging increases the overall field of view [27]. One study
reported that Optos images tend to capture retinal vascular
detail in the superotemporal quadrant better than montaged
Clarus images, which in turn may better capture retinal
vascular detail in the inferonasal quadrant [32]. The impli-
cations of these findings for imaging of SCR (which pre-
ferentially affects the temporal retina) merit further study.

Going forward, machine learning methods may be parti-
cularly powerful for analysing longitudinal progression of
pathologic vascular findings from UWF-FPs of eyes with
SCR. In retinopathy of prematurity, deep learning has been
used to develop a quantitative retinopathy of prematurity
vascular severity score from Retcam fundus photographs that
has been shown to correlate with disease severity, progression
and post-treatment regression [33–35]. In diabetic retino-
pathy, deep learning has been used to show that baseline 7-
field fundus photographs can predict future 2-step worsening
on the Early Treatment Diabetic Retinopathy Severity Scale at
12-month follow-up with 91% sensitivity and 65% specificity
[36]. With adequate long-term data correlating UWF-FPs
with stage and need for treatment for vision-threatening PSR,
it will be valuable to explore what machine learning may be
able to add to the clinically established Goldberg [2] and
Penman [37] sickle cell staging systems for predicting which
patients are most at risk of losing vision from SCR.

Artificial intelligence for analysing ultra-widefield
fluorescein angiography to improve sickle cell
retinopathy staging

Although fluorescein angiography (FA) is invasive and more
time- and resource-intensive than fundus photography, and
thus less practical for large-scale SCR screening purposes, FA
is the current gold standard for staging and monitoring of
SCR [27]. Application of machine learning methods to large
numbers of FAs collected from patients with sickle cell dis-
ease may offer new insights into retinal vascular features
useful for monitoring and predicting SCR progression. A
better understanding of features that may predict the rate of
progression of SCR could in turn aid the development of
future evidence-based consensus guidelines about recom-
mended frequency of monitoring of patients with advanced
nonproliferative or early proliferative SCR [8].

Thus far, deep learning has been used to augment the
creation of retinal vessel masks from FA images, which can

subsequently be used to aid automated computation of
quantitative metrics such as vessel length, vessel area,
ischaemic index (the percentage of total visualized area with
nonperfusion) and geodesic index (the shortest distance from
the optic nerve centre to the edge of the peripheral vascu-
lature) in ultra-widefield FAs (UWF-FAs) from patients with
sickle cell disease [38]. In a recent study by Sevgi et al. of 74
eyes from 45 patients with sickle cell haemoglobinopathy
with two imaging visits spaced at least 3 months (and a mean
of 23.0 ± 15.1) months apart, the mean ischaemic index was
shown to increase and mean vessel area and geodesic index
were seen to decrease over time [38]. A nonsignificant trend
toward a more rapid increase in ischaemic index over time
was observed among patients with Haemoglobin SC than in
the Haemoglobin SS or other Haemoglobin S variant cohorts.
The authors noted that deep learning algorithms were superior
to alternative image processing techniques in capturing
detailed pathologic changes of SCR in the skeletonized retinal
vessel masks (Fig. 2). In the future, larger longitudinal studies
may be useful for correlating the rates of change of quanti-
tative markers of ischaemia with the risk of development of
sea fan neovascularization and vision-threatening complica-
tions of PSR.

Given the value of FA in identifying leakage as a marker
of PSR, future work aided by machine learning could also
help quantify patterns of progression as well as identify
pathologic vascular precursors to leakage on FA. Using
manual grading methods, Barbosa et al. previously used
ImageJ to retrospectively assess extent and intensity of
leakage in patients with PSR treated with scatter laser
photocoagulation [39]. Automated methods could improve
the speed and reproducibility with which leakage can be
quantified serially on FAs from eyes with SCR, with or
without treatment. For the related but distinct condition of
diabetic retinopathy, Ehlers et al. developed an automated
algorithm for segmenting retinal vessels and then detecting
and quantifying leakage from Optos FA images [40]. This
algorithm merits formal validation in images from patients
with SCR. A deep learning algorithm that Sevgi et al. [41]
have recently presented for automated selection of early and
late phase FA images with maximum visualized retinal
vessel area and similar captured fields of view between the
early and late phases may also prove very useful in long-
itudinal analysis of FAs from eyes with sickle cell disease,
aiding discovery of machine-learning-assisted methods for
staging and quantifying vascular abnormalities in SCR.

Artificial intelligence for using optical coherence
tomography angiography to improve sickle cell
retinopathy screening and staging

In contrast to fundus images, which only highlight the
major retinal vessels, or FA, which is relatively time-
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consuming and invasive, OCT angiography (OCTA) allows
for relatively rapid, noninvasive imaging of retinal vascu-
lature with capillary-level resolution as well as the ability to
separately analyse different retinal layers. The emergence of
widefield swept-source OCTA (SS-OCTA) with montages
of scans taken with different visual fixation points has
shown promise for replacing or complementing UWF-FA in
the staging of diabetic retinopathy, including identification
of areas of neovascularization [42–47]. Compared to
spectral-domain OCTA systems, SS-OCTA uses a tuneable
light source with a longer wavelength and more advanced
sensor, enabling high-speed acquisition of images with a
wider field of view and greater depth of tissue penetration
[48]. To date, there have been limited reports using SS-
OCTA in SCR, and these studies have focused on macular
rather than peripheral findings [49, 50]. Because neo-
vascularization in PSR tends to develop more peripherally
than neovascularization in proliferative diabetic retinopathy,
further work is needed to assess how widefield SS-OCTA
compares to UWF-FA in capturing peripheral pathology in
patients with sickle cell disease (Fig. 3). If widefield SS-
OCTA can be optimized for detection of the peripheral
changes of SCR, the combination of artificial intelligence
with widefield SS-OCTA and UWF-FP could be a powerful
noninvasive screening tool in the future for PSR.

Meanwhile, machine learning is already being used to
identify and classify eyes with SCR from pathologic
changes visible on OCTA imaging of the macula. Alam
et al. have previously taken the approach of identifying
optimal combinations of quantitative parameters extracted
from macular OCTA images that can distinguish between
eyes with and without sickle cell-related vascular changes
and also distinguish different severities of SCR [51].

Numerous studies have highlighted such changes as
decreased superficial and deep capillary plexus vessel
density [52], greater deep capillary plexus foveal avascular
zone area [50] and greater foveal avascular zone acircularity
[53] in eyes with sickle cell disease than controls. Alam
et al. found that application of machine learning methods to
a combination of 6 OCTA quantitative parameters (blood
vessel tortuosity, blood vessel diameter, vessel perimeter
index, foveal avascular zone area, foveal avascular zone
contour irregularity and parafoveal avascular density) –

previously confirmed by the same authors to significantly
differ between eyes with SCR and control eyes [54] – was
found to yield superior performance than any individual
OCTA parameter alone [51]. Their support vector machine
classifier achieved 100% sensitivity and 100% specificity
for distinguishing between 6×6 mm spectral-domain
macular OCTAs from eyes with SCR and healthy controls
[51]. Importantly, this classifier also achieved 97% sensi-
tivity and 95% specificity in distinguishing between eyes
with Goldberg stage II and Goldberg stage III SCR as
staged by retinal specialists from dilated fundus examina-
tions, suggesting a correlation between macular and per-
ipheral vascular changes in SCR. A prospective study by
our group demonstrating a significant correlation between
macular OCTA vessel density measurements (both in the
deep capillary plexus and temporal superficial capillary
plexus) and peripheral nonperfusion as quantified by the
ischaemic index on UWF-FA further supports the idea that
macular OCTA may be a viable proxy for peripheral OCTA
in identifying eyes at risk of vision loss from PSR [55].

Whereas Alam et al. used machine learning to classify
SCR using preselected quantitative metrics derived from
OCTA images, an alternative approach is to use deep

Fig. 2 Representative ultra-
widefield fluorescein
angiogram (left) and deep
learning-enhanced vessel
segmentation mask (right) [38]
capturing detailed vascular
abnormalities in a patient with
Haemoglobin SS-associated
sickle cell retinopathy. (Image
courtesy of Duriye Damla Sevgi,
MD, and Justis P. Ehlers, MD,
the Tony and Leona Campane
Centre for Excellence in Image-
Guided Surgery and Advanced
Imaging Research, Cole Eye
Institute, Cleveland Clinic,
Cleveland, OH, USA).

Artificial intelligence for improving sickle cell retinopathy diagnosis and management 2679



l-

earning to classify SCR based on the OCTA images
themselves rather than extracted metrics. For example, in
age-related macular degeneration, a convolutional neural
network has been shown to achieve 100% sensitivity and
95% specificity compared to a retinal specialist grader in
automatically classifying OCTAs as having or not having
choroidal neovascularization [56]. Similar convolutional
neural network algorithms could be used in the future to
classify diagnostically or prognostically relevant OCTA
findings in eyes with SCR. Given the many potential arte-
facts that can hinder OCTA interpretation [57], it will be
important in future work to build on previously developed
deep learning models for automation of vessel segmentation
[58–61] and classification of OCTA image quality [62].

Future opportunities for applications of artificial
intelligence to optical coherence tomography of
sickle cell retinopathy

In addition to the application of artificial intelligence to the
imaging modalities discussed above, there is great potential
for automated analysis of optical coherence tomography
(OCT) scans of patients with SCR. Multiple structural OCT
changes have been observed in SCR, such as foveal
splaying, inner and/or outer retinal thinning and choroidal
thinning [63–69]. Not only may these structural changes

have visual consequences in terms of decreased retinal
sensitivity on microperimetry [70] and impaired contrast
and colour vision [71], but a previously reported association
between macular retinal thinning on OCT and the ischaemic
index on UWF-FA highlights a potential correlation
between macular structural and peripheral vascular pathol-
ogy [72]. The ability to capture high-quality registered
volume scans and the availability of longitudinal OCT
imaging and normative data compared to more nascent
technology such as OCTA make automated analysis of
OCT particularly appealing for following microstructural
changes in SCR over time. A recent longitudinal pro-
spective study reported higher rates of macular OCT thin-
ning over time in patients with SCR compared to age- and
race-matched controls [73]. We anticipate that machine
learning can be used to automate identification and tracking
of OCT-based biomarkers of SCR progression, drawing on
the rapidly growing literature using deep learning to diag-
nose and localize pathologic findings from OCT such as
diabetic macular oedema [74–76], age-related macular
degeneration [77], serous retinal detachments [78], cavita-
tions in macular telangiectasia [79] and epiretinal mem-
branes [80].

Conclusions

The integration of artificial intelligence with multimodal
imaging holds great promise for improvement of multiple
facets of the diagnosis and management of SCR – from
screening for PSR to automating detection and quantifica-
tion of pathologic vascular changes that may help predict
risk of future vision loss and need for treatment. While
considerable literature on artificial intelligence in ophthal-
mology has been devoted to the classification of conditions
using individual imaging methods, some studies have also
highlighted an opportunity to improve performance by
simultaneously incorporating multiple types of imaging
[81, 82]. Also, it is important to keep in mind that patients
with sickle cell disease may have comorbid ocular condi-
tions such as diabetic retinopathy and glaucoma that may be
detectable from retinal imaging and merit referral to an
ophthalmologist [83]. Future work is needed to determine
how best to integrate simultaneous screening for multiple
ocular diseases from multimodal imaging.

In regions of the world where access to retinal specialists
is limited, strategic deployment of artificial intelligence may
allow automated interpretation of imaging obtained at non-
ophthalmology medical offices or community screening
centres to help identify patients with sickle cell disease most
in need of referral to retinal specialists for further evaluation
and management of their SCR. When access to or avail-
ability of retinal specialists is not the limiting factor, the

Fig. 3 Widefield montage swept-source optical coherence tomo-
graphy angiography from patient with Haemoglobin SC-
associated proliferative sickle cell retinopathy. A montage of
five 12 × 12 mm swept-source optical coherence tomography angio-
graphy scans enables a non-invasive, non-contact widefield view
(>50 degrees), including details of temporal peripheral vascular
pathology beyond the macula. Areas of decreased flow signal
inferiorly are due to blockage from overlying vitreous haemorrhage.
(Image courtesy of Ian C. Han, MD).
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combination of artificial intelligence and point-of-care
imaging can still help to reduce the burden of medical
visits for patients with sickle cell disease, improving
adherence to routine screening for SCR. In children, where
ultra-widefield imaging may provide superior peripheral
retinal visualization to dilated fundus examinations limited
by patient cooperation [31], retinal imaging is an especially
attractive screening approach. Given the high cost of cur-
rently commercially available imaging devices, cost-
effectiveness analyses and technological advancements
toward portable and less expensive imaging options will be
critical to realizing the global public health potential of
artificial intelligence for screening purposes.

Equally important to the potential benefits of artificial
intelligence for reducing the dependence on in-person
retinal specialist visits for SCR screening are the oppor-
tunities for artificial intelligence to help inform clinical
practice in the care of patients with SCR. Global migra-
tion patterns are changing the population distribution of
SCR, such that ophthalmic providers with limited prior
exposure to SCR may find automated imaging inter-
pretation algorithms to be a particularly useful aid for
enhancing recognition of clinically relevant vascular
changes. In addition, the currently used Goldberg and
Penman sickle cell classification systems were developed
through astute clinical observations and based on fundus
findings and non-widefield FA from relatively small
subsets of patients decades ago [2, 37]. While expert
clinicians have the ability to make broad inferences based
on small data, artificial intelligence-based approaches
have distinct advantages when learning from large
amounts of data [84]. By harnessing the power of modern
computational methods and retinal imaging techniques, it
may be possible to develop more quantitative and nuanced
staging systems for SCR, which can be potentially com-
bined with additional systemic clinical data to assess
personalized risks to individual patients of future vision
loss from PSR. Due to frequent asymptomatic auto-
infarction of sea fan neovascularization [85], criteria for
timing and methodology of treatment for PSR are still
controversial, guided by a single randomized trial of
scatter photocoagulation from three decades ago [86].
Artificial intelligence may improve our ability to study
clinical and imaging data to identify best-practice patterns
for managing SCR.

One important prerequisite for the development of
robust artificial intelligence, and especially deep learning,
methods for classification of SCR is to have adequately
large datasets that are well-labelled with a reliable gold
standard [84]. Current clinical practice patterns are highly
variable with respect to the frequency and types of ima-
ging obtained as part of routine screening or follow-up of
SCR [8]. Our hope is that greater awareness of the

diagnostic and prognostic utility of multimodal imaging in
SCR, and also of the opportunities for using deep learning
to process large numbers of images collected across the
world to make new discoveries, will lead to increased
imaging of as well as research into artificial intelligence-
assisted analysis of images and clinical data from patients
with sickle cell disease.
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