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Abstract
Objectives To present and validate a deep ensemble algorithm to detect diabetic retinopathy (DR) and diabetic macular
oedema (DMO) using retinal fundus images.
Methods A total of 8739 retinal fundus images were collected from a retrospective cohort of 3285 patients. For detecting
DR and DMO, a multiple improved Inception-v4 ensembling approach was developed. We measured the algorithm’s
performance and made a comparison with that of human experts on our primary dataset, while its generalization was
assessed on the publicly available Messidor-2 dataset. Also, we investigated systematically the impact of the size and
number of input images used in training on model’s performance, respectively. Further, the time budget of training/inference
versus model performance was analyzed.
Results On our primary test dataset, the model achieved an 0.992 (95% CI, 0.989–0.995) AUC corresponding to 0.925 (95%
CI, 0.916-0.936) sensitivity and 0.961 (95% CI, 0.950–0.972) specificity for referable DR, while the sensitivity and
specificity for ophthalmologists ranged from 0.845 to 0.936, and from 0.912 to 0.971, respectively. For referable DMO, our
model generated an AUC of 0.994 (95% CI, 0.992–0.996) with a 0.930 (95% CI, 0.919–0.941) sensitivity and 0.971 (95%
CI, 0.965–0.978) specificity, whereas ophthalmologists obtained sensitivities ranging between 0.852 and 0.946, and spe-
cificities ranging between 0.926 and 0.985.
Conclusion This study showed that the deep ensemble model exhibited excellent performance in detecting DR and DMO,
and had good robustness and generalization, which could potentially help support and expand DR/DMO screening
programs.

Introduction

Retinal imaging had long been the most widely accepted
method for screening of DR and DMO [1–4]. Nevertheless,
the evaluation of the severity of retinopathy related to a
person with diabetes was currently highly dependent on
manual interpretation using retinal fundus images, which
faced a great challenge [5–7]. As such, an automatic image
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grading system played a critical role in early diagnosis and
evaluation of these vision-threatening diseases.

Recent studies [8–17] have demonstrated highly accurate
deep learning algorithms in various medical image detection
tasks, such as DMO [9], possible glaucoma [10–12], and
age-related macular degeneration [13, 14]. Especially for
DR, multiple works [15–17] have shown that deep learning
algorithms could be leveraged to generate expert-level
diagnoses for retinal fundus image grading. However, these
approaches achieved good performance mostly at the
expensive of increasement in time complexity. Due to
the same input image size in these independent models, the
robustness of their classification was relatively poor. In
addition, for an automatic system to be clinically viable, it
should be able to flexibly category retinal fundus images in
light of clinically adopted severity scales, like international
clinical diabetic retinopathy (ICDR) [18] and diabetic
macular oedema disease scales [19].

To this end, we explored an ensemble approach of five
classification model instances based on the improved
Inception-v4 network to boost the performance and
robustness in detecting DR and DMO, and evaluated its
excellent performance in our primary dataset as well as the
secondary dataset (publicly available Messidor-2 dataset).
Further, we investigated systematically how the size and
number of input images used in training affected model’s
performance, respectively. In addition, we also analyzed the
issue of the time budget of training/inference versus model
performance.

Methods

Datasets

For algorithm development, 8739 retinal fundus images of
3285 patients in all centered on fovea and optic disc were
retrospectively obtained from shanghai first people’s hos-
pital. This study was carried out in accordance with the
tenets of the Declaration of Helsinki as revised in 2013, and
approved by local ethics review and institutional review
board. As a result of the retrospective and anonymized
nature of this study, written consent was waived by the
institutional review board. In addition, another secondary
publicly available Messidor-2 dataset was also used for test,
which had been adopted by other groups to benchmark
performance of automatic detection algorithms for DR or
DMO [20, 21].

Retinal image grading and annotation

The six graders for the development dataset were board-
certified ophthalmologists who were well educated and

specialized in this field with long practicing years. They
reviewed and graded each of the collected retinal images
(image-level labeling) independently with respect to both
DR and DMO. The training and certification process for all
graders mainly included image quality examination and
DR/DMO severity gradeability. For image quality, all gra-
ders were asked to examine each image on the basis of the
image quality factors, which contained focus, illumination,
image field definition, and artifacts. The specific image
quality factors included whether the focus was good enough
for grading smaller retinal lesions, whether the image was
too dark/light or there existed dark or washed-out regions
interfering with detailed grading, whether the primary field
contained the entire optic nerve head and macular, and
whether the image was sufficiently free of artifacts to ensure
adequate grading. Subsequently, they were required to
select the correct classification for each image quality,
including gradable (like excellent, good, adequate, and
insufficient for full interpretation), and ungradable. Excel-
lent represented no problems with any image quality factors
and all retinopathy lesions were gradable. Good described
problems with 1-2 image quality factors, but all retinopathy
lesions were gradable. Adequate denoted problems with 3-4
image quality factors, yet all retinopathy lesions were
gradable. Insufficient for full interpretation was defined as
the fact that one or more retinopathy lesions could not be
graded while section of the image was gradable. For
instance, neovascularization noted so likely proliferative
diabetic retinopathy (PDR) but obscured view of the
macular, thus DMO could not be graded. With respect to
gradable images, graders were further asked to grade them
according to ICDR [19] and diabetic macular oedema dis-
ease severity scales [20, 22], which was denoted as FDR
and FDMO, respectively. If any of the image was only
partially gradable, a DR/DMO grade was selected according
to the gradable section. For grading quality assurance, we
calculated inter-grader reliability of the panel for each gra-
der using pairwise comparisons by taking the amount of
times a grader was in agreement with another grader over
the total number of pairwise comparisons, while about 12%
of the development dataset were overread to determine
intra-grader reliability. All graders were required to grade a
test set consisting of 20 fundus images before starting for-
mal grading so that their proficiency in reading DR/DMO
fundus images could be guaranteed, while were monitored
for inter-grader and intra-grader consistency. The majority
decision of their labeling was served as a consensus refer-
ence standard or the ground truth.

In total, 8739 retinal fundus images from a retrospective
cohort of 3285 patients were pre-selected in our study. The
criterion for exclusion were (1) poor image quality, such as
lack of focus, bad illumination, image field without con-
taining the entire optic nerve head and macular, and severe
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artifacts; (2) existence of abnormalities other than DR and
DMO. Eventually, 31 poor quality images (10 images with
the lack of focus, 11 images with bad illumination, 2 images
without containing the entire optic nerve head and macular,
and 8 images with severe artifacts) from 12 participants and
792 abnormality images other than DR and DMO from 307
participants were excluded, while the remaining 7916 ret-
inal images from 2966 participants were included in the
current study as our primary dataset, as shown in Supple-
mentary Fig. 1. The image data was divided into three sets
at the patient level: a primary training set, a primary vali-
dation set, and a primary test set. The patients in the three
sets were different and exclusive to each of the other sets.
FDR and FDMO were further categorized into non-
referable DR vs. Referable DR (NRDR/RDR) [15–17, 23]
and non-referable DMO vs. referable DMO (NRDMO/
RDMO) [19], respectively.

Image preprocessing

In order to increase heterogeneity of fundus images and
prevent over-fitting, we implemented data augmentation
strategies [24]. Specifically, we cropped each image to a
square shape including the most tightly contained circular
region of fundus to remove most of the black borders. Then,
we applied the left-right, up-down flipping and rotation
operations with angles of 90, 180, and 270 degrees on each
image of our primary dataset (including training and vali-
dation dataset).

Development of multi-Inception-v4 ensembling
approach

We adopted an ensemble of five classification model
instances (as illustrated in the rightmost part of Fig. 1),
each of which was on the basis of improved Inception-v4
architecture. The improved Inception-v4 network mainly
consisted of stem, inception and reduction modules, as

shown in the leftmost part of Fig. 1. In the improved
Inception-v4 network, the Inception module stacking a
pooling layer and convolution layers together utilized
bottleneck layer with a 1 ×1 convolutions to help in
reduction of computation requirements. In order to
guarantee randomness in the training of each model, we
fed retinal fundus images in randomized order and dif-
ferent random augmentations for training each of models
in the ensemble model, while employed dropout reg-
ularization method. In this way, each model could learn
different discriminative features even when trained with
the same training data and ImageNet initialization. To
accelerate the training of the single improved Inception-
v4 in the ensemble model, we further fine-tuned them
using pre-trained weights from ImageNet, and replaced
the full connected layer of the improved Inception-v4
architecture with two consecutive full connected layers.
The former one used a dropout regularization, while the
latter one utilized a vanilla full connected layer with
softmax nonlinearity to define DR or DMO grading
probabilities. During training, we attempted to refine the
network via unfreezing frozen layers and updating the
corresponding pretrained weights on our primary dataset
using a back propagation method. The ensemble model
class probabilities were calculated by the arithmetic mean
of class probabilities estimated by the constituent
networks.

Statistical analysis

For binary classification tasks, we used the receiver oper-
ating characteristic (ROC) curve as well as accuracy, sen-
sitivity, and specificity. Also, the area under the ROC curve
(AUC) was calculated. In the case of multi-class classifi-
cation tasks, we computed the area under macro average of
ROC (macro-AUC) for each class in one-vs-all fashion,
accuracy, and quadratic-weighted kappa score. With respect
to each metric in the binary classification tasks, we used

Fig. 1 The architecture of the
improved Inception-v4 (leftmost
side) and the ensemble of five
classification model (rightmost
side).
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Clopper–Pearson method [25] to calculate the exact 95%
confidence interval (CI). All statistical analyses were
implemented using Python 3.6.3.

Results

Hyper-parameter selection

The hyper-parameters were standardized on each network
of our ensemble network. The weights of the network were
initially loaded with pre-trained weights from ImageNet
except for the classification layer. We fine-tuned the net-
work parameters using stochastic gradient descent (SGD)
algorithm on different input image sizes, and employed the
categorical cross entropy loss function, an initial learning
rate of 0.001, a dropout rate of 0.5, a momentum of 0.9, a
batch size of 64, and weight decay factor of 0.0005. The
network was then trained for total of 30 epochs, updating all
weights. Our framework was implemented in Python based
on Keras with Tensorflow backend, using NVIDIA
GTX1080 GPU.

The performance of our model on the primary test
dataset

Our algorithm was optimized for the 5-point ICDR grading
and the 4-stage diabetic macular oedema grading using the
largest 1488 × 1488 pixels input image size, respectively.

On the primary test dataset, our model achieved an 0.972
(95% CI, 0.966–0.978) accuracy and 0.992 (95% CI,
0.989–0.995) AUC for the NRDR/RDR binary classifica-
tion task. This corresponded to a sensitivity of 0.925 (95%
CI, 0.916–0.936) and specificity of 0.961 (95% CI,
0.950–0.972). In the NRDMO/RDMO classification, our
model yielded a high accuracy of 0.974 (95% CI,
0.967–0.981) with a 0.930 (95% CI, 0.919–0.941) sensi-
tivity and 0.971 (95% CI, 0.965–0.978) specificity, while
the AUC value reached up to 0.994 (95% CI, 0.992–0.996).
Further, we compared the performance in the NRDR/RDR
and NRDMO/RDMO classification between our model and
ophthalmologists, as shown in Fig. 2 and Supplementary
Table 1. It could be observed that our model could make
automated grading for DR and DMO from retinal fundus
images with performance equal to or exceeding
ophthalmologists.

Model generalizes to a secondary test dataset

We also applied the model to a secondary test dataset
(publicly available Messidor-2 dataset), and performed
comparison of classification results for detecting DR and
DMO with reported state-of-the-art methods [26–28] to
assess its generalizability, as summarized in Table 1. As we
can see, the highest AUC values (0.977 (95% CI,
0.974–0.981) for DR, and 0.948 (95% CI, 0.943–0.951) for
DMO) for detecting DR and DMO were achieved by our
model. In the NRDR/RDR classification, the sensitivity of

Fig. 2 Performance of the
model and ophthalmologists
for classifying NRDR/RDR
and NRDMO/RDMO on our
primary test dataset. a NRDR/
RDR (b) NRDMO/RDMO.

Table 1 Comparison of
classification results for
detecting DR and DMO with
reported state-of-the-art
methods.

Author Retinopathy AUC (95% CI) Sen (95% CI) Spe (95% CI)

Sahlsten et al. [26] DR 0.967 (0.955–0.976) 0.859 (0.826–0.888) 0.971 (0.956–0.982)

DMO 0.946 (0.932–0.958) 0.597 (0.530–0.662) 0.992 (0.984–0.996)

Abbas et al. [27] DR 0.924 0.922 0.945

DMO N/A N/A N/A

Gonza ̒lez-Gonzalo et al.
[28]

DR 0.975 0.920 0.921

DMO 0.927 0.858 0.860

Ours DR 0.977 (0.974–0.981) 0.923 (0.917–0.925) 0.947 (0.937–0.954)

DMO 0.948 (0.943–0.951) 0.886 (0.881–0.892) 0.908 (0.898–0.912)

DR diabetic retinopathy, DMO diabetic macular oedema, AUC Area Under Curve, CI confidence interval,
Sen Sensitivity, Spe Specificity.
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our model was on par with 0.922 sensitivity reported by
Abbas et al. [27], and outperformed the results presented in
Sahlsten et al. [26] and Gonzalez-Gonzalo et al. [28]. For
the identification of DMO task, our model achieved the best
results in sensitivity, and its specificity was better than the
result (0.860) proposed by Gonzalez-Gonzalo et al. [28],
whereas underperforming in comparison to 0.992 specificity
reported by sahlsten et al. [26].

The effect of the input image size on model
performance

Fig. 3 displayed ROC curves for NRDR versus RDR, and
NRDMO versus RDMO on our primary test dataset and the
secondary publicly available Messidor-2 dataset, respec-
tively. From these curves we could see that the dependence
of the model performance on the input image size for our
primary test dataset was obvious, while not clear for
Messidor-2 dataset.

In the multiclass classification tasks on our primary test
dataset, our model obtained the best results when the per-
formance was measured on the basis of macro-AUC,
accuracy and quadratic-weighted kappa for FDR and

FDMO, using 1488 × 1488 resolution input retinal fundus
images, as described in Supplementary Table 2.

More data leads to better model performance

We conducted sub-sampling experiments to measure the
effect of data size on model performance on our primary
dataset, in which new models were trained by means of
titrated fractions of the dataset [29]. The results showed that
as training dataset increased, the performance of model kept
on increasing (view Supplementary Fig. 2), which meant
that the accuracy of model prediction will likely continue to
improve if the model was trained with more data than that in
this study.

The time budget of training/inference vs. model
performance

To investigate the time budget of training/inference versus
model performance, we did additional experiments using
the ensemble of five deep learning models with input 299 ×
299 sized retinal fundus images against the single image
sized model, as listed in Table 2. These experiment results

Fig. 3 The impact of the input
image size on model
performance. a NRDR/RDR
classification on our primary test
set. b NRDMO/RDMO
classification on our primary test
set. c NRDR/RDR classification
on the second publicly available
Messidor-2 set. d NRDMO/
RDMO classification on the
second publicly available
Messidor-2 set.

Table 2 Performance comparison in AUC between the ensemble model and the single image sized model.

Dataset Classification The ensemble model with 299 × 299 sized image The single model with 1488 × 1488 sized image

Primary test dataset NRDR/RDR 0.974 (95% CI, 0.971–0.977) 0.971 (95% CI, 0.968–0.974)

NRDMO/RDMO 0.976 (95% CI, 0.973–0.979) 0.972 (95% CI, 0.969–0.975)

Messidor-2 dataset NRDR/RDR 0.948 (95% CI, 0.945–0.952) 0.951 (95% CI, 0.947–0.954)

NRDMO/RDMO 0.917 (95% CI, 0.914–0.921) 0.915 (95% CI, 0.912–0.918)

CI confidence interval, AUC Area Under Curve.
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demonstrated improved performance compared to a single
model with the same input image size or using larger input
image size under certain circumstances. Additionally, it
took approximate 79 min to train the ensemble of five deep
learning models with 299 × 299 sized retinal fundus images,
while about 307 min for training a single model with
1488 × 1488 sized retinal fundus images.

Discussion

In this study, we explored the use of an ensemble of five
classification model instances based on the improved
Inception-v4 architecture to detect DR and DMO, and eval-
uated its performance on our primary dataset and secondary
dataset (publicly available Messidor-2 dataset). The results
demonstrated that our deep learning model could identify DR
and DMO with performance equal to or exceeding ophthal-
mologists, obtained the state-of-the-art results in the NRDR/
RDR and NRDMO/RDMO classification, and had good
generalization. In addition, a likely increase in performance
when training contained additional data or used high resolu-
tion and quality images was also validated, respectively. In
contrast to a single model with the same input image size or
using larger input image size in some cases, our ensemble
model had overall improved performance, with the huge
savings in the time budget of training/inference. It could
potentially enable automated DR or DMO screening pro-
grams using fundus images worldwide, and was both scien-
tifically interesting and clinically impactful.

In the course of image grading, we took the majority
decision from a group of six board-certified ophthalmolo-
gists who were well educated and specialized in this field
with long practicing years to serve as a consensus reference
standard or the ground truth. We used a small number of
images (including different severity level of DR and DMO)
with the consensus reference grades as a test set. Con-
sidering that many ophthalmologists had never been trained
in grading images in clinical practice, over and beyond just
their long work history, we also calculated the quadratic-
weighted kappa score to examine the agreement between
ophthalmologists without additional specific training and
the reference standard, so that their ability to grade in the
test set could be evaluated. This metric typically varies from
0 (random agreement between raters) to 1 (complete
agreement between raters). According to the guidelines
proposed by Landis and Koch [30], the kappa values ran-
ging from 0 to 0.2, 0.21 to 0.40, 0.41 to 0.60, and 0.61 to
0.80 represented slight agreement, fair agreement, moderate
agreement and substantial agreement, respectively. A value
above 0.80 was considered to be almost perfect agreement.
Only ophthalmologists with quadratic-weighted kappa
scores over 0.80 could act as graders in our study.

Automatic DR evaluation had been previously made by
other recent studies [31–34]. Despite differences in the
dataset compared to these studies, our study extended this
body of work by the use of multiple improved Inception-
v4 ensembling to generate an algorithm with high sensi-
tivity and specificity. Although our model exhibited
slightly lower performance on the secondary dataset than
that on the primary dataset, the better performance of our
model was still supported in comparison with the present
reported advanced methods [26–28, 34]. The best results
(0.977 (95% CI, 0.974–0.981), 0.923 (95% CI,
0.917–0.925) for NRDR/RDR, and 0.948 (95% CI,
0.943–0.951), 0.886 (95% CI, 0.881–0.892) for NRDMO/
RDMO) in AUC and sensitivity were still achieved when
compared to the recent studies [26–28]. These results
reflected that there existed inherent differences between
the two datasets, but excellent performance of our model
was still demonstrated on both datasets. Considering the
results of the sub-sampling experiments, it was possible
that the prediction accuracy of our model could continue
to improve with larger dataset sizes.

As illustrated in Fig. 3, the performance of the model in
AUC generally increased with the input image size on our
primary dataset and the secondary dataset. This could be
attributed to the fact that the number of information and
features in the images increased with the image size. For our
primary dataset, the performance of the model could con-
tinue to improve with the input image resolution increasing.
Yet, the reliance of the model performance on the input
image size was not obvious for the Messidor-2 dataset. This
occurred mainly due to the fact that images on the
Messidor-2 dataset had various resolutions, which were
resized into the sizes depicted in Fig. 3c, d. Other attributing
aspects possibly included the fact that the imaging equip-
ment used on the Messidor-2 dataset [35] were different
from those on our primary dataset.

The results on our primary dataset using an ensemble of
five classification model instances suggested improved
performance, while the time budget of training/inference
was dramatically saved. It was noticeable that identical
features were not learned by deep learning models trained
on a small set of retinal images. Even though we identically
initialized deep neural networks to weights pretrained on the
ImageNet, there still existed variation in the predictive
results between them. Moreover, we could conclude from
our ensemble model experiment that the robustness of the
classification was improved through the ensemble approach.
Apart from the NRDR/RDR classification task, we also
verified multi-class classification performance of the model.
The more granular 5-point grading output would be helpful
in particular for DR screening programs where patient
treatment varied at each level of severity, and would also be
more robustness to guideline changes.
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Our algorithm is designed to detect DR and DMO and
have not been trained to identify other diseases that might
be present. Prior to training our model, we performed image
grading and excluded ungradable images, and abnormality
images apart from DR and DMO so that high quality retinal
images could be obtained. In the real clinical settings, the
ability to automatically detect an ungradable image is also
an important component using the algorithm. In the future
work, we will incorporate image quality algorithm into our
model to determine whether the exam quality was sufficient
for our model to make a diagnostic decision. In the future
clinical practice, we will try to deploy the well trained and
optimized model on a server, physicians capture several
fundus images including optic disc and macula centered for
each eye using the camera, and feed them into our model
over the network. After analyzing lesions characteristic for
DR and DMO by our model, such as hemorrhages, exudates
and neovascularization, several types of outputs (including
DR/DMO severity, referable DR, and referral DMO) were
provided. These results will be required to make a second
confirmation by the attending physicians. As such, our
algorithm could be regarded as a two-way confirmation
system. In this case, the algorithm could provide an initial
diagnosis based on retinal fundus images, which could then
be confirmed by the attending physicians, drastically
minimizing both human and machine error.

This study has several limitations. First, we used the
majority decision of six experienced and qualified ophthal-
mologists as a consensus reference standard or the ground-
truth during retinal image grading, which could unavoidably
introduce grader biases. Future studies should validate the
effect of different image grading references (e.g., a tiered
grading) on the model performance. Second, human graders
were required to pre-screen the collected retinal images for
quality and other diseases. The resulting high quality retinal
images constituted the development dataset, which was used
for our model training and intra-dataset validation. The
established dataset was not necessarily a good representation
of data from screening programs in clinical practice. Thereby,
the built dataset was not sufficient to reflect the algorithm’s
performance in broader clinical use. In the future, we will use
more and larger datasets from real screening programs to
validate our algorithm’s capability to automatically detect DR
and DMO without the need for human grader’s pre-screening
for quality and other diseases.

Conclusions

This study demonstrated that multiple improved Inception-v4
ensembling could be leveraged to detect DR and DMO using
retinal fundus images, at a performance level matching or
exceeding those of ophthalmologists on our primary dataset.

Meanwhile, we validated its excellent generalization perfor-
mance on the publicly available Messidor-2 dataset. In addi-
tion, the results also indicated a likely improvement in
performance when training involved additional data or used
high resolution and quality images. Further, overall improved
performance of our ensemble algorithm was demonstrated by
comparing with a single model with the same input image
size or using larger input image size under certain circum-
stances, yet with the huge savings in the time budget of
training/inference. As such, it raised the possibility of clinical
use as an automated screening tool in primary screening
situations with low accessibility to specialists.

Summary

What was known before

● For an automatic system to be clinically viable, it should
be able to flexibly category retinal fundus images in
light of clinically adopted severity scales, like interna-
tional clinical diabetic retinopathy (ICDR) and diabetic
macular oedema disease scales.

● Although deep learning algorithms could be leveraged
to generate expert-level diagnoses for retinal fundus
image grading, these approaches achieved good perfor-
mance mostly at the expensive of increasement in time
complexity, which was more obvious specifically for
larger input image size.

● Due to the same input image size in these independent
models, the robustness of their classification was
relatively poor.

What this study adds

● This research developed an ensemble approach of five
classification model instances based on the improved
Inception-v4 network to boost the performance and
robustness in detecting DR and DME according to the 5-
point ICDR grading and the 4-grade diabetic macular
oedema scales using retinal fundus images.

● This study analyzed the issue of the time budget of
training/inference versus algorithm’s performance This
research evaluated algorithm’s performance in our
primary dataset as well as the secondary dataset (publicly
Messidor-2 dataset), while investigated systematically
how the size and number of input images used in training
affected model’s performance, respectively.
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