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Abstract
Background and objective The objective of this study was to systematically review and meta-analyze the diagnostic
accuracy of current machine learning classifiers for age-related macular degeneration (AMD). Artificial intelligence diag-
nostic algorithms can automatically detect and diagnose AMD through training data from large sets of fundus or OCT
images. The use of AI algorithms is a powerful tool, and it is a method of obtaining a cost-effective, simple, and fast
diagnosis of AMD.
Methods MEDLINE, EMBASE, CINAHL, and ProQuest Dissertations and Theses were searched systematically and
thoroughly. Conferences held through Association for Research in Vision and Ophthalmology, American Academy of
Ophthalmology, and Canadian Society of Ophthalmology were searched. Studies were screened using Covidence software
and data on sensitivity, specificity and area under curve were extracted from the included studies. STATA 15.0 was used to
conduct the meta-analysis.
Results Our search strategy identified 307 records from online databases and 174 records from gray literature. Total of 13
records, 64,798 subjects (and 612,429 images), were used for the quantitative analysis. The pooled estimate for sensitivity
was 0.918 [95% CI: 0.678, 0.98] and specificity was 0.888 [95% CI: 0.578, 0.98] for AMD screening using machine
learning classifiers. The relative odds of a positive screen test in AMD cases were 89.74 [95% CI: 3.05–2641.59] times more
likely than a negative screen test in non-AMD cases. The positive likelihood ratio was 8.22 [95% CI: 1.52–44.48] and the
negative likelihood ratio was 0.09 [95% CI: 0.02–0.52].
Conclusion The included studies show promising results for the diagnostic accuracy of the machine learning classifiers for
AMD and its implementation in clinical settings.

Introduction

Background

Age-related macular degeneration (AMD) is an eye condi-
tion that causes irreversible blindness in adults worldwide.
AMD is a neurodegenerative disease that preferentially
affects the macula—the central part of the retina [1].
Patients with AMD may experience blurred or distorted
vision, and their vision deteriorates over time. A hallmark of
clinically identifying AMD is yellowish drusen seen
underneath the retinal pigment epithelium [2, 3]. In addi-
tion, the presence or absence of choroidal neovasculariza-
tion is a strong indicator for vascular permeability and
fragility. AMD is often further clinically classified into
exudative (wet) or non-exudative (dry) AMD after assessing
the stage of the disease, and then further into classes [2, 4].
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It is projected that there will be a massive increase in the
number of AMD cases in aging populations [5]. On a global
perspective, AMD currently has a global prevalence of
~170 million cases. The cases of AMD and the Global
Burden of Disease in elderly populations will rise drama-
tically with the world’s aging population [2, 6]. The number
of people expected to be above the age of 60 by 2050 is two
billion. By 2040, it is expected for the global prevalence of
AMD to increase to 288 million cases [5].

Diagnostic techniques and treatment of AMD using
artificial intelligence (AI) will become increasingly impor-
tant as multi-morbidity and patient demands rise. Precise
diagnosis and staging of AMD include obtaining imaging
techniques of the retina by fundus imaging or optical
coherence tomography (OCT) [7–9]. Ophthalmologists rely
on these images to confirm diagnosis and provide an indi-
vidualized treatment plan for the patient. However, the
current process for diagnosis is expensive and time con-
suming [5]. The increase of AMD cases due to the aging
population will be a large contributor to potential profes-
sional burnout in the field of ophthalmology [10]. Oph-
thalmologists are continually facing high pressures at work
influenced by high demands of patient care and overtime
work [11, 12]. Thus, novel methods must be implemented
in the workplace to further assist physicians in the diagnosis
and treatment of diseases.

AI has been widely used in the medical field to aid
healthcare workers and it is one of the most influential
technological innovations [13]. The purpose of AI is to
simulate a human’s mental process through computers and
learn to solve problems similarly to the human brain. Spe-
cifically, machine learning (ML) has transformed methods
for diagnosing AMD and other eye diseases such as diabetic
retinopathy, glaucoma, and cataracts in the past decade [14–
16]. Through ML, one can train and teach an algorithm by
using vast amounts of data to perform a specific task.
Ultimately, these AI diagnostic technologies can auto-
matically detect and diagnose AMD through training and
testing data from large sets of fundus or OCT images. The
use of AI technology can be a powerful tool, and it is a
method of obtaining a cost-effective, simple, and fast
diagnosis of AMD [13]. Common ML classifiers include
the use of support vector machines (SVM) and convolu-
tional neural networks (CNN) [13–16].

Aims of the study

The recent research and applications of AI in ophthalmol-
ogy is growing and it is a quickly expanding field. There
has been vast literature on ML diagnostic algorithms used
for eye diseases. In recent research, there are systematic
reviews published on the applications of AI for diagnosing
glaucoma and for screening diabetic retinopathy [15, 17].

The objective of this study is to systematically review and
meta-analyze the diagnostic accuracy of ML classifiers for
all types of AMD among all eyes available in datasets to
assess their accuracy and reliability to be implemented in
clinical settings.

Methods

The protocol for this systematic review was registered in
PROSPERO (CRD42020219313) and this review was
conducted according to the PRISMA statement recom-
mendations [18].

Search strategy

A systematic and thorough database search included
MEDLINE/PubMed, EMBASE, CINAHL and ProQuest
Dissertations and Theses to find articles on diagnostic AI
technologies used in the field of ophthalmology. The search
strategy and keywords for each database is detailed in
Appendix A and the searches were conducted until Sep-
tember 12, 2020. The search was limited to English and
human studies only. We did not place any limits on pub-
lication date and study location to maximize our eligible
studies. OVID AutoAlerts for MEDLINE and EMBASE
databases were used for weekly updates for any new pub-
lished literature that the search strategy encompassed.

In addition, gray literature searches were conducted in
order to obtain a comprehensive search. Conferences held
through the American Academy of Ophthalmology, the
Association for Research in Vision and Ophthalmology,
and the Canadian Society of Ophthalmology were searched
in all available years. We searched through the conferences
until September 12, 2020. Keywords that were used for the
gray literature search consisted of “AI” and “diagnosis”.
The search strategy and search results for each conference is
displayed in Appendix B. Forward and backward citation
tracing were carried out on studies that were included after
the full-text screening. Refer to the Preferred Reporting
Items for Systematic Reviews and Meta-Analysis
(PRISMA) flow diagram for more details [18].

Inclusion and exclusion criteria

This review included studies that used AI algorithms to
assess the diagnosis of AMD on human eyes. The AI can be
in the form of ML, neural networks, or deep learning to
assist in the automized diagnosis of AMD. The AI must be
an advanced AI—meaning that it involved a training or
learning process. We excluded studies that looked at only
computers conducting an automated process, without the
mention of AI and a learning process. We included studies
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that used AI algorithm to make the first diagnosis of any
AMD type and stage from healthy eyes, or the algorithm
was able to differentiate between AMD and non-AMD eyes.
We excluded studies that further classified already-
diagnosed AMD patients into later stages.

In addition, studies that used any imaging techniques
were included, such as fundus imaging and OCT. We
included any studies that also showed a performance indi-
cator for the diagnostic ability of the AI technology—this
included any reports of sensitivity, specificity, accuracy, or
area under curve (AUC) values. The studies must include a
reference standard by trained clinicians or ophthalmologists
to validate and confirm the AI’s diagnosis. Included pub-
lications must be primary studies, and there were no
restrictions on study design; ophthalmology news articles,
opinion pieces, and case reports were excluded. Only stu-
dies in English were included, and there was no restriction
placed on study location or publication date.

Screening

Database search results were all imported into Covidence
systematic review software (Veritas Health Innovation,
Melbourne, Australia). In Covidence, all duplicates were
removed, and three levels of systematic screening were
conducted by two independent reviewers (R.C. & J.C.). If
consensus could not be reached, all disagreements were
resolved by discussion and consensus of the two reviewers.
The first level of screening was a broad title screening. If the
study title did not mention the diagnosis of any eye disease,
the study was excluded, and the remaining studies would
move on to the next level of screening. The second level of
screening was an abstract screening. If the study did not
look at investigating an advanced AI with a training process
for the diagnosis of any eye disease, the study was exclu-
ded. The final level of screening examined the full text to
selectively choose relevant studies for the diagnosis of any
type and stage of AMD including both dry and wet AMD;
remaining included studies moved on to the risk of bias
assessment.

Cohen’s kappa (κ) statistic was calculated after each
level of screening before conflicts were resolved—the
scores were 0.80, 0.62, and 0.82 respectively as shown in
Appendix C.

Risk of bias assessment and data extraction

A Quality Assessment of Diagnostic Accuracy Studies
(QUADAS-2) tool was used as a risk of bias assessment to
assess the level of bias and concerns of applicability of each
study after the full text screening [19]. The risk of bias
assessment was conducted by two reviewers (R.C. & J.C.).
QUADAS-2 considered four domains: patient selection,

index tests, reference standard, and flow and timing. All
studies were included, and any conflicts were resolved by
discussion.

Study data were extracted by two reviewers (R.C. & J.
C.). The following data were extracted from each study:
author, year of publication, study location, study design,
ML classifier, type of imaging, number of study partici-
pants, number of images used, number of images labelled
normal and non-normal, training and testing process, image
database and datasets, AMD diagnosis confirmation, AUC,
sensitivity, specificity, and accuracy. If the study used
multiple ML classifiers, all data from each classifier were
extracted. The model of the imaging camera was recorded if
provided in the study. The data extraction table for meta-
analysis is outlined in Appendix D.

Statistical analysis

STATA 15.0 (STATA Corp, College Station, Texas, U.S.A.)
was used to synthesize and analyze the data for the diag-
nostic accuracy of ML for AMD. The main outcome of
interest was the sensitivity, specificity, and AUC of each ML
classifier used in the studies. Hierarchical logistic regression
was used to determine the pooled estimates of sensitivity and
specificity of diagnostic accuracy.

In addition, summaries of the fitted Hierarchical Sum-
mary Receiver Operating Characteristic (HSROC) model,
the summary receiver operating characteristics (SROC)
curve, and the 95% confidence interval were plotted gra-
phically. The positive/negative likelihood ratios (LR+/LR
−) were calculated using bivariate models to generate
estimates of the likelihood of a positive or negative test.
From this result, the diagnostic odds ratio (DOR) was
calculated to determine the relative diagnostic effective-
ness. DOR is the ratio of the odds of a positive screen test
in an AMD case relative to the odds of a negative screen
test in a non-AMD case.

Forest plots showing the within-study estimates and
confidence intervals for sensitivity and specificity were
plotted separately. For each study, the sensitivity and spe-
cificity were aggregated using the fixed or random-effect
model based on the absence or presence of heterogeneity to
estimate the summary effect.

To test heterogeneity, I2 statistics, Z-value, and χ2

statistics were computed. An I2 value of <50% implies
low heterogeneity, and in these cases, a fixed-effect model
was computed. An I2 statistics of 50% or more represents
high heterogeneity, and in these cases a random-effect
model was calculated. In addition, a high Z-value, a low
p value (<0.01) and a large χ2 value implies significant
heterogeneity and therefore, a random-effect model
was computed. Forest plots were also generated for
each case.
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Results

Search results and study characteristics

Details on the inclusion process is found in Fig. 1, the
PRISMA flow chart [18]. The search strategy on all data-
bases identified 307 articles, and the gray literature search
found 174 articles. Fifty-eight of the articles were dupli-
cates, leaving 423 articles for the title screening. After the
first level (title screening), 314 studies were excluded, and
109 studies were included. For the second level (abstract)
screening, 46 articles were excluded, and 63 studies were
included for the final level (full text) screening. Ultimately,
49 studies were excluded, and 14 studies met the inclusion
criteria and were included for the risk of bias assessment.
All 14 included studies were included for the qualitative
synthesis, but only 13 of those studies were included for the
meta-analysis [20–33].

The study characteristics table can be found in Table 1.
All included studies were observational studies,
which examined ML applications for the diagnosis of
AMD. Studies were conducted in North America
[20, 21, 25, 28, 29], Europe [22, 31], and Asia
[23, 24, 27, 30, 32, 33]. Most of the included studies used
OCT images for training and validation [22–33], while only
four studies used fundus images [20, 21, 30, 33]. Within the
OCT cohort, there was a varied use of ML classifiers; stu-
dies utilized CNN [23–25, 27, 31, 32], SVM [22, 28, 29],
linear configuration patterns (LCP) [32], AdaBoost [22],
random forests [22], and deep learning system (DLS) [30].
In most of the studies that used spectral domain OCT (SD-
OCT), retinal images were obtained using the Heidelberg
Spectralis from Heidelberg Engineering to feed the AI
process. In the fundus imaging cohort, CNNs were used in
the four studies [20, 21, 30, 33]. Many of the studies con-
tained both wet and dry AMD types in their study

PRISMA 2009 Flow Diagram
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population and four studies specified the AMD stage that
was investigated [20, 21, 26, 30].

Moreover, Burlina et al. (2017) [20] and Burlina et al.
(2019) [21] overlapped in datasets, but their ML training
and testing process technique were unique in each study.
Srinivasan et al. (2014) [29] and Wang et al. (2016) [33]
also used the same dataset, but Srinivasan et al. (2014) did
not have any quantitative data to extract that was pertinent
to this study. Most studies used either ophthalmologists,
retinal specialist, or clinical graders to confirm the patient’s
AMD diagnosis with the AI technology. Yoo et al. (2019)
[32] was the only included study that investigated both
OCT and fundus images for their diagnostic process.

Risk of bias assessment

Most studies had a low risk of bias for the domains of
patient selection (64%), index tests (71%), reference stan-
dard (64%), and flow and timing (100%). The risk of bias
assessment and concerns about applicability are summar-
ized in Appendix E. All studies were included.

Meta-analysis for the diagnostic accuracy of
machine learning classifiers

Figure 2 represents the SROC curve in which sensitivity
was plotted against the specificity. Each circle in the plot
represents a different study and circle size represents the
size of the study, that is, the total number of individuals in
each study. Figure 2 indicates that majority of included
studies are clustered near the top right corner of the plot.
Therefore, Fig. 2 shows high specificity and sensitivity of
various ML classifiers. The figure shown in Appendix F
indicates ML classifiers on an SROC curve. Based on
Appendix F, CNN and VGG-19 seems to have high sen-
sitivity, as well as specificity.

Figure 3 shows the hierarchical summary receiver oper-
ating characteristic (HSROC) curve where the circles indi-
cate the study estimates, the HSROC curve or the summary
curve, a summary operating point or the summary value for
sensitivity and specificity, and the 95% confidence region
for the summary operating point. The summary estimate for
sensitivity was 0.918 [95% CI: 0.678, 0.98] and specificity
was 0.888 [95% CI: 0.578, 0.98] for AMD screening using
an ML classifier (Fig. 4). The summary estimates indicate
that ML classifier correctly detects 91.8% of AMD cases
and correctly classifies 88.8% of those without AMD as
AMD-negative. The distribution of the studies in the plot
demonstrates the variability of both specificity and sensi-
tivity amongst studies. Five studies fall outside of the 95%
confidence interval of the summary estimate.

The positive likelihood ratio was 8.22 [95% CI:
1.52–44.48], while the negative likelihood ratio was 0.09

[95% CI: 0.02–0.52] (Appendix G). This shows that the
likelihood of a positive diagnosis in an AMD case is greater
than the likelihood of negative diagnosis in a non-AMD
case. The positive likelihood ratio is >1 and it represents
that the positive diagnosis is associated with AMD. Because
the negative likelihood ratio is <1, the ML classifier which
gave a negative diagnosis that is associated with the absence
of AMD. The effectiveness of the diagnostic accuracy of the
ML classifiers for AMD given by the DOR is 89.74 [95%
CI: 3.05–2641.59] (Appendix G). This demonstrates that

Fig. 2 Summary Receiver Operating Characteristic (SROC) plot.
SROC plots the sensitivity against the specificity of the ML classifiers,
with each circle representing a study and the size of each circle
representing the study size.

Fig. 3 Hierarchical Summary Receiver Operating Characteristic
(HSROC) plot. HSROC plot of studies assessing ML classifiers for
AMD, including the study estimates, summary point, HSROC curve,
and the 95% confidence region.
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the relative odds of a positive screen test in AMD cases are
89.74 times more likely than a negative screen test in a non-
AMD case. Thus, the ML classifier is discriminating
between the true negative and true positive images correctly
and accurately.

Discussion

A thorough systematic review and meta-analysis was con-
ducted of the published literature which resulted in
64,798 subjects and 612,429 images used for training and
validation from 13 full text articles. To the best of our
knowledge, this is the first review of its kind to summarize
the use of ML qualitatively and quantitatively for the
diagnosis of AMD.

ML classifiers are advantageous at detecting the true
positive and true negative cases for AMD as indicated by its
high sensitivity and specificity. With a very high DOR
estimate, it suggests that ML classifiers can discriminate
between AMD and non-AMD images. The results of the
diagnostic accuracy for ML classifiers show promising
results for the automated diagnosis of AMD—it

demonstrates the possibility that it can be used in clinical
practice. AI will assist in tele-ophthalmology practices,
especially in rural settings where patients do not have direct
access to ophthalmologists [34]. The advantage to using
ML classifiers in rural populations is the convenience that it
can provide patients in obtaining an early detection of
AMD, without the need of a clinician to confirm the diag-
nosis, and the reduction of patient or clinician travel costs.
In urban settings, the use of ML for diagnosis can reduce
patient load, wait times, and improve efficiency of oph-
thalmology clinics [35].

When considering the diagnostic accuracy of any tests, it
is important to recognize the trade-offs between specificity
and sensitivity. Sensitivity is the ability of the diagnostic
test to detect positive cases in those with the disease,
whereas specificity is the ability to detect negative cases in
those without the disease [36]. Ideally, both sensitivity and
specificity should be close to 1.0, though the sensitivity of
the test may be of greater importance because it captures the
false negatives. Although five studies fell outside of the
95% confidence interval of the summary estimate in the
HSROC plot, based on our results, ML classifiers correctly
detects 91.8% of AMD cases and correctly classifies 88.8%

Fig. 4 Forest plot for the pooled sensitivity and specificity estimates. Forest plot for the pooled sensitivity and specificity estimates for ML
classifiers for AMD using a random effects model.
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of those without AMD as AMD-negative. In a future meta-
analysis, it would be worthy to investigate the accuracy and
performance of AI algorithms to further classify AMD
types. Hwang et al. (2019) observed that their AI algorithm
sometimes misclassified active wet AMD as inactive wet
AMD when the subretinal fluid was shallow, and mis-
classified dry AMD as inactive wet AMD when the druse-
noid pigment epithelial detachment was especially large
[29]. Thus, it may be of interest to know which types of
AMD are most frequently mistaken for another classifica-
tion by AI algorithms.

Study limitations for any meta-analysis must be con-
sidered before making any inferences. The risk of bias
assessment using the QUADAS-2 tool resulted in majority
of the studies to have a low risk of bias [19]. However,
some of the included studies were retrieved from journals
with a high interest in computer science and AI, thus they
reported little clinically relevant information such as sen-
sitivity and specificity values. It is in good practice for
diagnostic accuracy studies to report not a singular accuracy
proportion, but to also report the sensitivity, specificity, true
positive, true negative, false positive, and false negative.
Burlina et al. (2019) did not report its specificity or sensi-
tivity value, but it was still included in the quantitative
analysis because its reported AUC value was used for the
SROC plot [21]. These values are important for future
related meta-analysis studies and it further informs the
readers the accuracy of the classifier.

In addition, meta-analysis of observational studies is
influenced by inherent biases [37]. The results of our study
could have been influenced by the race and age of the study
participants, the ophthalmologist’s number of years of
practice in the field, hospital location, imaging technique,
camera model, AMD type and stage, and field of expertize
within ophthalmology. Furthermore, there may be limita-
tions in the varying use of multiple ML classifiers used in
the OCT imaging cohort. Convoluted neural networks were
the most reported ML classifier used in our included OCT
studies. However, all included studies showed consistent
results regardless of the type of classifier used. In addition,
the clinical diagnosis and confirmation of AMD may be
subject to each ophthalmologist or retinal specialist and
study location. All studies should define the diagnosis of
AMD in the same manner, but this information was not
provided in all the studies.

In conclusion, the diagnostic accuracy of ML classifiers
for AMD is very high and it shows very promising diag-
nostic test performance. The prospects for the use of ML for
diagnosis of AMD in the clinical setting is possible,
although to what extent our findings can be transferred to a
real clinic practice still needs to be established. The
advances to have an AI diagnosis system that is completely
free of human involvement and supervision seems to still be

a thought of the distant future, but these AI algorithms have
the potential to ameliorate current medical demands. The
use of AI will play a larger role in the regular practice of the
diagnosis of eye diseases, and it will advance the important
role of telemedicine—specifically tele-ophthalmology. Our
study demonstrates just one aspect for the use of ML in the
vast field of ophthalmology. The possibilities for the
application of AI will be endless as innovative research
continues and new algorithms are developed.

Summary

What was known before

● The use of ML classifiers for the diagnosis of eye
diseases such as diabetic retinopathy is becoming more
prevalent in the medical community.

● The use of AI algorithms is a powerful tool, and it is a
method of obtaining a cost-effective, simple, and fast
diagnosis of eye diseases.

What this study adds

● To our knowledge, this is the first meta-analysis to
analyze the diagnostic accuracy of ML classifiers for
AMD among all eyes available in datasets to assess their
accuracy and reliability to be implemented in clinical
settings.

● The pooled estimate for sensitivity was 0.918 [95% CI:
0.678, 0.98] and specificity was 0.888 [95% CI: 0.578,
0.98] for AMD screening using ML classifiers.

● The included studies show promising results for the
diagnostic accuracy of the ML classifiers for AMD and
its implementation in clinical settings.
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