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Abstract
Sensitive and robust outcome measures of retinal function are pivotal for clinical trials in age-related macular degeneration
(AMD). A recent development is the implementation of artificial intelligence (AI) to infer results of psychophysical
examinations based on findings derived from multimodal imaging. We conducted a review of the current literature
referenced in PubMed and Web of Science among others with the keywords ‘artificial intelligence’ and ‘machine learning’ in
combination with ‘perimetry’, ‘best-corrected visual acuity (BCVA)’, ‘retinal function’ and ‘age-related macular
degeneration’. So far AI-based structure-function correlations have been applied to infer conventional visual field,
fundus-controlled perimetry, and electroretinography data, as well as BCVA, and patient-reported outcome measures
(PROM). In neovascular AMD, inference of BCVA (hereafter termed inferred BCVA) can estimate BCVA results with a
root mean squared error of ~7–11 letters, which is comparable to the accuracy of actual visual acuity assessment. Further,
AI-based structure-function correlation can successfully infer fundus-controlled perimetry (FCP) results both for mesopic as
well as dark-adapted (DA) cyan and red testing (hereafter termed inferred sensitivity). Accuracy of inferred sensitivity can be
augmented by adding short FCP examinations and reach mean absolute errors (MAE) of ~3–5 dB for mesopic, DA cyan and
DA red testing. Inferred BCVA, and inferred retinal sensitivity, based on multimodal imaging, may be considered as a quasi-
functional surrogate endpoint for future interventional clinical trials in the future.

Introduction

Age-related macular degeneration (AMD) is the leading
cause of visual disability among the elderly in industrialised
countries [1]. While anti-vascular endothelial growth factor
(VEGF) therapy has markedly improved outcomes for
macular neovascularisation secondary to AMD, disease-

specific therapy for early and non-exudative manifestations,
including geographic atrophy (GA), is lacking [2, 3].
Beyond analysis of structural changes, there is an unmet
need to establish meaningful functional endpoints for
assessment of visual impairment associated with AMD
manifestations. Best-corrected visual acuity (BCVA), the
most common used functional endpoint, only measures
photopic function of the central retina and is therefore not
sensitive to measure therapeutic benefits outside of the fovea
[4, 5]. Other measures, including low-luminance visual
acuity (LLVA), reading speed, fundus-controlled micro-
perimetry (FCP), and patient-reported outcome measures
(PROM), potentially assess impairment of visual function in
more detail. However, most of these tests are time con-
suming and can be particularly demanding for the elderly
patient [6–9]. Therefore, alternative analysis strategies
would be desirable that are more practicable and easier to
obtain, while addressing different facets of visual function.

Artificial intelligence (AI) is creating a paradigm shift in
every sector of medicine. Ophthalmology is at the forefront
of implementing AI-enabled health care, with a few
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commercially available AI tools already available for clin-
ical care. First applications have already crossed the
threshold into clinical care [10]. These tools can now assist
clinicians in diagnosis of fundus photographs as well as
achieve automated annotations of optical coherence tomo-
graphy (OCT) imaging [11–14]. In AMD, AI has been
deployed to estimate the number of anti-VEGF injections
needed and to predict GA progression [15, 16]. There is a
wide range of potential AI-algorithms used for predictive
modelling. In recent years, convolutional neural networks
have proven particularly successful for image classification
tasks by extracting features from raw data through hier-
archies of increasing abstraction which superficially repre-
sent visual processing in the brain [17, 18]. These deep-
learning (DL) algorithms require large image data sets and
results can be hard to interpret. Machine-learning (ML)
algorithms using pre-defined, “hand-crafted” (e.g. Random
Forest or Lasso regression) can therefore be a viable alter-
native. A recent development is AI-based predictions of
retinal function with the use of multimodal imaging mod-
alities. So far, AI-based structure-function correlations have
been applied for the inferring of conventional visual field
and FCP data, BCVA, vision-related quality-of-life, and
electroretinogram (ERG) characteristics.

This review summarises the progress in this field, com-
pares goodness of fit measures and AI algorithms utilised
while focusing on possible implementations in AMD patients.

AI based structure-function correlation in
visual fields

Although the focus of this review is on AMD relevant
diagnostic tools, it is important to note that algorithms for
inference of function have a long-standing history in glau-
coma detection. First automated programs to diagnose
visual field deficits date back to the 1980s and some studies
now deploy OCT imaging to guide decision making
[19, 20]. Newer studies, like Christopher et al. deploy large
data sets of almost 10,000 visual field/OCT pairs from over
a 1000 participants to train DL algorithms and are able to
estimate the mean deviation of the visual field with an
accuracy of 2.5 dB (R2 0.7) [21]. Inference of sectoral visual
field loss varied between high accuracy in the inferior-nasal
sector (R2 0.6) and low accuracy in both the central (R2

0.15) and temporal (R2 0.12) sectors. This algorithm was
trained with retinal nerve fibre layer (RNFL) thickness maps
and the results show that accuracy was lowest in areas with
a physiological thin RNFL layer (temporal sector) and
highest in areas with physiological thick RNFL layer
(inferior-nasal sector) [22]. This is in accordance with the
notion that pathological RNFL layer thinning is harder to
discriminate in areas of decreased physiological thickness.

Overall, progress on visual field Inferences will likely
provide deeper insights into structural-functional correla-
tions when large data sets may become available.

AI based structure-function correlation in
electroretinogram

In ABCA4-related retinopathy, a recent study predicted
ERG Results through OCT layer thickness with an accuracy
of 97.47 ± 2.03% [23]. The most relevant OCT-based ima-
ging features in the applied machine learning approach were
the outer nuclear layer (ONL) and the inner- and outer
segments (IS/OS). The high impact of the ONL and IS/OS
layers is biologically plausible as they represent parts of rod
and cone photoreceptors. Notably, prediction accuracies
may not necessarily translate to AMD as the ABCA4-
related retinopathy cohort is a hereditary, monogenetic
disease with rather well-defined ERG changes, while ERG
findings in AMD are known to be much less specific.
However, AI-based structure-function correlations in AMD
subjects also demonstrated biological plausibility, showing
that ONL thickness changes had the highest predictor
importance for functional deficits that can be detected
by other functional tests, including FCP (FCP; see
below) [24–27].

AI-based structure-function correlation in
BCVA

In the context of AMD, inference of BCVA from OCT
images has been proposed predominantly for macular neo-
vascularisation (Table 1) [23, 27–31]. During anti-VEGF
treatment, retinal imaging plays a pivotal role in disease
management, with patients being regularly monitored by
OCT. Beyond qualitative interpretation by the human eye, the
automated analysis of these extensive amounts of imaging
data may be particularly useful for estimation of BCVA, in
addition to routine BCVA measurements, potentially sparing
time and allowing for a more consistent assessment.

Until today, goodness of fit measures varied between
studies for inference of BCVA based on imaging using AI
tools. Two studies reported similar accuracies with a mean
absolute error (MAE) of 0.11–0.14 LogMAR and 0.14
LogMAR. Another study documented their accuracy with a
Root Mean Squared Error (RMSE) of 8.21 letters. The
MAE, as the mean of the absolute values of the individual
prediction errors, is an easy interpretable evaluation metric
to judge the accuracy of regression models. For an
exemplary patient with an BCVA of 0.3 LogMAR (Snellen
6/12), the inferred BCVA would be on average between
0.19 and 0.41 logMAR (~6/9–6/15). In some cases, when
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not only the average error but also the outliers are of
interest, it may be helpful to indicate other evaluation
metrics like the RMSE. The RMSE indicates the size of the
squared error. As a result, larger errors have a dis-
proportionately larger effect on the RMSE.

Rather than inferring function in a cross-sectional man-
ner, another interesting aspect is to predict BCVA in the
future, based on data available at baseline. This prediction
might be particularly helpful to better estimate possible
treatment effects. As one may expect, studies have reported
lower accuracy in predicting BCVA as compared to the
inference of BCVA based on imaging data from the same
visit. By comparing five different ML algorithms, Rohm
et al. [27] reported that cross-validated LASSO regression
achieved most precise results with 0.14 logMAR RMSE
(equals 7 letters) for the short-term (90 days from baseline)
and 0.23 logMAR RMSE (equals 11.5 letters) for long-term
predictions. This means that if an exemplary patient would
have a measured BCVA of 0.3 logMAR (Snellen 6/12) at
the 3 months follow-up visit, the model based on multi-
modal imaging at baseline would have predicted the BCVA
being on average between 0.16 and 0.44 logMAR (~6/9–6/
15). This study further demonstrated that not always the
most complex AI algorithm achieved most accurate pre-
dictions. LASSO regression, the most accurate algorithm in
this study, builds on linear regression and is therefore easily
computable and easy for the non-AI specialist to interpret.

These algorithms could serve to inform the patient over
their individual disease progression and give a prognosis of
their driving capability. It should be considered that the 95%
limits of agreement (LoA) of repeatability for tested BCVA
is already about ±0.1 logMAR under perfect conditions for
healthy subjects [32, 33]. Even with improved accuracy of
the algorithm, it is important to note that inferred BCVA
faces the same challenges and limitations as measured
BCVA. These are specifically due to the ceiling effect (given
the limited by the retinal peak cone density) and the relative
focus on foveal (and/or para-foveal) function.

AI-based structure-function correlation in
patient-reported outcome measures

The European Medicines Agency and the Food and Drug
Administration increasingly demand the employment of
PROM as functional endpoints in clinical trials. During the
Phase 2 Mahalo Study for GA, the 25-Item National Eye
Institute Visual Function Questionnaire (NEI VFQ-25) has
demonstrated to be a valid and reliable measure of patients
Vision-Related Quality-of-Life (VRQoL) [34]. A recent
study applied predictive modelling (LASSO regression) on
both functional and structural biomarkers to project NEI
VFQ-25 VRQoL for GA patients [35]. Interestingly, they

found that VRQoL predominantly depended on the better
eye. Structural biomarkers only explained up to 22% of
variability but in combination with functional parameters
like LLVA achieved excellent results in predicting VRQoL.
These observations may be used for modelling of function
in the clinical trial setting. In early phase clinical trials, a
common approach is to rather test a new intervention in the
worse as compared to the better eye because of ethical
considerations, particularly the uncertainty of the risk pro-
file of a new intervention. In this context, the authors sug-
gested to extract the information from treating the worse eye
to infer the expected effect on VRQoL in the better seeing
eye [35].

AI-based structure-function correlation in
fundus-controlled perimetry

Beyond BCVA which is limited to the assessment of foveal
function, FCP (also termed microperimetry) can detect
impairment throughout the central retina while correcting
for fixation losses [36]. At the same time, FCP is time-
consuming and burdensome for both patients and medical
health care professionals. A recent development of FCP is
the ability to test two-colour dark-adapted (DA) sensitivity.
This setup allows to confirm previous reports, based on
histopathology and general clinical assessment, that rod loss
exceeds and precedes cone loss in eyes with AMD. FCP
may allow for more precise assessment in the clinical set-
ting as compared to more general clinical tests and therefore
excel in detecting earliest changes in AMD. Using AI, early
data indeed show that the precise probing of rod and cone
function opens the door for a more detailed structure-
function correlations between microstructural changes seen
by multimodal imaging and retinal sensitivity as measured
by FCP [37–40]. In this context, one interesting observation
is that specific lesion components exhibit a distinct effect on
cone (e.g. cuticular drusen with central, pseudo-vitelliform
detachment), while other do on rod (e.g. reticular drusen;
macular oedema) dysfunction [41, 42]. In neovascular late-
stage AMD, FCP revealed a characteristic functional
response to pigment epithelial detachments, subretinal- and
intraretinal fluid [43]. For example, subretinal fluid
appeared to affect rod function to a greater degree than cone
function. Intraretinal fluid seemed to impair both cone and
rod function to a similar extent. Participants with a shallow
pigment epithelial detachment exhibited relative preserved
cone and rod function. Given that structure and function are
so closely intertwined, AI-based inference of retinal sensi-
tivity through multimodal imaging (herein termed
inferred sensitivity) would be tremendously advantageous
beyond just replacing a burdensome psychophysical
examination (Table 2). Inferred sensitivity has the potential

AI-based structure-function correlation in age-related macular degeneration 2113
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to probe larger areas of the retina while still providing
a high spatial resolution (Fig. 1). Additionally, with infer-
red sensitivity patients who are too frail for FCP examina-
tions or have difficulty fixating could now partake in
interventional studies. Finally, image acquisition for infer-
red sensitivity can be performed in centres without the
expertise for psychophysical testing. So far inferred sensi-
tivity has been explored in macular telangiectasia type
2, Leber congenital amaurosis (LCA), blue cone mono-
chromasy, pseudoxanthoma elasticum as well as MNV
and GA secondary to AMD, demonstrating that

mesopic sensitivity can be inferred with an accuracy of
3.36–4.64 decibel (dB) MAE cross those diseases
[24, 25, 44–47].

DA cyan estimates achieved an accuracy of 4.89 dB
MAE in late-stage AMD and 8.8 dB 95th percentile LoA in
LCA. Similarly, accuracy in DA red testing was 4.05–4.64
dB MAE in late-stage AMD and 9.6 dB LoA in LCA. The
results are further underscored by the fact that the 95%
coefficient of repeatability for FCP testing was reported
with (mean ± SD) 5.99 ± 1.55 dB for mesopic, 6.14 ± 2.19
dB for dark-adapted cyan and 6.06 ± 1.79 dB for dark-

Fig. 1 Inferred sensitivity mapping. Based on the fundus auto-
fluorescence (FAF), infrared reflection (IR, not shown) and spectral-
domain optical coherence tomography (SD-OCT), mesopic as well as
dark-adapted (DA) cyan and DA red sensitivity may be reliably
inferred and topographically mapped. The arrows in the FAF image
indicate the position of the SD-OCT B-scans. Multiple lines of evi-
dence further support the accuracy of the inference. For all three types
of testing, angioscotoma are adequately predicted. Further, the central
rod-free zone is also correctly inferred as indicated by the marked
cyan-red sensitivity difference at the fovea (eccentricity of 0°, middle
B-scan). Regions exhibiting increased FAF and absence of

photoreceptor outer and inner-segments (upper and lower SD-OCT
scan) show reduced function for all three types of testing. Yet globally
the degree of DA cyan dysfunction appears to exceed the degree of DA
red dysfunction. Please note, that the inferred cyan-red sensitivity
difference in the region of severe cone dysfunction (delimited by the
dashed line) is an underestimation of the true cyan-red sensitivity
difference due to the floor effects of the perimetry device used in this
study that are inevitable reflected by the models. (Reprinted from von
der Emde et. al: Artificial intelligence for morphology-based function
prediction in neovascular age-related macular degeneration; Scientific
reports 9:1132; published [2019] Springer Nature).
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adapted red testing in MNV secondary to AMD (with
similar results for GA) [6, 7]. Although evaluation metrics
are not identical, this shows that the average error of
inference based on multimodal imaging differs only mar-
ginally from the error resulting from repetitive testing (test-
retest reliability) alone.

Studies using ML algorithms further analysed feature
importance of inferred sensitivity and demonstrated that
layer thicknesses proved more indicative for predictions
than layer intensities [24, 25, 45–47]. Hereby, the results of
the analysis of retinal thickness seemed biological plausible,
as ONL thickness proofed to be the most important imaging
feature in all types of testing and cross disease stage. Spe-
cifically, a thinning of the ONL (indicative of outer retinal
atrophy) led to a decrease in sensitivity whereas patholo-
gical ONL thickening only negatively affected dark-adapted
cyan and red sensitivity [24, 25].

In our studies in late-stage AMD patients, we further
tried to boost results by feeding the algorithm the results
from a short perimetry testing, since we hypothesised that
factors not resolved by OCT imaging (e.g. lenticular
opacification) may influence retinal light sensitivity
[24, 25]. Indeed, addition of some functional data (in form
of a subset of the perimetry results) markedly reduced the
MAE up to 1.54 dB in mesopic and DA cyan and red
testing [24, 25]. Although not as pronounced an alter-
native approach using ‘Patient reliability indices’ (e.g.
False-positive response rate during FCP testing) also
markedly reduced the MAE. These approaches in the
context of an interventional study could improve accura-
cies of inferred sensitivity. Moreover, with additional
short perimetry testing potential adverse effects of the
agents (e.g. RNFL layer thinning) that are not represented
in the training set could still be detected. In summary, we
consider inferred sensitivity to be a potential surrogate
functional endpoint and a valuable tool for future inter-
ventional studies.

Limitations

Comparison of results among available studies is hampered
by non-uniform use of goodness of fit measures. For
example, the MAE is easily interpretable but may simulate
better results than RMSE as it scrutinises outliers more
harshly. Therefore, we suggest that studies reach consensus
on measures of goodness of fit or to report additional
measures for comparison. Another limitation is the cross-
sectional study design of most AI-based function prediction
studies so far. To safely utilise AI-based predictive mod-
elling in future interventional studies, the accuracy of
longitudinal models needs to be verified. Additionally, most
studies were performed with a limited number of partici-
pants. This could potentially lead to underrepresenting less
frequent manifestations in the training set. In AMD for
example, these could be subretinal drusenoid deposits in
intermediate AMD, retinal angiomatous proliferation in
MNV secondary to AMD or the diffuse-trickling phenotype
in GA secondary to AMD.

Outlook

This review evaluated the current literature on AI-based
function inference on a plethora of different psychophysi-
cal examinations. In retinal diseases other than AMD, AI-
based function inferences serve to accurately forecast
visual fields, ERG, BCVA and FCP examinations. In
AMD, AI-based function inferences can compute BCVA,
PROM and FCP results. We established the term ‘inferred
sensitivity’ for multimodal imaging-based estimation of
FCP results. Accuracy of inferred sensitivity can be
improved by adding short FCP examinations in a subset of
patients (Fig. 2). Inferred sensitivity of two-colour DA FCP
can also estimate rod function and detect earliest visual
impairment in AMD patients. Therefore, we consider

Fig. 2 Inferred sensitivity.
Possible quasi-functional
surrogate endpoint in future
clinical trial.
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inferred sensitivity to be a quasi-functional surrogate
endpoint.
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