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Abstract
Background/Objectives To determine the efficacy of the DIGIROP model in detecting treatment-requiring retinopathy of
prematurity (TR-ROP) in a Portuguese cohort.
Subjects/Methods Multicentre, retrospective cohort study of all consecutive preterm infants who underwent ROP screening
from April 2012 to May 2019 in two neonatal units. Gestational age (GA), birth weight (BW) and sex were inserted in the
DIGIROP platform. The optimal cut-off point to achieve 100% sensitivity was calculated. Area under the receiver operating
characteristic curve (AUC) was calculated.
Results Of the 431 infants who underwent ROP screening, 257 were eligible for DIGIROP analysis and 174 infants were
excluded for having a GA outside the range 24–30 weeks imposed by the DIGIROP algorithm. Median GA was 29 weeks
(range 24–30) and BW was 1060 g (range 408–2080). Twenty-tree infants (8.9%) developed TR-ROP. The highest risk
obtained for TR-ROP was 0.5404 (95% CI 0.4343–0.6616) with a median achieved risk of 0.0938 (range 0.0016–0.5404).
The optimal cut-off point to achieve 100% sensitivity on TR-ROP was 0.0016. The number of infants receiving ROP
examinations would have been reduced from 257 to 187 infants (−27.2%) if the model was applied.
Conclusions In our cohort, of 257 infants, the optimal cut-off point to achieve 100% sensitivity for TR-ROP was 0.0016
with moderate accuracy in the AUC (0.70). The number of infants requiring screening would have decreased 27.2% if the
model was applied. It is essential that algorithms continue to be tested in different populations, especially in cohorts that
include both younger and older GA infants.

Introduction

Retinopathy of prematurity (ROP) affects the immature
retina of premature infants and is a leading cause of
lifelong visual disability worldwide [1]. Infants at risk for
ROP are identified using recommended birth weight
(BW) and gestational age at birth (GA) criteria. These
BW and GA levels are set high in an attempt to ensure
that all infants requiring treatment are examined [2–4].
Although currently recommended guidelines have high
sensitivity for the detection of ROP, their specificity is
low, as less than 10% of examined infants receive treat-
ment, and only about half of examined infants develop
any ROP [1, 5, 6].

Due to the low diagnostic ability of current screening
guidelines, various statistical prediction models have been
developed to try to identify infants at high risk for ROP
allowing better allocation of resources for those at high risk
while sparing those at low risk [7].
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DIGIROP (https://www.digirop.com) [8] is a recently
published online prediction model that uses only birth
characteristics data (GA, BW and sex) to estimate the risk
for treatment of sight-threatening ROP for infants born at
24–30 weeks’ GA. In the original cohort, which included
7609 Swedish infants, with a mean GA of 28.1 weeks and a
mean BW of 1119 g, this algorithm obtained a sensitivity,
specificity, positive predictive value and negative predictive
value that were numerically non-inferior as those obtained
from previously reported algorithms (Children’s Hospital of
Philadelphia-ROP (CHOP-ROP), Omaha-ROP (OMA-
ROP), weight, insulin-like growth factor 1, neonatal, ROP
(WINROP) and Colorado-ROP (CO-ROP)) [8].

The primary aim of this study was to determine the
efficacy of the online prediction model DIGIROP in
detecting treatment-requiring retinopathy of prematurity
(TR-ROP) in a Portuguese cohort.

Materials and methods

Study design

This was a retrospective cohort study of all preterm infants
who underwent ROP screening from April 2012 to May
2019, in two neonatal intensive care units from two insti-
tutions in Portugal. The study was approved by the Ethical
Review Boards of Centro Hospitalar de Lisboa Ocidental
and Hospital Beatriz Ângelo, by the National Data Protec-
tion Authority (Comissão Nacional de Proteção de Dados)
and by the Ethics Committee of the Nova Medical School.
It was carried out in compliance with the tenets of the
Declaration of Helsinki, in its latest version (Brazil, 2003).

Methods

Following the current Portuguese screening guidelines, all
infants with GA ≤ 32 weeks, BW ≤ 1500 g or at higher risk
of ROP determined by a neonatologist were eligible to be
included. Infants without a known ROP outcome and those
with any ocular diseases apart from ROP were excluded.
The estimation of GA was based on foetal ultrasonography.

For ROP screening, an initial fundus examination using
indirect ophthalmoscopy was performed at 32 weeks of
postmenstrual age (PMA) or at 4 weeks of chronological
age, whichever came later. The diagnosis of ROP and
indication of treatment for ROP followed the International
Classification of ROP Revisited [9] and the Early Treatment
for ROP Study [10], respectively. The term severe ROP
included both ‘Type 1 ROP’ (defined as zone I with plus
disease with any stage or zone I stage 3 with no plus disease
or zone II stage 2 or 3 with plus disease) and ‘Type 2 ROP’

(defined as zone I stage 1 or 2 without plus disease and zone
II stage 3 without plus disease), both defined by the criteria
of the Early Treatment for ROP study [10]. All infants
diagnosed with Type 1 ROP underwent digital imaging
recording and were subsequently treated.

Birth characteristics data, including sex, BW, GA, dates
of retinal examinations, ROP stage and zone at every
examination and any treatments performed for ROP, were
collected from the clinical records.

DIGIROP model

The online prediction model DIGIROP (https://www.
digirop.com) provides risk estimation and 95% confidence
interval (CI) for sight-threatening ROP requiring treatment
using only birth characteristics data for infants with GAs
from 24 to 30 weeks.

GA, BW and sex were retrospectively inserted on the
online application and the risk estimation with 95% CI was
recorded.

Statistical analysis

The algorithm was applied to all infants with GA
24–30 weeks. The optimal cut-off point to achieve 100%
sensitivity was calculated. Receiver operating characteristic
curves, with calculation of the area under the curve (AUC)
and 95% CI, were used to evaluate performance of the
algorithm to identify TR-ROP. Data analyses were per-
formed using SPSSv23 software (IBM®, USA).

Results

Baseline characteristics

Of the 431 infants who underwent ROP screening and had
information on ROP outcome, 174 infants were excluded
for having a GA outside 24–30-week limit imposed by the
DIGIROP algorithm criteria. Of the 257 infants eligible for
DIGIROP analysis, median GA was 29 weeks (range
24–30), median BW was 1060 g (range 408–2080) and
8.9% (n= 23) developed TR-ROP.

Among the 174 infants excluded from DIGIROP, median
GA was 31 weeks (range 23–36), median BW was 1446 g
(660–2670) and 1.3% (n= 2) developed TR-ROP,
(Table 1). Common risk factors for the development of ROP
among the cohorts are listed in Table 2.

Algorithm outcome

After applying the DIGIROP model, the highest obtained
risk estimation for sight-threatening TR-ROP was 0.5454
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(95% CI 0.4343–0.6616) with a median achieved risk of
0.0938 (range 0.0016–0.5404). In the non-TR-ROP group,
the highest obtained risk for TR-ROP given by the algo-
rithm was 0.3655 (95% CI 0.2899–0.4519) with a median
risk of 0.0039 (range 0.0001–0.3655).

The optimal cut-off point to achieve 100% sensitivity
was 0.0016. The number of infants requiring screening for
ROP would have decreased from 257 to 187 infants
(−27.2%) if the model was applied.

AUC for TR-ROP was 0.70 (95% CI 0.57–0.83) with a
sensitivity of 0.52 (95% CI 0.31–0.73) and a specificity of
0.86 (95% CI 0.76–0.93).

Discussion

Failure to detect TR-ROP can lead to irreversible blindness.
Therefore, screening criteria have to have high sensitivity.
Since only 4.3–30.4% of infants [11] will develop TR-ROP,
many who do not require treatment will be screened.
Screenings are not free of complications. There are several
indicators that examinations are stressful and painful for the
infants and pharmacological mydriasis may have potential
serious adverse events. Moreover, ROP screening requires a
skilled workforce available 52 weeks a year, which may not
always be feasible [12, 13].

Given this context, several attempts have been made to
improve screening in order to stratify risk and decision
making, thus reducing unnecessary examinations and
improving resource allocation.

Most of the proposed prediction algorithms use statistical
modelling approaches that include BW, GA and other
postnatal risk factors, such as oxygen exposure, sepsis or
postnatal weight gain [7] that need to be collected over time.
For instance, the weight in the WINROP model is inserted
up to 36-week PMA [14, 15], whilst for the Growth and
Retinopathy of Prematurity (G-ROP) modified screening
criteria it is measured up to postnatal day 39 [16]. The need
for continuous data input can hamper the use of these
models namely when babies are transferred between
neonatal units.

Recently, Pivodic et al. [8] developed and validated an
individual risk prediction model (DIGIROP) for identifying
TR-ROP using solely birth characteristics (BW, GA and
sex), without the need of any other postnatal factors. The
prediction model was developed based on 7286 Swedish
infants and had an AUC of 0.90. After external validation in
new cohorts in Sweden (n= 323), United States (n= 1535)
and Europe (n= 354), the AUC remained high (0.94, 0.87
and 0.90, respectively) [8]. In addition, DIGIROP obtained
a sensitivity and specificity that were numerically non-
inferior to those obtained from previously reported algo-
rithms requiring more complex postnatal data (CHOP-ROP,
OMA-ROP, WINROP and CO-ROP) [8].

Our goal was to determine the ability of the DIGIROP
model in detecting TR-ROP in a Portuguese cohort.

In our cohort, the highest risk obtained in the TR-ROP
population sample was 0.5404 vs. 0.3655 in the non-TR-
ROP population sample, with a median achieved risk of
0.1174 in TR-ROP vs. 0.0039 in non-TR-ROP. The AUC
for TR-ROP was numerically lower than the one reported
by the DIGIROP group (0.70 vs. 0.90), indicating only
moderate accuracy. There is no information regarding race/
ethnicity in the development model. However, the AUC by
race/ethnicity, as reported for the US cohort, varied from
0.79 for Hispanics to 0.90 for blacks [17]. It is possible that
differences in race/ethnicity might partially explain our
results.

In our cohort, the optimal cut-off point to achieve 100%
sensitivity was 0.0016. Even though not discussed in detail in
their manuscript, the cut-off values for the DIGIROP model
selected based on sensitivity obtained applying the published
cut-off values from the CHOP-ROP, OMA-ROP, WINROP
and CO-ROP models varied between 0.0076 and 0.02 [7]. The
apparent different performance of DIGIROP in our cohort
might be due to differences between patient populations.

The Total SWEDROP Cohort, Validation US Group and
Validation European Group, from which de DIGIROP was
initially validated, had a median GA of 28.6, 27.9 and 28.1

Table 1 Gestational age (GA), birth weight (BW) and gender.

Median GA Median BW Male (%)

(range) (range)

Initial cohort (n= 431) 30 1230 226

(23–36) (408–2670) (52.4%)

No ROP 31 1350 174

(n= 323; 74.9%) (24–36) (500–2670) (53.9%)

ROP 27 872 52

(n= 108; 25.0%) (23–31) (408–1790) (48.1%)

Type 1 ROP 25 760 13

(n= 25; 5.8%) (23–31) (427–1790) (52.0%)

DIGIROP cohort (n= 257) 29 1061 140

(24–30) (408–2080) (54.5%)

No ROP 29 1160 90

(n= 156; 60.7%) (24–30) (500–2080) (57.6%)

ROP 27 845 50

(n= 101; 39.3%) (24–30) (408–1540) (49.5%)

Type 1 ROP 25 760 12

(n= 23; 8.9%) (24–30) (427–1444) (52.2%)

Patients excluded from the
algorithm (n= 174)

31 1446 86

(23–36) (660–2670) (49.4%)

No ROP 31 1450 84

(n= 167; 96.0%) (31–36) (660–2670) (50.3%)

ROP 31 1335 2

(n= 7; 4.0%) (23–31) (660–1760) (28.6%)

Type 1 ROP 27 1210 1

(n= 2; 1.1%) (23–31) (660–1760) (50.0%)
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and a median BW of 1110, 980 and 990 g, respectively. The
present cohort had numerically slightly different BW and
GA (median GA was 29 weeks and median BW 1060 g).

Prediction models cannot be used in new settings without
validation studies to prove that the model is generalisable
and performs well with other patients and settings [18].
Since no prediction model performs well universally,
research on developing and validating robust ROP predic-
tion models for clinical use continues to be of interest. Our
findings show that even algorithms that were validated in
large cohorts (>7000 infants) can perform differently when
applied in a different setting.

This is not the first time that an algorithm underperforms
when tested on a new cohort. ROP risk profiles can vary
widely from country to country, and even from city to city
and unit to unit [19]. The WINROP model demonstrated
100% sensitivity (95% CI, 90–100%) for severe ROP in its
original cohort but subsequent validation studies demon-
strated consistently lower sensitivities ranging from 98.6%
(95% CI, 95–99.8%) in a multicentre US and Canadian
cohort, to 62% (95% CI, 55.9–69.9%) in Spain [20–26].

One of the proposed explanations for this phenomenon is
that the mechanism for ROP development and progression
may differ between high-income countries and low-income
countries. In highly developed neonatal care settings, low
BW and early GA are significant risk factors for ROP, and
the addition of slow weight gain, as a surrogate for low
serum IGF-1, helps to increase the sensitivity for identifying
ROP. In countries with developing neonatal care systems,
infants with significantly higher BW and GA can develop
severe ROP, primarily due to excessive supplemental oxy-
gen administration [6]. Hyperoxia inhibits VEGF activity
and destroys immature retinal vasculature, causing a true
‘oxygen-induced retinopathy’ type of ROP [7]. Moreover,
older GA infants have higher levels of endogenous IGF-1
production, suggesting that low serum IGF-1 is not a factor
in limiting VEGF activity, and slow weight gain is not a
predictive factor for this variant of ROP [7].

Portugal has a well-developed neonatal care, with a
survival threshold of 25 weeks [27]. According to the 2013
Portuguese Very Low Birth Weight Infant Registry, the
overall survival rate was 89%. When analysed by GA
intervals, survival rates were 95.3% for 28 and 31 weeks,
77.6% for 25–27 weeks and 42.1% and 16.7% for 23 and
24 weeks, respectively [27]. Early and late neonatal mor-
tality rates at and after 22 weeks of gestation in 2015 in
Portugal, when compared to Sweden, were 2.1 and 1.5 per
1000 live births, respectively [28]. In comparison, the total
preterm-related infant mortality rate was 2.01 per 1000 live
births in 2016 in the United States [29].

In Portugal, all infants under 32 weeks are screened. Due
to the GA limits of DIGIROP, 174 infants were not able to
be inserted in the algorithm and, of these, 2 (1.3%)

developed TR-ROP. In the recently developed G-ROP
model [16], validated in 7483 infants in North America
(with BW < 1501 g, GA < 32 weeks or a poor postnatal
course), 1440 infants (19.2%) had a GA of 31 weeks or
more. This ability to include all screened infants is an
advantage comparatively to DIGIROP. Most of the older
GA babies will not develop TR-ROP but some do require
treatment. It is imperative to develop prediction models that
correctly identify this small subset of infants at high risk.
Pivodic et al. [8] did not compare DIGIROP with G-ROP in
their article.

Another possible explanation for the different perfor-
mance of DIGIROP in our cohort is that although the sole
use of birth characteristics makes this model appealing and
easy to use, the exclusion of postnatal factors might also
have led to the non-identification of possible TR-ROP. It is
widely recognised that postnatal factors play an important
role in the development of severe ROP [7].

There are some limitations to consider in this study,
namely its retrospective nature, the inclusion of only two
institutions from the same geographical area and the rela-
tively small sample size. Also, the collection spanned
2012–2019 as such we cannot fully account for changes in
medical practice during this period. However, any predic-
tion model must be validated in novel populations, and
testing this new algorithm’s applicability in the Portuguese
population is important.

In conclusion, in our cohort, the optimal cut-off point to
achieve 100% sensitivity was 0.0016, which would have led
to a decrease of 27.2% of screened infants. It is essential
that algorithms continue to be tested in different popula-
tions, especially in cohorts that include both younger and
older GA infants.

Summary

What was known before

● Retinopathy of prematurity (ROP) is a leading cause of
preventable blindness worldwide.

● Prediction models can potentially help to stratify risk/
decision, while reducing unnecessary examinations and
improving resource allocation.

● Prediction models cannot be used in new settings
without validation studies.

What this study adds

● First time DIGIROP has been applied after its original
publication

● The optimal cut-off point to achieve 100% sensitivity in
our cohort was 0.0016 vs. 0.0076–0.02 in the original
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publication. AUC for TR-ROP revealed moderate
accuracy.

● The number of infants requiring screening for ROP
would have decreased from 257 to 187 infants
(−27.2%) if the model was applied.

● It is essential that algorithms continue to be tested in
different populations, especially in cohorts that include
both younger and older GA infants.
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