
Eye (2022) 36:524–532
https://doi.org/10.1038/s41433-021-01415-2

ARTICLE

Automated feature-based grading and progression analysis of
diabetic retinopathy

Lutfiah Al-Turk1 ● James Wawrzynski2 ● Su Wang3
● Paul Krause3 ● George M. Saleh2

● Hend Alsawadi4 ●

Abdulrahman Zaid Alshamrani5 ● Tunde Peto 6
● Andrew Bastawrous7 ● Jingren Li8 ● Hongying Lilian Tang3

Received: 13 May 2020 / Revised: 29 November 2020 / Accepted: 15 January 2021 / Published online: 17 March 2021
© The Author(s) 2021. This article is published with open access

Abstract
Background In diabetic retinopathy (DR) screening programmes feature-based grading guidelines are used by human
graders. However, recent deep learning approaches have focused on end to end learning, based on labelled data at the whole
image level. Most predictions from such software offer a direct grading output without information about the retinal features
responsible for the grade. In this work, we demonstrate a feature based retinal image analysis system, which aims to support
flexible grading and monitor progression.
Methods The system was evaluated against images that had been graded according to two different grading systems; The
International Clinical Diabetic Retinopathy and Diabetic Macular Oedema Severity Scale and the UK’s National Screening
Committee guidelines.
Results External evaluation on large datasets collected from three nations (Kenya, Saudi Arabia and China) was carried out.
On a DR referable level, sensitivity did not vary significantly between different DR grading schemes (91.2–94.2.0%) and
there were excellent specificity values above 93% in all image sets. More importantly, no cases of severe non-proliferative
DR, proliferative DR or DMO were missed.
Conclusions We demonstrate the potential of an AI feature-based DR grading system that is not constrained to any specific
grading scheme.

Introduction

Diabetic retinopathy (DR) is a progressive condition with
microvascular complications, which is one of the leading
causes of blindness in the working-age population [1]. The
classification of disease severity is critical in order to trigger

appropriate patient referral to an ophthalmologist. Several
classification systems have been developed and adopted in
different countries. Two such systems are the ICDRS [2]
(The International Clinical Diabetic Retinopathy and Dia-
betic Macular Oedema Severity Scale) and the NSC stan-
dard [3] (National Screening Committee in the UK).
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Early diagnosis and treatment through regular screening
can slow down disease progression and prevent severe
vision loss in diabetic patients. In DR screening pro-
grammes, a very large number of digital retinal images
need to be examined by human experts. However, sig-
nificant growth in the number of ophthalmologists or
trained human graders is needed in order to meet the
demands of an ever-increasing global diabetic population.
For example, recent figures indicate that there is a ratio of
one ophthalmologist to 100,000 population in India [4] and
1:43,000 in Saudi Arabia [5]; both of which are sig-
nificantly below the level required to support an effective
screening programme.

Automated fundus image analysis offers a potentially
efficient reduction in the human workload and could make it
economically feasible to scale up screening programmes to
the required level globally.

The majority of DR signs that have thus far been char-
acterised (e.g. Microaneurysms (MA), haemorrhages, exu-
dates and intraretinal microvascular abnormalities (IRMA))
can be readily observed in colour fundus photographs.
Many computer vision and machine learning algorithms
have been applied to automated DR recognition and
severity classification [6–11]; typically implemented as
Convolutional Neural Networks (CNN) [12]. Deep learning
based retinal analysis tools have proved to be reliable in
earlier studies [10, 11]. However, end users require provi-
sion of more evidence in support of the software’s black-
box classification of assigned grade or predictions of pro-
gression based on concrete examination findings.

Research on automated DR grading has spanned over 30
years, however the approaches applied to detailed lesion
and feature detection remain very limited [6–11]. A key
obstacle in the development of feature-based detection is
access to a sufficient diversity of well-annotated fundus
photographs within publicly available data sources. Our
approach has been to work together as a team of computer
scientists and clinicians across several different countries,
who regularly see patients with diabetic retinopathy, in
order to generate well-annotated datasets from a diverse
population (both in terms of race and DR severity). Accu-
rate feature-based annotation of our datasets has enabled us
to train the system to recognise the underlying clinical
features that are diagnostic of DR and its progression as
opposed to image-based biomarkers correlated with, but not
necessarily caused by, diabetic retinopathy. We have pre-
viously shown that this approach facilitates generalisability
across diverse global populations [13]. In the current study
we demonstrate that the trained system is independent of
any one specific grading scheme: Such independence from a
specific grading scheme is advantageous as it enables
adaptability to the various schemes used by different health
care systems around the world. In this paper we assess the

performance of the system when applied to both the ICDRS
[2] and NSC [3] classifications.

Methods

Institutional board review at the University of Surrey and
participating centres was undertaken and returned a
favourable opinion. In addition, research ethics committee
review returned a favourable opinion, allowing the study to
proceed. Informed consent was obtained from all subjects.

Predicting severity of retinopathy

In order to allow transparent prediction of the severity
grading of an image, we have attempted two approaches:

Whole Image-based: The algorithm is trained to recog-
nise the grade of retinopathy at the global level of whole
images using an annotated grading ground truth for each
image in the training set. Whilst requiring less detailed
annotation of images for training than a feature-based
approach, a key weakness is that application to each new
grading scheme requires training sets with labels specifi-
cally from each scheme.

Feature based: In contrast to the whole image-based
approach, the algorithm is trained to recognise specific
pathological features. The set of detected features can then
be mapped to a corresponding grading level according to a
specific classification scheme, and the choice of classifica-
tion scheme can be changed without any need for retraining:
The key advantage is that it provides a flexible grading
output based on any given scheme. It also theoretically
enables exactly the same feature-detectors to contribute to
the diagnosis of other diseases that share features with DR,
although the ability to do this was only assessed on an
anecdotal basis in the present study. The disadvantage is
that it requires detailed fine scale manual annotation of the
pathological lesions in order to train the system; we believe
this is a key factor that has prevented this approach from
being used elsewhere (to our knowledge).

Measuring progression

Automated DR progression analysis compares two retinal
images collected over time and reports on the changes
between them. The majority of published work thus far has
been limited to a classification of ‘pixel change’ or ‘no pixel
change’ between the images [14–16]. Such methods are
highly reliant on robust registration across baseline and
follow-up images and do not provide a strong indication of
pathological evolution. Although some work has been car-
ried out on detecting lesion changes over time using tradi-
tional machine learning methods and statistical approaches
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[17–19], most focus has been on microaneurysms. Only
very few studies included other DR features such as exu-
dates, haemorrhages [20] or more advanced pathology. We
demonstrate a systematic approach for feature detection
from digital colour fundus images, which covers a sufficient
diversity of DR features to define severity levels for two
different grading classification schemes.

Training dataset

In this study, we included a training dataset from our own
collection along with a public dataset. Our own collection
contains 2251 images with detailed annotations of anato-
mical structures and regions of the pathologies/features
present that appear at various levels of DR severity. The
public database [21] was obtained using the same 50-degree
field-of-view fundus camera with varying imaging settings.
The database contained 89 digital retinal images with
human expert annotated ground truth for microaneurysms,
haemorrhages and exudates. In total, this provided us with
2340 whole images generating over 60,000 sub-image
training samples with balanced number of samples across
each grade of DR severity. These do not overlap with the
testing data used in the validation stage discussed later.

DAPHNE automated lesion detection

Daphne is an automated system for retinal image analysis,
which contains a number of algorithms with a variety of
functions. Those related to this particular study are listed
below:

(1) Image quality assessment, to assess whether or not
each individual image was gradable;

(2) Anatomical structure segmentation;
(3) Lesion detection (measuring presence/absence/num-

ber of MAs, haemorrhages, exudates, cotton wool
spots (CWS), venous beading/reduplication/loops,
IRMA, Neovascularisation at the disk (NVD) neo-
vascularisation elsewhere (NVE), pre-retinal haemor-
rhage, fibrosis, scaring);

(4) Progression analysis and severity rating/grading of the
DR and Diabetic Macular Oedema (DMO).

In the first component, a single 10-layer CNN network
(inspired by the Oxford Visual Geometry Group [22] and
Alexnet [12] network architectures) is applied to assess
image quality. This part of the algorithm was trained on
about 20,000 unique sample images labelled as readable
and unreadable, manually annotated by one or more human
experts. Data were first pre-processed to subtract local
average colour to reduce differences in lighting [23]. These
data were then augmented to increase spatial, rotational and

scale variance. To speed up the learning process, batch
normalisation and pre-initialisation were applied. The result
of the quality assessment is to determine if the image is
gradable for further analysis and, if not, it then measures the
probability of having any pathological conditions such as
cataracts that may affect the quality of the image. If this
probability is high, the image is still passed to the next
stage. However, images that are assessed as ungradable and
with no additional meaningful information, are filtered out
as of ‘poor quality’.

In the second component, a set of U-net detectors [24]
was trained to detect retinal anatomical structures such as
the optic disc, fovea and retinal vessels. The activation
function after each convolutional layer was the Rectifier
Linear Unit, and a dropout of 0.2 was used between two
consecutive convolutional layers. The training was per-
formed on sub-image patches randomly sampled from the
whole image, centred on or off the anatomical structures.
Further data augmentation was performed to increase spa-
tial, rotational and scale variance. The U-net outputs the
locations of anatomical structures in the fundus image.

After extracting the anatomical structures, a combination
of U-net and CNN-based lesion detectors was trained to
detect the pathological features including MAs, haemor-
rhages, exudates, CWS, venous beading, venous duplica-
tion, venous loop, IRMA, NVD, NVE, pre-retinal
haemorrhage, fibrosis and scaring (samples of detected
lesions can be seen in Fig. 1b). The U-net and CNN-based
detectors output the likelihood that a certain region is an
actual lesion. Once anatomical structures and lesions are
detected, a random forest-based algorithm determines DR
grading (based on ICDRS or UK NSC) and DMO,
according to the features detected, their size and location)
[25, 26]. Using this feature-based grading scheme easily
enables the algorithm to switch between different grading
standards, such as the ICDRS and UK NSC grading scales.

When assessing progression, the anatomical structures
are first extracted to register baseline and follow-up images
for the same eye. These images are partitioned into five
regions based on the location of fovea and the optic disc
(see Fig. 2). The algorithm then computes any morpholo-
gical changes in the DR signs for the same eye as per the
following measures:

● Any new lesion;
● Any disappearing lesion;
● Any change of existing lesions (smaller or bigger

comparing with the baseline images).

When comparing changes between retinal images of the
same eye, previous registration methods [14–20] heavily
rely on vascular features, which are considered to be reli-
able structures in the retina. However, some pathological
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Fig. 2 An example of a comparison of morphological changes in
DR signs between baseline and follow-up retinal images. Left: A
healthy retinal image. It was divided into 5 different regions based on
the location of the fovea and the optic disc. Region 1, 2, 3, 4, and 5 are
respectively: 1-disc diameter from fovea; between 1 and 1.5-disc

diametesr from fovea; between 1.5 and 2-disc diameters from fovea;
between 2 and 3-disc diameters from fovea; any other regions. Middle:
one month later, one haemorrhage is detected in the region labelled by
the white box 2. Right: 5 months later, many more patches of hae-
morrhages are detected in regions 1, 2, 3 and 5.

Fig. 1 An overview of retinal
lesion detectors for grading
DR and DMO severity. a
Sample of fundus images of a
patient without DR (left) and a
patient with signs of DR (right,
MAs, haemorrhage and
exudates, are highlighted). The
image was graded as moderate
in ICDRS or R1 in NSC by the
automated system based on
these detected features. b
Samples of annotated lesions by
human experts. c the two-phase
of DR and DMO severity
grading: In phase I, the
combination of the U-net and
CNN-based detectors output
whether a certain region is an
actual lesion. In phase II,
random forest outputs the
probabilities of DR and DMO
grading.
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features such as venous beading, neovascularisation and
pre-retinal haemorrhage can alter or cover these vascular
features over time, giving rise to ambiguity. Including the
positions of the optic disc and fovea in the registration
process can minimise the misalignment when vessels, as
key landmarks, become weaker or less reliable.

Results

Statistical analysis of performance

In this study, our system was used to detect DR lesions and
then grade the images on the basis of the features detected,
including categorisation of referable DR based on a
given grading scheme. We also evaluated DAPHNE’s
performance on three validation sets of images. The eva-
luation included measuring accuracy, sensitivity, specificity
and the 95% confidence intervals. We also calculated the
DR grading agreement between the automated system and
human experts using quadratic weighted kappa. Moreover,
sensitivity, specificity and AUC values for detecting DMO
and progression changes were calculated. All analyses were
measured through the StatsModels version 0.8.0 and SciPy
version 1.0.0 Python data analysis packages.

Automated grading of images using features

Our hypothesis is that by training our system to identify
features, we are not constrained to any one specific grading
scale. To test this, we evaluated DAPHNE’s ability to
match results from human graders using the NSC or ICDRS
grading scales.

The evaluation image-sets contained 49,726 images from
three nations: Kenya, Saudi Arabia, and China. None of
these images were used for training, and the prediction
algorithm had no prior knowledge on their grading level
either on the NSC or ICDRS schemes. For evaluation, we
divided the total set into two. The first set from Kenya
contained 28680 images that had been annotated using the
ICDRS scheme by trained graders. The second set con-
tained 10,026 images from Saudi Arabia and 15,000 images
from China, both annotated in NSC. The prevalence of DR
severities is shown in Table 1. The evaluation measured

both the ability of DAPHNE to match assessments using
different grading schemes and the generalisability of the
model to diverse populations.

We used a quadratic weighted kappa score, sensitivity
and specificity to calculate the agreement between the lesion
detectors with human annotations. Here are the definitions
of some key measures:

True positive (TP): Contains at least one correct lesion
within the severity level against ground truth (GT) which
indicates the grading level.

True negative (TN): Nothing is detected when the image
is normal; or non-referable features are detected if the image
is non-refer. For example, if an image is mild grade in
ICDRS, and only MAs are detected, then it is TN.

False positive (FP): Detects lesions that belong to a
higher severity level than GT level.

False negative (FN): Only find lesions belonging to
lower severity level than GT.

Grading assessment accordingly to ICDRS

The Kenya dataset consisted of 28,680 images, two images
for each eye, and some of the eyes had two baseline and
follow-up images over a five-year period. 94% of the ima-
ges were defined as gradable by the automated system.

The automated system obtained a quadratic weighted
kappa score of 0.85 indicating excellent agreement.
The performance summaries for severity level detection
according to the ICDRS scale (DR vs Non-DR, Referral vs
Non- Referral and PDR vs Non-PDR) are as follows: For
the DR vs Non-DR levels, the sensitivity of our system was
91.19% (95% CI: 90.2–92.2%) and specificity was 94.6%
(95% CI: 94.2–94.8%). For the referable DR level, the
sensitivity was 92.03% (95% CI: 91.2–92.9%) and speci-
ficity was 93.0% (95% CI: 92.7–93.4%). For the PDR level,
the sensitivity was 100% (meaning no cases of PDR
cases were missed) and specificity was 86.7% (95% CI:
86.2–87.1%).

In this study, there were 1264 patients with baseline and
follow-up retinal images. For the DR progression changes
between baseline and follow-up images, when the severity
of baseline retinal images was higher than moderate NPDR,
the sensitivity of our system was 100%. Moreover, our
system did not miss any cases when PDR developed. We
observed that the system detected some other non-DR
lesions and individual artefacts as DR lesions, and therefore
needs further training in order to minimise FP and differ-
entiate other lesions that are similar to DR.

Grading assessment according to UK NSC

A further set of data consisted of 10,026 Saudi Arabian
and 15,000 Chinese fundus images, two for each eye, one of

Table 1 The prevalence of DR severities in three datasets.

Graded in NSC R0 R1 R2 R3

China 9986 3279 1240 495

Saudi Arabia 7451 1854 582 139

Graded in ICDRS 0 1 2 3 4

Kenya 13304 10967 3935 381 93
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which was optic disc centred and the other macula-centred.
The Saudi cohort had two baseline and multiple follow-up
retinal images for each eye. 92% of the images were clas-
sified as gradable by the software system. Figure 2 shows
the results of the algorithm for lesion detection on a case
with images taken over time to monitor progression.

The automated system obtained a quadratic weighted
kappa score of 0.83. Table 2A summarises the performance
for the detection of different severity levels according to the
UK NSC standard (DR vs Non-DR, Referral vs Non-
Referral, PDR vs Non-PDR and DMO). For the DR vs Non-
DR levels, the sensitivity of our system was 92.59% (95%
CI: 91.2–93.3%) and specificity was 93.0% (95% CI:
92.7–93.84). For the referable DR level, the sensitivity of our
system was 92.9% (95% CI: 91.4–94.2%) and the specificity
was 94.4% (95% CI: 94.1–97.8%). For the PDR level, the
sensitivity of our system was 100% (which means no cases
of PDR cases were missed) and the specificity was 87.1%
(95% CI: 86.7–87.6%). For the DMO, the sensitivity of our
system was 100% (which means no cases of DMO were
missed) and specificity was 84.2% (95% CI: 83.8–84.7%).

The 10,026 baseline and follow-up retinal images were
from 501 Saudi cohort subjects whose DR progression
was being monitored. Of those baseline images with

severity R3 or M1, the sensitivity of our system was 100%.
Moreover, the automated system did not miss any cases of
PDR or M1 DR.

Further testing on the Kaggle dataset with
evidence-based DR grading

We further evaluated our feature-based grading approach on
the Kaggle dataset [27]. This set consisted of 35,124 images
as its original training set, graded using ICDRS with one
image for each eye. We used these labelled samples to test
our feature-based approach. 77% of images were classified as
gradable by the automated system. Three experiments were
carried out: The original referable prevalence in Kaggle
dataset was 30.5%. We further randomly selected referable
images to allow respectively 5% and 15% referable pre-
valence and compared the performance on these three pre-
valence scenarios as illustrated in Fig. 3 and Table 2b.

Regarding the detection of referable DR (based on the
ICDRS), two operating points were selected, one for high
sensitivity and another for high specificity. At high sensi-
tivity operating points, the sensitivity of our system was
94.6% (95% CI: 93.8–94.9%) and specificity was 75.5%
(95% CI: 75.1–76.2%), a negative predictive value of

Table 2 Sensitivity, specificity and corresponding 95% CIs for different disease levels (A) for datasets graded with the NSC scheme, (B) for the
Kaggle dataset (35,124 images).

A:

Disease Level DR vs Non-DR Referral vs Non- Referral PDR vs Non-PDR DMO

Sensitivity 92.59% (91.86–93.28%) 92.83% (91.38–94.16%) 100% 100%

Specificity 93.02% (92.67–93.36%) 94.42% (94.10–94.72%) 87.12% (86.69–87.55%) 84.23% (83.77–84.69%)

B:

Disease Level DR vs Non-DR Referral vs Non- Referral PDR vs Non-PDR

Sensitivity 91.23% (87.15–94.15%) 92.21% (86.36–95.0%) 98.65% (91.5–99.6%)

Specificity 92.91% (91.2–95.1%) 96.9% (95–97.85%) 85.78% (83.9–88.7%)

Fig. 3 ROC for referable DR in Kaggle Dataset. ROC (receiver operating characteristic) curve for referable diabetic retinopathy in the Kaggle
Dataset with different prevalence of referable cases (5% (n. 0), 15% (n. 1) and 30.5% (n. 2)), using feature-based grading. Right is zoom-in version
of the left.
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98.3% (95% CI: 98.2–98.4%), and positive predictive value
of 48.6% (95% CI: 48.2–49.1%). At high specificity oper-
ating points, the sensitivity of our system was 81.1% (95%
CI: 80.5–81.8%) and specificity was 92.8% (95% CI:
92.5–92.9%), a negative predictive value of 95.4% (95%
CI: 95.2–95.5%), and positive predictive value of 72.3%
(95% CI: 71.6–72.9%). The AUC for the detection of
referable DR was 0.98 (95% CI: 0.969–0.993%).

Our system obtained a quadratic weighted kappa score of
0.857 for grading according to the ICDR scale, which is
slightly lower than the winner of the DR competition, but
higher than other published methods. However, unlike the
published end-to-end paradigms that only make predictions
based on the whole image, the grading approach in our
platform is generated from the detected features in a similar
fashion to the human grading process.

Detection of co-pathology

The ability of DAPHNE to detect non-DR co-pathology was
assessed for a small sample of selected cases with pathology
that was clearly visible on the fundus photograph. Of 1196
cases with age related macular degeneration, 945 were
detected. Of seven cases with papilledema all were detected.
Of two cases with lattice degeneration, both were detected.
Of two cases with retinal detachment, both were detected. Of
13 cases with peri-papillary atrophy, 12 were detected. Of
two cases with macular holes, both were detected. Of 14
cases of epiretinal membrane, 13 were detected. Of two cases
of CRVO, both were detected. A formal assessment of sen-
sitivity and specificity was not performed given the small
numbers involved in this pilot-study arm of the project.

Discussion

In this study we demonstrate a systematic, feature-based
methodology for diabetic retinopathy and macular oedema
detection and evaluate its performance according to two
grading standards: ICDRS and UK NSC. Our regional
detection deep learning model achieved good results on
image sets from a large dataset containing images from
different camera types and with varying settings. In all
datasets the overall agreement between DAPHNE and
human grading was above 85%. Hence, we demonstrate
that our AI software has the ability to perform DR grading
and progression monitoring with high accuracy. More
importantly the software did not miss any sight-threatening
cases in any of the studies.

Whilst our earlier work demonstrated the generalisability
of DAPHNE over different global populations, this work
demonstrates that the system will also generalise to different
grading schemes without any need for retraining. In addition,

early work indicates that it can sometimes identify other
common eye conditions (such as age-related macular
degeneration, epiretinal membrane, retinal detachment and
optic disc abnormalities) where signs are visible on colour
fundus photography, however the sensitivity and specificity
of these findings has not been formally assessed in the pre-
sent paper and this will be the subject of future work.

Some false positives were, however, present due to the
system’s overestimation of the severity of the DR (a higher
grade of DR than was actually present). Other types of
pathologies and individual artefacts were detected as DR-
related and produced false positive outcomes contributing to
the overestimate. Further refinement of the training as well
as a systematic diagnostic pathway taking into account all
potential co-pathology should be considered.

The key capability that distinguishes our system from
other state-of-the-art methods, is that our system can pro-
vide the clinically relevant details that support grading
results and therefore, in contrast to the ‘black box’
approach, users can check how the conclusion was reached
in each case. In some cases where other non-DR patholo-
gies exist, our system was able to locate the abnormal
regions just as human DR graders may do and developing
this capability will be the subject of future work in our lab.

In conclusion, this study shows the potential of an AI
software for feature-based DR grading and progression
assessment that is not tied to any specific grading scheme. If
used as a pre-screening filter, a 70% reduction of the
number of patients needing to be graded by humans could
be achieved assuming that only positive returns are seen
again by a human. Further development on other common
eye conditions will continue to facilitate the software’s
usefulness as a tool in assisting clinical services.

Summary

What was known before

● End to end AI grading of diabetic retinopathy can
reliably classify disease by severity.

What this study adds

● By designing an AI grading system based on feature
detection rather than end to end ‘whole image’ analysis,
we have developed software that is transferable between
different grading systems and whose decisions can be
more easily compared with those of clinicians.
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