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Abstract
Objective To develop a fully automated method of retinal pigmented epithelium (RPE) cells detection, segmentation and
analysis based on in vivo cellular resolution images obtained with the transscleral optical phase imaging method (TOPI).
Methods Fourteen TOPI–RPE images from 11 healthy individuals were analysed. The developed image processing method
encompassed image filtering and normalisation, detection and removal of blood vessels, cell detection and cell membrane
segmentation. The produced measures were cellular density of RPE layer, cell area, number of neighbouring cells,
eccentricity, circularity and solidity. In addition, we proposed coefficient of variation (CV) of RPE cellular membrane
(CMDCV) and the solidity of the RPE cell membrane-shape as new metrics for the assessment of RPE single cells.
Results The observed median cellular density of the RPE layer was 3743 cells/µm2 (interquartile rate (IQR) 1687), with a
median observed RPE cell area of 193 µm2 (IQR 141). The mean number of neighbouring cells was 5.22 (standard deviation
(SD) 0.05) per RPE cell. The mean RPE cell eccentricity was 0.67 (SD 0.02), median circularity 0.83 (IQR 0.01), and
median solidity 0.92 (IQR 0.00). The median CMDCV was 0.19 (IQR 0.02). The method is characterised by a median image
processing and analysis time of 48 sec (IQR 12) per image.
Conclusions The present study provides the first fully automated quantitative assessment of human RPE single cells in vivo.
The method provides a baseline for future research in the field of clinical ophthalmology, enabling characterisation and
diagnostics of retinal diseases at the single-cell level.

Introduction

The retina is the vitreal-most ten-layered light-sensitive
nervous tissue membrane of the eye. Its role is to convert
the received light stimuli into nerve impulses and send them
with the optic nerve to the visual centres of the brain. The
retinal pigmented epithelium (RPE) is the scleral-most
monolayer of pigmented retinal cells.

Although they are located outside of the neurosensory
retina, RPE cells play some crucial roles, such as light
absorption, epithelial transport and maintenance of the
visual cycle [1–5]. Some RPE cell morphology character-
istics, namely cell density, number of neighbours, eccen-
tricity, and form factor, are postulated to differ depending
on cell maturation and condition [2, 6–9]. Some other stu-
dies report RPE cell loss caused by diseases of the eye and
aging [10–13].

Although several diagnostic imaging modalities allow
for in vivo assessment of the human eye (e.g. optical
coherence tomography (OCT) [14–16], scanning laser
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ophthalmoscopy (SLO) [17, 18], and fundus auto-
fluorescence [19, 20]) these methods do not allow for the
diagnosis of retinal diseases at their early stage because the
minuscule changes in RPE cell morphology cannot be
detected. Furthermore, RPE layer in vivo imaging at the
single-cell level is challenging due to several factors,
namely, the low contrast between neighbouring cells,
motion artefacts, retinal layer non-linearity, and difficulties
with the image’s focal point identification.

Transscleral optical phase imaging (TOPI), proposed in
2017, is a novel non-invasive, in vivo, high-resolution ret-
inal imaging modality. The use of both adaptive optics and
oblique illumination of the retina enhances the contrast of
RPE cells [2, 9]. The resultant superior imaging resolution
enables discerning single RPE cells’ cellular membranes.

In this paper, we present a novel fully automated method
of RPE cell detection, segmentation and analysis at both
layer-level and single- cell level for the TOPI-obtained
retinal images.

Materials and methods

Study population

The study population included 11 healthy individuals (4
women and 7 men), from which 14 TOPI–RPE images of
the left eye were obtained. The mean age of the examined
individuals was 29 years (standard deviation (SD) 8). The
conducted study adheres to the tenets of the Declaration of
Helsinki. The study was approved by the Ethical Committee
of the Swiss Department of Health on research involving
human subjects (CER-VD N°2017–00976). Informed con-
sent was obtained from all the participants.

TOPI image acquisition

TOPI relies on high-angle oblique illumination of the retina,
combined with a flood illumination adaptive optics fundus
camera, to enhance cell contrast and correct for ocular
aberrations. Transscleral illumination of the retina was
performed using two near-infrared light-emitting diodes
(wavelength, λ= 810 nm) located on the nasal and temporal
side of the eye. The acquired images encompass a field-of-
view of 4.4° × 4.4°. More detailed information on the used
TOPI setup has been published previously by our group [2].

A single TOPI-obtained RPE layer image is characterised
by a low signal-to-noise ratio (SNR). Therefore, prior to
image analysis, the SNR is first increased by acquiring
several raw images (around 100 per acquisition), then
registered, and averaged into a single TOPI image. Image
acquisition and registration were performed following the
protocol described in detail by Laforest et al. [2]. The

acquired image stacks were exported as tif files. These
images are characterised by a black border, resultant from
the registration padding process. To remove such padding,
first, the image gradient is calculated. Second, vertical and
horizontal borders that presented an average local intensity
gradient value below 10% of the image’s gradient SD were
removed, cropping the image to the final size. The eccen-
tricities from the fovea of the imaged retinal areas ranged
between 2.5° and 13.44° with a consistent field-of-view of
5°. The final TOPI–RPE images were exported as 1975 by
1906 pixels and with a digital sampling between 0.73 µm
and 1.0 µm per pixel. Supplementary Table 1 presents
detailed information on imaging parameters, registered
images and imaged volunteers.

Image processing

The fully automated TOPI-obtained RPE image processing
and analysis is divided into four stages. First, the images are
normalised in terms of contrast/attenuation, unevenness of
the RPE layer and noise, and any out-of-focus (OoF) areas
are discarded. Second, the shadow of retinal vasculature
present in the innermost (vitreal-most) retinal layers is
detected and removed from the final image. Third, cells are
individually detected and segmented. Finally, the fourth and
last step consists of characterising the RPE layer in general
and single RPE cells (Fig. 1).

Image filtering and normalisation

In order to adjust for the unevenness of the RPE layer
background, flat-field correction with a two-dimensional
Gaussian smoothing kernel (σ 10 pixels) was applied.
Subsequently, to clean the image from noise, Butterworth
highpass filtering (Bhpf) and Gaussian filtering (Gauss) were
performed. The first-order Butterworth filter used a cut-off
radius of 50 pixels. The Gaussian filter used a smoothing
kernel with a σ of 20 pixels (Fig. 1a). To prevent the fil-
tering out of essential RPE morphology, both in the spatial
and frequency domain, the filter sizes, thresholds, and
values implemented throughout the image processing and
analysis methodology, were obtained experimentally and
based on previously published literature in the assessment
of ex vivo and in vivo morphology of RPE cells. The usual
RPE cell size varies between 10 and 14 µm (14–19 pixels
with a digital sampling of 0.73 µm) [7, 21, 22].

A lower RPE cell edge contrast characterises the OoF
areas compared with the in-focus part of the image. To
remove the defocused areas, we implemented the channel-
prior method [23] with adaptive gamma correction, which
increases the remaining image (deH) contrast. The method
allows for single-image enhancement without a priori
knowledge of its’ quality or high contrast standard images.
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Moreover, the channel-prior method produces a distance
map (Dist) (an estimation of the haze thickness at each
pixel), necessary for the vascular outline approximation.

Detection and removal of blood vessels

The detection of blood vessels is performed by using the
four previously obtained images (Bhpf, Gauss, deH, and

Dist) (Fig. 1b). Each image is subjected to Subroutine A
(SubA). SubA begins with square-shaping the image, and its
quadtree decomposition (QuaD) returns a sparse matrix
subsequently reconstructed as a block-map. The QuaD
threshold is applied at 3*SD of the image. QuaD is a
common methodology in several fields, including image
processing, being used from multiresolution decomposition
and analysis [24–26], to compression [27, 28] and machine

Fig. 1 TOPI–RPE image processing diagram, from acquisition to
single-cell masks. a. Filtering and normalization, b. Vessel detection
and removal, c. Cell detection, d. Cell segmentation, e. Single cell &

Colony metrics. (For the colour version, please refer to the online
version of the article). Suba: subroutine a. Subb: subroutine b. VOoF
Vessel and out-of-focus mask.
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learning [29, 30]. Application of QuaD for RPE cells seg-
mentation is a novel approach developed specifically for
this project. The QuaD square blocks of ≥8 pixels and ≤10%
of the original image size are included in the subsequent
image processing. After inverting (image complement), the
obtained square blocks maps, small and interconnected
structures at their external borders are discarded using
morphological filtering (erosion with a discoid element of 4-
pixel radius) followed by dilation with the same discoid
element. Finally, the last step of SubA is reshaping of the
resultant mask to the original’s image size. Supplementary
Fig. 1, Block B, presents a more in-depth depiction of the
process, where Gauss image is an example input.

The OoF mask obtained during image filtering and nor-
malisation stage is summed with the binary mean of SubA
(Bhpf), SubA(Gauss), SubA(deH), and SubA(Dist), forming the
vessel-OoF mask (VOoF). VOoF mask is used to eliminate
the infravascular RPE cells from further image processing.

Cell detection

Cell centre detection is based on the method proposed by
Khamidakh et al. [31], henceforth named Subroutine B
(SubB). In case the distance between adjacent cellular
centres is ≤10 pixels, the individual cells are detected as the
same cell. We applied SubB to Bhpf, to the contrast-limited
adaptive histogram equalised Bhpf, and to the highpass fil-
tered (18of the original image sized kernel) Bhpf. One more
time, cellular centres within ≤10 pixels are fused. Finally,
cellular centres in the distance of ≤10 pixels from the image
border are removed to prevent the inclusion of non-fully-
imaged cells in the image analysis (Fig. 1c). Supplementary
Fig. 1, Block C, presents a more in-depth graphical
demonstration of the cell detection method, with Bhpf as
its input.

Cell membrane segmentation

Detection of the cellular membrane at the single-cell level
begins with convolving Bhpf with a discoid structuring ele-
ment (radius of 4 pixels). The resultant blurring of the
image removes any possible local salt-and-pepper noise that
might occur during the transformation from the Fourier to
the spatial domain. Then, the image is convolved with a
star-shaped mask (size 7 pixels). The convolution enhances
local vertical, horizontal, and diagonal edges in the image.
The final filter is a 7 × 7-pixel Mexican hat. With these three
filtering stages followed by zero-crossing in the spatial
domain, a binary mask representing the cellular membrane
is developed. Finally, the mask is skeletonised and cleaned
from sporadic branches, while single pixels are discarded.
The inverted mask is convolved with a discoid structuring
element (radius of 4 pixels) and re-inverted (Fig. 1d). Such

a procedure improves the separation of the cells and pre-
vents their possible overlapping. An example of the process
of the cell membrane segmentation method is presented in
Supplementary Fig. 1, Block D, with the Bhpf as input.
Cellular masks not corresponding with respective cellular
centres identified during the “Cell detection” step are sub-
sequently classified as artefacts and discarded from further
analysis.

Supplementary Fig. 2 presents an example of the outputs
and intermediate results obtained throughout the segmen-
tation and analysis process.

Data analysis

Cells with area or centre overlapping with the VOoF mask
were discarded from the analysis of cellular characteristics.

Using the previously created cellular masks and the
original TOPI-obtained image, morphological and neigh-
bourhood characteristics of individual RPE cells were
assessed (Fig. 1e). MATLAB regionprops function was
used to obtain basic morphological characteristics of RPE
cells (area, centroid and weighted centroid, eccentricity,
solidity, intensity, and circularity). In addition, assessed
characteristics included the CV of RPE cellular membrane
(CMDCV) [32, 33], number of neighbouring cells and the
cellular density of the RPE layer. To decrease the possible
risk of assessment bias, RPE cells immediately adjacent to
the VOoF mask were discarded from the number of
neighbours’ evaluation. A descriptive analysis was con-
ducted for each image. Supplementary Table 2 presents the
full list of the assessed metrics, along with their definitions
and formulas.

The normality of variables was assessed with the
Shapiro–Wilk’s test (p > 0.10) and histogram skewness
(skewness −0.5–0.5).

The image processing pipeline and the underlying algo-
rithms were developed and tested, as well as data man-
agement, on a DELL workstation (DELL XPS 13 9380,
Windows 10, 64 bits, 2 1.80 GHz, 16.0 GB RAM) equipped
with the MATLAB (version R2019, with Bioinformatics
ToolboxTM, Financial ToolboxTM and Statistics and
Machine Learning ToolboxTM). Image registration was
performed with ImageJ 1.52 with a modified macro from
Laforest et al. [2], with the plugins TurboReg [34] and
Template Matching [35]. For boxplots generation and sta-
tistical analysis, we used R studio 1.2.1335 with gmodels,
e1071, readxl, and xlsx packages.

Results

Figure 2 presents the resultant analysis maps for an example
sample (number 6), where the RPE coverage was 88%.

1476 F. L. Caetano dos Santos et al.



Characteristics of the RPE layer

In all obtained image samples, the algorithm analysed a
significant image area (median 90%, interquartile rate (IQR)
9%). The discarded parts of the image areas were either
blood vessels or blurred/hazed. After discarding cells
belonging to the VOoF areas (example in Supplementary
Fig. 2—VOoF subpanel), the mean number of cells ana-
lysed per sample was 6864 (SD 869). The median observed
cellular density of the RPE layer was 3743 cells/µm2 (IQR
1687) (Table 1, Supplementary Table 3 and 4, and Sup-
plementary Fig. 3).

Characteristics of RPE single cells

The median observed RPE cell area was 193 µm2 (IQR
141). The mean number of neighbouring cells was 5.22 (SD
0.05) per RPE cell. The mean RPE cell eccentricity was
0.67 (SD 0.02). The RPE cell circularity was at a median
0.83 (IQR 0.01). The median CMDCV, denoting the distance

of each cellular membrane-depicting pixel to the cellular
centroid, was 0.19 (IQR 0.02). The median solidity of the
RPE cells was 0.92 (IQR 0.00). The median RPE cell
normalised image intensity value was 0.44 (IQR 0.04). The
mean pixel distance between morphology-based and
intensity-based RPE cellular centroids was 0.29 pixels (SD
0.06) (Table 1, Supplementary Table 3 and 4, and Supple-
mentary Fig. 3).

Performance of the image processing algorithm

The median image processing time was 48 s (IQR 12) per
image. It included digital image transformations, image
segmentation and analysis, rendering and saving metrics,
figures and graphs. The most time-consuming stage was
image processing and analysis pertaining to single-cell
detection and cellular membrane identification, accounting
for 65% of the total processing time. The second most
tedious stage was metrics calculation (23% of the total
processing time) (Table 1, Supplementary Table 3 and 4,
and Supplementary Fig. 3).

Fig. 2 Sample 6: Analysis
results, with final metrics
maps. CMDCV: coefficient of
variation of RPE cellular
membrane mask (For the colour
version, please refer to the
online version of the article).
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Discussion

Comparison of the results with the literature

The aim of the presented research was the development of
an algorithm enabling automated segmentation and analysis
of in vivo TOPI-imaged RPE cells at the single-cell level.

To the knowledge of the authors, fully automated and
user-independent in vivo RPE single-cell imaging, seg-
mentation and analysis has not been achieved before, pri-
marily because high-resolution RPE images were not
available.

The most akin method presented in the literature was a
protocol for the automated segmentation of RPE cells
images obtained with adaptive optics SLO, developed by
Rangel-Fonseca et al. [36, 37]. Some other authors pre-
sented semi-automatic protocols for the detection and seg-
mentation of RPE cells based on the localisation of cone
cell centres [38, 39], non-specific for the actual underlying
RPE cells layer. Furthermore, unlike ours, none of the three
previous methods proposes a fully automated system of
vascular outline elimination from the image processing and
analysis. Finally, our method discards the OoF region
automatically.

The observed characteristics of the RPE layer and RPE
single cells are comparable with previously published lit-
erature (Fig. 3 and Supplementary Table 3); however, the
published research data on RPE statistics are all based on
ex vivo or in vitro observations. It is thus interesting to
compare the results between human in vivo and ex vivo/
in vitro.

The observed median cellular density (3743 cells/µm2)
was within the range reported previously in the literature
(3000–5500 cells/µm2) [37, 40, 41]. Similarly, the median
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observed RPE cell area at 193 µm2 is within the reported
studies [21] (140–840 µm2). The mean number of neigh-
bouring cells was 5.22. Since mature, confluent RPE cell
colonies or layers, are commonly described in the literature
as hexagonal cobblestone conformation, denoting six
neighbours per RPE cell [6–8, 38, 42–44] (Supplementary
Table 3), this result is somehow unanticipated. Further
studies in healthy subjects and different retinal eccentricities
need to be undertaken.

The observed mean eccentricity at 0.67 was 27% higher
than in the literature [2]. The median circularity at 0.83 was
in line with the previously published circularity of 0.74 and
matching well with the theoretically ideal circularity of
0.84 shown by Bhatia et al. [7](Supplementary Table 3). To
our knowledge, both CMDCV and cell solidity were used for
the first to characterise RPE cells. Hence, a comparison of
our findings with previously published literature was not
possible.

Strengths and limitations of the study

The presented image processing method is dependent on the
high quality of the TOPI-obtained retinal images. Albeit all
images are normalised and filtered, imaging is still depen-
dent on various parameters, both intrinsic and extrinsic to
the TOPI setup. Conditional external factors to the TOPI
setup include morphological heterogeneity of eye depen-
dent on visual impairment, age and illumination conditions.

The primary strength of the study is the fully automated
analysis of the TOPI images, which allows for reproduci-
bility and replicability of the results. Another strength of the
presented image processing algorithm is a short analysis
time, acceptable both for research and for clinical purposes
(48 s per image). All 14 samples (from 11 individuals) were
able to be analysed and provide metrics both at the cell and
colony level.

The small sample size can somewhat decrease the gen-
eralisability of the findings regarding RPE cells character-
istics. Moreover, as the whole study population was
composed of healthy volunteers, the performance of the
developed image processing pipeline on patients with
degenerative diseases cannot yet be assessed.

Significance of the findings and suggestions for
future research

To our knowledge, this work is the first fully automated
image processing pipeline developed for high resolution
TOPI-obtained RPE images both at layer-level and single-
cell levels.

The presented results are a step towards the possible
implementation of automated RPE cell analysis in clinical
practice for diagnostics of several retinal diseases. The use

of non-invasive, real-time and fully automated evaluation of
the retinal cells can facilitate the work in both ophthalmo-
logical research and practice. Furthermore, the RPE cells’
assessment method proposed in this paper is time-efficient
(median of 48 s per image). Finally, the analysis of the
retinal cells’ morphology both on layer-level and single-cell
level opens new paths for eye health assessment and
follow-up.

In the future, associations between different morpholo-
gical features of the retinal cells and the type of vision
impairment should be assessed. Cross-sectional studies with
larger study populations should be conducted to validate
and assess the performance of the developed method in
adapting to the variability of the in vivo RPE layer. Fur-
thermore, to assess the system and analysis pipeline utility
in the follow-up and surveillance measure, prospective
cohort studies need to be undertaken.

Conclusions

In this study, a new fully automated image processing
method for segmentation and analysis of high-resolution
TOPI-imaged RPE cells was presented. It is the first report
on the RPE single cells in vivo characteristics. The present
study lays the groundwork for future research in the field of
clinical ophthalmology, enabling characterisation and
diagnostics of retinal diseases on the single-cell level.

Summary

What was known before

● Single cell RPE analysis is inexistent or extremely time-
consuming.

● Hard to image and analyse in vivo RPE cells.

What this study adds

● First fully automated image processing method for
segmentation and analysis of transscleral optical phase
images of in vivo RPE cells.

● Analysis at the RPE layer and single-cell level.
● New metrics in the analysis of RPE cells.

Data availability

The image processing codes and datasets generated and or
analysed during the current study are available from the
corresponding author on reasonable request and subject to
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