Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Serum metabolic signatures of high myopia among older Chinese adults

Abstract

Purpose

High myopia is associated with blinding ocular morbidities. Identifying novel biomarkers may provide clues on pathogenic pathways that are currently unknown. We aimed to identify serum metabolic biomarkers and investigate the metabolic alterations in relation to high myopia.

Methods

Forty adults with high myopia and 40 with low myopia aged 60 years or older from the Weitang Geriatric Diseases study were included in the case-control study. Refractive error was determined by autorefraction followed by subjective refraction. We performed the metabolomic analysis of serum samples from patients with high myopia and age- and sex- matched controls with low myopia, using a nontargeted gas chromatography coupled to time-of-flight mass spectrometer. The area under the receiver operating characteristic curve (AUC) was computed to assess the discrimination capacities of each metabolite marker. Databases including KEGG and MetaboAnalyst were utilized to search for the potential pathways of metabolites.

Results

Serum metabolomic profiles could well distinguish high myopia from low myopia. Twenty metabolic biomarkers were identified as potential serum biomarkers for high myopia, yielding AUC values of 0.59–0.71. Metabolic pathways in relation to high myopia, mainly characterized by increased energy metabolism, increased oxidative stress, abnormal amino acid metabolism, and altered biotin metabolism, provide a foundation to support myopia progression.

Conclusions

This study identified valuable metabolic biomarkers and pathways that may facilitate an improved understanding of the disease pathogenesis. The finding holds translational value in the development of new therapeutic measures for high myopia-related complications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Alio JL, Ruiz-Moreno JM, Shabayek MH, Lugo FL, Abd El Rahman AM. The risk of retinal detachment in high myopia after small incision coaxial phacoemulsification. Am J Ophthalmol. 2007;144:93–98. https://doi.org/10.1016/j.ajo.2007.03.043

    Article  PubMed  Google Scholar 

  2. 2.

    Pan CW, Cheng CY, Saw SM, Wang JJ, Wong TY. Myopia and age-related cataract: a systematic review and meta-analysis. Am J Ophthalmol. 2013;156:1021–33.e1. https://doi.org/10.1016/j.ajo.2013.06.005

    Article  PubMed  Google Scholar 

  3. 3.

    Pan CW. et al. Differential associations of myopia with major age-related eye diseases: the Singapore Indian Eye Study. Ophthalmology. 2013;120:284–91. https://doi.org/10.1016/j.ophtha.2012.07.065

    Article  PubMed  Google Scholar 

  4. 4.

    Pan CW. et al. Myopia, axial length, and age-related cataract: the Singapore Malay eye study. Investig Ophthalmol Vis Sci. 2013;54:4498–502. https://doi.org/10.1167/iovs.13-12271

    Article  Google Scholar 

  5. 5.

    Marcus MW, de Vries MM, Junoy Montolio FG, Jansonius NM. Myopia as a risk factor for open-angle glaucoma: a systematic review and meta-analysis. Ophthalmology. 2011;118:1989–94.e2. https://doi.org/10.1016/j.ophtha.2011.03.012

    Article  PubMed  Google Scholar 

  6. 6.

    Wong YL, Saw SM. Epidemiology of pathologic myopia in asia and worldwide. Asia-Pac J Ophthalmol. 2016;5:394–402. https://doi.org/10.1097/APO.0000000000000234

    Article  Google Scholar 

  7. 7.

    Resnikoff S, Pascolini D, Mariotti SP, Pokharel GP. Global magnitude of visual impairment caused by uncorrected refractive errors in 2004. Bull World Health Organ. 2008;86:63–70.

    Article  Google Scholar 

  8. 8.

    Pan CW, Ramamurthy D, Saw SM. Worldwide prevalence and risk factors for myopia. Ophthalmic Physiol Opt. 2012;32:3–16. https://doi.org/10.1111/j.1475-1313.2011.00884.x

    Article  PubMed  Google Scholar 

  9. 9.

    Pan CW, Dirani M, Cheng CY, Wong TY, Saw SM. The age-specific prevalence of myopia in Asia: a meta-analysis. Optom Vis Sci. 2015;92:258–66. https://doi.org/10.1097/OPX.0000000000000516

    Article  PubMed  Google Scholar 

  10. 10.

    Rudnicka AR. et al. Global variations and time trends in the prevalence of childhood myopia, a systematic review and quantitative meta-analysis: implications for aetiology and early prevention. Br J Ophthalmol. 2016; https://doi.org/10.1136/bjophthalmol-2015-307724

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Holden BA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016. https://doi.org/10.1016/j.ophtha.2016.01.006

    Article  PubMed  Google Scholar 

  12. 12.

    Morgan I, Rose K. How genetic is school myopia?. Prog Retin Eye Res. 2005;24:1–38. https://doi.org/10.1016/j.preteyeres.2004.06.004

    Article  PubMed  Google Scholar 

  13. 13.

    Sun J. et al. High prevalence of myopia and high myopia in 5060 Chinese university students in Shanghai. Investig Ophthalmol Vis Sci. 2012;53:7504–9. https://doi.org/10.1167/iovs.11-8343

    Article  Google Scholar 

  14. 14.

    Jung SK, Lee JH, Kakizaki H, Jee D. Prevalence of myopia and its association with body stature and educational level in 19-year-old male conscripts in seoul, South Korea. Investig Ophthalmol Vis Sci. 2012;53:5579–83. https://doi.org/10.1167/iovs.12-10106

    Article  Google Scholar 

  15. 15.

    Kell DB, Goodacre R. Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery. Drug Discov Today. 2014;19:171–82. https://doi.org/10.1016/j.drudis.2013.07.014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Holmes E, Wilson ID, Nicholson JK. Metabolic phenotyping in health and disease. Cell. 2008;134:714–7. https://doi.org/10.1016/j.cell.2008.08.026

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Chen L, et al. Recent advances in the applications of metabolomics in eye research. Anal Chim Acta. 2018;1037:28–40. https://doi.org/10.1016/j.aca.2018.01.060

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Kiefer AK, et al. Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia. PLoS Genet. 2013;9:e1003299. https://doi.org/10.1371/journal.pgen.1003299

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Verhoeven VJ, et al. Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. Nat Genet. 2013;45:314–8. https://doi.org/10.1038/ng.2554

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Barbas-Bernardos C, et al. Looking into aqueous humor through metabolomics spectacles—exploring its metabolic characteristics in relation to myopia. J Pharm Biomed Anal. 2016;127:18–25. https://doi.org/10.1016/j.jpba.2016.03.032

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Song E, Sun HP, Xu Y, Pan CW. Cigarette smoking and pterygium: a propensity score matching analysis. Optom Vis Sci. 2016;93:466–70. https://doi.org/10.1097/OPX.0000000000000824

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Pan CW, et al. Visual impairment among older adults in a rural community in eastern China. J Ophthalmol. 2016;2016:9620542. https://doi.org/10.1155/2016/9620542

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Pan CW, Liu H, Sun HP, Xu Y. Increased difficulties in managing stairs in visually impaired older adults: a community-based survey. PLoS ONE. 2015;10:e0142516. https://doi.org/10.1371/journal.pone.0142516

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Wu Y, et al. Myopia and depressive symptoms among older Chinese adults. PLoS ONE. 2017;12:e0177613. https://doi.org/10.1371/journal.pone.0177613

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Chylack LT Jr., et al. The lens opacities classification system III. The longitudinal study of cataract study group. Arch Ophthalmol. 1993;111:831–6.

    Article  Google Scholar 

  26. 26.

    Trygg J, Holmes E, Lundstedt T. Chemometrics in metabonomics. J Proteome Res. 2007;6:469–79. https://doi.org/10.1021/pr060594q

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Trygg J, Wold S. Orthogonal projections to latent structures (O‐PLS). J Chemom. 2002;16:119–28.

    CAS  Article  Google Scholar 

  28. 28.

    Kanehisa M, et al. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 2014;42:D199–205. https://doi.org/10.1093/nar/gkt1076

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Chong J, et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;46:W486–94. https://doi.org/10.1093/nar/gky310

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Ribelayga C, Mangel SC. A circadian clock and light/dark adaptation differentially regulate adenosine in the mammalian retina. J Neurosci. 2005;25:215–22. https://doi.org/10.1523/JNEUROSCI.3138-04.2005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Cui D, Trier K, Munk Ribel-Madsen S. Effect of day length on eye growth, myopia progression, and change of corneal power in myopic children. Ophthalmology. 2013;120:1074–9. https://doi.org/10.1016/j.ophtha.2012.10.022

    Article  PubMed  Google Scholar 

  32. 32.

    Cui D, et al. Adenosine receptor protein changes in guinea pigs with form deprivation myopia. Acta Ophthalmol. 2010;88:759–65. https://doi.org/10.1111/j.1755-3768.2009.01559.x

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Cui D, et al. Effects of 7-methylxanthine on the sclera in form deprivation myopia in guinea pigs. Acta Ophthalmol. 2011;89:328–34. https://doi.org/10.1111/j.1755-3768.2009.01688.x

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Trier K, Munk Ribel-Madsen S, Cui D, Brogger Christensen S. Systemic 7-methylxanthine in retarding axial eye growth and myopia progression: a 36-month pilot study. J Ocul Biol Dis Inform. 2008;1:85–93. https://doi.org/10.1007/s12177-008-9013-3

    Article  Google Scholar 

  35. 35.

    Copley SD, Frank E, Kirsch WM, Koch TH. Detection and possible origins of aminomalonic acid in protein hydrolysates. Anal Biochem. 1992;201:152–7. https://doi.org/10.1016/0003-2697(92)90188-d

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Yamamoto Y, Nagata Y, Katsurada M, Sato S, Ohori Y. Changes in rat plasma-free fatty acid composition under oxidative stress induced by carbon tetrachloride: decrease of polyunsaturated fatty acids and increase of palmitoleic acid. Redox Rep. 1996;2:121–5. https://doi.org/10.1080/13510002.1996.11747038

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Rabelo TK, et al. In vitro neuroprotective effect of shikimic acid against hydrogen peroxide-induced oxidative stress. J Mol Neurosci. 2015;56:956–65. https://doi.org/10.1007/s12031-015-0559-9

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Jung Y-S, et al. Synthesis and evaluation of 4-hydroxyphenylacetic acid amides and 4-hydroxycinnamamides as antioxidants. Bioorg Med Chem Lett. 2002;12:2599–602.

    CAS  Article  Google Scholar 

  39. 39.

    Harvey BS, Ohlsson KS, Maag JL, Musgrave IF, Smid SD. Contrasting protective effects of cannabinoids against oxidative stress and amyloid-beta evoked neurotoxicity in vitro. Neurotoxicology. 2012;33:138–46. https://doi.org/10.1016/j.neuro.2011.12.015

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Francisco BM, Salvador M, Amparo N. Oxidative stress in myopia. Oxid Med Cell Longev. 2015;2015:750637. https://doi.org/10.1155/2015/750637

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Yang J, et al. Changes in retinal metabolic profiles associated with form deprivation myopia development in guinea pigs. Sci Rep. 2017;7:2777. https://doi.org/10.1038/s41598-017-03075-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Wuu JA, Wen LY, Chuang TY, Chang GG. Amino acid concentrations in serum and aqueous humor from subjects with extreme myopia or senile cataract. Clin Chem. 1988;34:1610–3.

    CAS  Article  Google Scholar 

  43. 43.

    Wishart DS, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2018;46:D608–17. https://doi.org/10.1093/nar/gkx1089

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Valenciano AI, Mayordomo R, de La Rosa EJ, Hallbook F. Biotin decreases retinal apoptosis and induces eye malformations in the early chick embryo. Neuroreport. 2002;13:297–9. https://doi.org/10.1097/00001756-200203040-00010

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Dai LL, et al. Serum metabolomics profiling and potential biomarkers of myopia using LC-QTOF/MS. Exp Eye Res. 2019;186:107737. https://doi.org/10.1016/j.exer.2019.107737

  46. 46.

    Ji YH, et al. Metabolic characterization of human aqueous humor in relation to high myopia. Exp Eye Res. 2017;159:147–55. https://doi.org/10.1016/j.exer.2017.03.004

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Ke C, Pan CW, Zhang Y, Zhu X, Zhang Y. Metabolomics facilitates the discovery of metabolic biomarkers and pathways for ischemic stroke: a systematic review. Metabolomics. 2019;15:152. https://doi.org/10.1007/s11306-019-1615-1

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China under grant no. 81973061 and no. 81970800. The sponsor or funding organization had no role in the design or conduct of this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chen-Wei Pan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ke, C., Xu, H., Chen, Q. et al. Serum metabolic signatures of high myopia among older Chinese adults. Eye 35, 817–824 (2021). https://doi.org/10.1038/s41433-020-0968-z

Download citation

Further reading

  • Omics in Myopia

    • Emil Tomasz Grochowski
    • , Karolina Pietrowska
    • , Tomasz Kowalczyk
    • , Zofia Mariak
    • , Adam Kretowski
    • , Michal Ciborowski
    •  & Diana Anna Dmuchowska

    Journal of Clinical Medicine (2020)

Search

Quick links