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Recently, EYE has published few manuscripts on artificial
intelligence (Al) systems based on deep learning (DL) [1, 2].
In ophthalmology, with the exponential growth in computa-
tional power, ocular imaging quality, and increasing cap-
abilities, several groups have applied Al productively to
interpret ocular images for diagnosis, referral management,
risk stratification, and prognostication [3—6]. Clinical imple-
mentation has also begun with the first FDA-cleared Al-
equipped fundus camera for DR screening in 2018 (IDx-DR,;
IDx Technologies Inc, Coralville, IA, USA).

Many general ophthalmologists may not have a computer
science background, and traditional critical analysis skills
for clinical studies do not always directly apply to Al stu-
dies. This editorial outlines a stepwise approach to help
readers critically read the introduction, methods, results, and
discussion components of an Al paper, with a view towards
how these technologies can potentially be applied in routine
clinical practice.

The introduction of the manuscript should describe unmet
clinical needs, unique features of the Al system, and how the
Al system described aims to fulfill said clinical needs.

In the methodology, the datasets and the Al method, such
as an artificial neural network, are the two main components
required for Al-based medical image analysis. Three main
aspects need to be evaluated here: the input to the Al, the
way the Al processes the input, and the Al outputs.

(1) Input to the Al

Input data could be clinical data, medical images, geno-
mics, or all of the above, depending on the specific research
question. Fundus photography and optical coherence
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tomography (OCT) are the most commonly studied ocular
images. If the AI system is developed to process fundus
photography, the laterality, fields of view (30, 45, 50° or a
wide field), and views of the field (optic disc or macula-
centered) should be stated. For OCT-based Al studies, the
site of the eyes, direction of the scan (vertical or horizontal),
and the number of included scans (subfoveal only, central 11
cuts, or total slabs) should be stated.

Is there a minimum size required for the training dataset?
Similar to a statistical analysis in a clinical trial, Al per-
formance increases based on the volume of training data,
with some variability based on the AI’s “task”, quality of
the images, and ground truth. Thus, there is no one-answer-
fits-all answer for the quantity of data needed. Several
studies have reported ways to determine sample size needed
to develop Al models, such as estimation using a learning
curve [7]. Methods to determine the sample size needed for
the evaluation of Al include well-studied statistical power
calculations for the evaluation metric (such as sensitivity or
specificity).

(2) Al processing

DL describes multilayered artificial neural networks,
which are inspired by the human brain. The most common
type of DL method used for medical images is the con-
volutional neural network (CNN). Several types of layers that
can be found in a CNN include convolutional layers, pooling
layers, fully connected layers, and normalization layers. Each
artificial neuron contains a weight that is multiplied with its
input and frequently “thresholded” to determine whether it
should “fire”. These weights are automatically learnt during
the process of training by exposing the network to many
examples. Therefore, training a DL model does not require
the manual crafting of predictive features that is needed for
ML. To reduce the need for large labeled datasets, transfer
learning may be used to help the Al learn from other image
interpretation tasks instead of starting from scratch.

Although AI systems learn from examples during the
training process, several settings need to be prespecified
before training. These settings are called “hyperparameters”
[8], and include the learning rate, batch size, momentum, and
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weight decay. Many of these hyperparameters define how the
Al system learns from the data. Because these hyperpara-
meters require extensive trial and error, a separate “validation/
tuning” dataset is needed to fine tune these hyperparameters.

To accomplish the above, the collected datasets are
generally split into train, validation, and test sets. Because
of terminology differences between fields, the “validation
set” is sometimes called the tuning set; and the test set is
sometimes called the “clinical validation set” or “holdout
set”’. Some common options for splitting datasets are 6/2/2,
7/2/1, or 8/1/1, though these ratios are empirical. Cross-
validation can also be used to minimize the sampling bias
from splitting of datasets, though its use in development
(multiple training/validation splits) versus evaluation (mul-
tiple testing splits) has different goals and beyond the scope
of this article.

What may come as a surprise to some readers new to DL is
the complexity of the algorithm that processes the input to
produce the output. Though the exact weights and multi-
plications used are known precisely, there are typically mil-
lions or billions of such mathematical operations, which
makes understanding it difficult. As such, some have labeled
such methods a “black box”. Clinicians may understandably
be reluctant to accept research outcomes and clinical decisions
made through algorithms that are not completely understood.
Furthermore, the real-world implications are that clinicians
may still retain medico-legal accountability when using Al in
clinical decision making [9]. Thankfully, several methods
exist to understand how DL-based Al interpretes images. One
of the most commonly used methods is the occlusion-based
procedure, in which an algorithm is repeatedly tested with
parts of the input occluded to create a map showing which
parts of the data influenced the output [10, 11].

(3) Output of the Al

Al performance is evaluated by comparison with a
reference standard, which is often a widely accepted gold
standard or ground truth. The reference standard is vital in
validating an algorithm, and is often based on the agreement
of several professionals, consultant ophthalmologists,
fellowship-trained subspecialists, certified nonmedical pro-
fessional graders, or optometrists in reading centers who
have undertaken intensive training and accreditation with
reproducible and consistent outcomes.

The result section quantifies the performance of the Al
system by reporting the measures of discrimination, such as
the area under the curve (AUC), sensitivity (also called true
positive rate or recall), specificity (equivalent to 1—false
positive rate), positive predictive value (PPV), and negative
predictive value (NPV):

(1) AUC: AI performance can be described by receiver
operating  characteristic  (ROC) curves and

precision—recall curves. ROC curves summarize the
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trade-off between the true positive rate (y-axis) and
the false positive rate (x-axis) using different thresh-
olds, whereas precision—recall curves summarize the
trade-off between the PPV (y-axis) and the true
positive rate (x-axis). The AUC measures the entire
two-dimensional area underneath the ROC curve;
hence, providing an aggregate measure of perfor-
mance across all possible classification thresholds. An
algorithm with a 100% accuracy compared with the
“reference standard” has an AUC value of 1.0.

(2) Sensitivity and specificity: The rationale for how an
operating threshold is determined during the training
phase should be described and sensitivity and
specificity should be demonstrated on the independent
datasets performed at the same operating threshold.
Sensitivity and specificity are generally not influenced
by the prevalence of the disease if there is no
spectrum bias.

(3) Predictive values: PPV is the proportion of cases that
truly have the target condition among cases with
positive test results. NPV is the proportion of cases
that truly do not have the target condition among
cases with negative test results. Unlike sensitivity and
specificity, predictive values are affected by the
prevalence of the disease. PPV increases while NPV
decreases as the prevalence increases.

(4) Interrater comparisons, such as Cohen’s k value, are
used to evaluate whether there is an agreement
between interpretations. In an Al study, it is usually
used to describe the interrater agreement between an
algorithm and reference standard or human graders. It
does not reflect the true accuracy of the test.

(5) The diagnostic accuracy or the effectiveness of a test,
is the ability to discriminate between the target
condition and health correctly in binary classification.
It is calculated by the proportion of correct predictions
(including both positive and negative predictions)
among all evaluated cases. It is affected by the
prevalence of the disease. The diagnostic accuracy
generally increases as the prevalence grows. There-
fore, diagnostic accuracy or the effectiveness of a test
should be considered in a holistic manner by looking
at multiple evaluation metrics.

In the discussion, validation in a clinical setting should
be clearly stated as the ultimate goal of an ophthalmic Al
system is to enhance patient care in a real-world clinical
environment. The generalizability of the developed Al
system to external validation sets not used for Al devel-
opment should be evaluated.

Comparisons across reported Al systems are challenging
as each system’s performance has been tested using
different methodologies on different populations, with
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different input datasets. In a fair comparison, Al systems
need to be subjected to the same independent test set that is
representative of the target population, using the same
performance metrics. As this is not always possible, the
strengths and weaknesses of each paper should be reported.

Current Al systems are capable of diagnosing and staging
ocular diseases from images, such as color fundus photo-
graphs, OCT, or the visual field. Most algorithms have been
tested on limited datasets with relatively homogenous patient
populations and a selected set of imaging devices with
inclusion criteria that exclude complex pathologies or poor-
quality input data for study purposes. Real-world ocular
images inevitably include indecipherable scans from diseases
not yet medically identified or an overlap of multiple diseases.
Future studies should focus on validating algorithms on real-
world ocular images from multiple patient populations and
using various types and versions of imaging machines.

As the Al field grows in ophthalmology, there is a strong
demand for a standardized reporting format and a consensus
for judgment criteria. These standards are being established
in multiple fields of research and will help clinicians and
scientific paper peer reviewers interpret data and apply the
results to their research and clinic.
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