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Abstract
Recent advances in pharmacological agents have led to successful treatment of a variety of retinal diseases such as
neovascular age-related macular degeneration (AMD), diabetic macular oedema (DMO), and retinal vascular occlusions
(RVO). These treatments often require repeated drug injections for an extended period of time. To reduce these repeated
treatment burdens, minimally invasive drug delivery systems are needed. An ideal therapy should maintain effective levels
of drug for the intended duration of treatment following a single application, recognising that a significant number of months
of therapy may be required. There are numerous approaches under investigation to improve treatment options. This review
will highlight the advantages and limitations of selected drug delivery systems of novel biomaterial implants and depots. The
main emphasis will be placed on less invasive, longer acting, sustained release formulations for the treatment of retinal
disorders.

Introduction

Retinal diseases such as choroidal neovascularisation
(CNV) secondary to age-related macular degeneration
(AMD), diabetic macular oedema (DMO), and retinal vein
occlusions (RVO) can lead to severe visual complications
and even blindness. Treatments for these diseases often
require repeated intravitreal drug injection, where the fre-
quency and duration vary depending on the specifics of the
disease. Though the treatment provides benefits to the
patients, repeated treatment becomes a significant burden on
the patients, their families, physicians, and healthcare
system.

The anatomy of the eye makes it a challenge to deliver
therapeutic agents. Due to the blood-retinal barrier (BRB),
the eye is resistant to exposure of foreign substances, and
pharmaceutical agents trying to reach the intended ocular

tissues [1, 2]. The BRB is composed of an inner and an
outer barrier. The BRB is maintained by tight junctions at
the retinal vascular endothelium, the iris vascular epithe-
lium, and the non-pigmented ciliary epithelium and the
barrier is essential in maintaining retinal homoeostasis [3].
The outer component consists of junctional complexes of
retinal pigmented epithelium (RPE) and the pigment epi-
thelial cells of the pars plana. The inner segment consists of
tight junctions between the endothelial cells of the retinal
capillaries. Due to the blood-retinal barrier, there is
little convection of molecules since it has no cellular com-
ponents and is selectively permeable to more lipophilic
molecules [4].

The eye offers multiple entry routes through which
ocular drugs may be delivered (for review Kang-Mieler
et al. [5].). Delivery to the anterior segment of the eye may
be achieved through topical and subconjunctival routes, or
injected intracamerally. Posterior segment delivery can be
achieved topically, systemically, and periocularly (i.e.,
through sub-Tenon’s), via the suprachoroidal space, and via
intraocular (i.e., intravitreal) injections. Success of ther-
apeutic drug delivery depends on the delivery site,
tissue barriers, and the type of pharmacological agents
involved [6].

The U.S. Food and Drug Administration (FDA) has
approved several anti-vascular endothelial growth factor
(anti-VEGF) therapeutics, including pegaptanib, ranibizu-
mab, aflibercept, and most recently brolucizumab (along
with the previous off-label use of bevacizumab) to treat
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neovascular eye diseases. All of these therapies involve
treatment via intravitreal injections every month or two (or
perhaps up to 3 months with brolucizumab) for an extended
period of time. Since the introduction of anti-VEGF ther-
apy, it has become the gold standard treatment of CNV
secondary to AMD, RVO, and DMO as well. These agents
are also employed in the settings of a variety of other
inflammatory and/or degenerative causes of CNV. Though
the effective treatment efficacy, the repeated treatment
burden cannot be ignored and extended release drug
delivery systems (DDSs) are an attractive alternative to the
current therapies, especially in cases where a repeated
dosing or injection is required.

Advances in biomaterials and nanotechnology have led
to major growth in research of biodegradable microparticles
and nanoparticles, hydrogels and ocular implants, all of
which may contain ocular pharmacologic agents thereby
providing improved delivery of a variety of medications.
Furthermore, sustained release drug therapies may improve
the side effects associated with current clinical treatments
and lower the overall socio-economic impact of ocular
diseases [5]. With ever evolving approaches to targeted
delivery, ocular drug delivery is progressing at a rapid
pace. In the following review, we present recent advances
in ocular drug delivery with a focus on the posterior
segment.

Microneedles

Due to the fibrous composition and large surface area, the
sclera offers less resistance to drug diffusion which makes it
an attractive delivery site. The large surface area (~95% of
the total ocular surface area of the eye) offers the possibility
of delivering neuroprotective agents, antioxidants, or anti-
angiogenic agents to specific locations of the retina via
transcleral absorption [7]. Studies have shown that mole-
cules up to 70 kDa can readily penetrate the sclera, whereas
through the cornea it is less than 1 kDa [8]. A major chal-
lenge of transcleral delivery is that with high drug clearance
mechanisms and static, dynamic, and metabolic barriers, an
effective drug concentration within the eye may not be
readily achieved [9].

Microneedles enable minimally invasive delivery of free
or encapsulated drug. Clearside Biomedical (Alpharetta,
GA, USA) developed a microneedle and injector that
administers a suprachoroidal injection of corticosteroid
triamcinolone acetonide (CLS-TA), which is Clearside
Biomedical’s proprietary suspension of TA. The injector
allows for consistent insertion of microneedle into the
suprachoroidal space. Thus, this method reduces the risks
commonly associated with intravitreal injections, including

potential for retinal damage [10]. Due to the small surface
area of the microneedle, this system is limited to small
molecules and microneedles cannot always deliver a ther-
apeutic dose. Clearside Biomedical recently presented the
Phase 3 PEACHTREE trial of CLS-TA in patients with
macular oedema associated with noninfectious uveitis
[10, 11]. The study met the primary endpoint, where 46.9%
of patients-receiving treatment had an increase in visual
acuity from baseline as compared to only 15.6% of the
control patients [10, 11]. As for safety, 11.5% of treated
patients had increased intraocular pressure (IOP) but the
control patients did not have any increases [10]. CLS-TA
improved macular oedema in uveitis patients and vast
majority of patients did not require rescue therapy.

Clearside Biomedical also conducted a Phase 2 clinical
trial (TYBEE) for a combination therapy of suprachoroidal
CLS-TA with intravitreal injections of aflibercept with
patients with macular oedema (DME) over a 6-months
evaluation period [12]. The goal was to deliver a combi-
nation of TA and anti-VEGF to reduce the number of re-
treatments. Patients received either quarterly treatment of
CLS-TA and intravitreal aflibercept (months 0 and 3) or
four monthly treatment of intravitreal aflibercept with a
sham suprachoroidal procedure (months 0, 1, 2, and 3). If
needed, either group received intravitreal aflibercept at
months 4 and 5. The trial met its primary endpoint of mean
improvement in best corrected visual acuity (BCVA) from
baseline to 6 months using the Early Treatment of Diabetic
Retinopathy Trial (ETDRS) scale. Patients gained on
average of 12.3 ETDRS letters compared to 13.5 ETDRS
letters in the control group [12]. The study also met its
secondary endpoint with a mean reduction from baseline of
208 µm in central subfield thickness at 6 months [12]. Based
on the success of Phase 2 study, they are undertaking a
Phase 3 study of the combination therapy.

In addition, Clearside Biomedical recently announced
that they have granted exclusive worldwide option and
licence agreement to REGENXBIO (Rockville, MD, USA)
for in-office delivery of RGX-314 gene therapy to suppress
VEGF activity in patients with wet AMD and diabetic
retinopathy [13].

Microcannulation or microcatheter

Microcannulation or microcatheter was originally designed
for canaloplasty [14, 15], but the technology is now being
investigated for ocular drug delivery system to the supra-
choroidal space. The iTrack microcathether (iScience Inter-
ventional, Menlo Park, CA, USA) includes an optical fibre
for light illumination for easy insertion guidance. Olsen and
colleagues demonstrated in their pharmacokinetic study that
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triamcinolone acetonide (TA) remained in the pig ocular
tissue for at least 120 days with low systemic levels [16].
Histopathology showed maintenance of normal anatomy.
They concluded that the suprachoroidal space accessed by
the microcannulation is safe and reproducible. They also
examined the pharmacokinetics of bevacizumab between
intravitreal and suprachoroidal injection in pigs [17]. They
reported that intravitreal injection of bevacizumab dis-
tributed more to the inner retina, where suprachoroidal
injection distributed to the choroid, RPE, and photoreceptor
outer segments. Rizzo and colleagues evaluated the safety
and efficacy of suprachoroidal delivery of a combination of
bevacizumab and TA via microcatheter in chronic macular
oedema [18]. BCVA improved by two lines or greater in
four eyes and remained stable in two eyes [18]. At
1–2 months after administration, hard exudates were almost
completely resolved in all eyes, and macular oedema was
significantly reduced. There were no surgical or post-
operative complications during 12 months of follow-up.

Though the early studies were encouraging, use of a
microcatheter to deliver anti-VEGF alone is not a viable
option due to high clearance of agent in the choroidal cir-
culation and limited ability to penetrate the retina. Recently,
a microcatheter was used for the delivery of stem cell
transplantation into the subretinal space. Jassen Biotech Inc.
(Horsham, PA, USA) conducted Phase 1/2 clinical cell
therapy of human umbilical tissue-derived cells (CNTO
2476) in geographic atrophy secondary to AMD [19]. A
suspension of CNTO 2476 was delivered into the subretinal
space near the macular geographic atrophy through a
sclerotomy and choroidotomy [20]. They reported that the
eyes that received the treatment improved 4–5 letters while
the untreated eyes lost two letters. They reported a 15% rate
of retinal detachment but no other negative side effects were
noted [20]. Recently, Ehab El Rayes used a microcatheter to
deliver a fluocinolone acetonide (Iluvien®) implant into the
subretinal space for chronic DMO treatment [21, 22]. Using
a flexible-tipped disposable cannula (Olive Tip (El Rayes)
SC Cannula, MedOne Surgical, Sarasota, FL, USA), they
investigated optimal location and efficacy with the injection
technique. With 8 months follow-up, they noted no injec-
tion complications, no increase in IOP, and no lens changes
in the phakic patients [22]. The study is still ongoing. The
use of microcathether and suprachoroidal space is still
evolving.

Intravitreal implants

Intravitreal injection provides the most direct mode for
delivering therapeutic levels of drug into the eye. The
intravitreal injection is an office-based procedure in the

United States though does have a finite number of injection-
related complications such as endophthalmitis, retinal
detachment, uveitis, cataract, and glaucoma [23, 24].
Intraocular implants have many advantages over more tra-
ditional methods of drug administration to the eye, includ-
ing delivering a known dose of sustained therapeutic agent
directly to the target site and bypassing the blood-ocular
barrier. Sustained-release intravitreal implants may also
decrease the risk of infection or retinal detachment and
potentially localise the therapy to the vitreous, with low
systemic exposure [25–27].

The ganciclovir implant (Vitrasert®, Bausch & Lomb,
Rochester, NY, USA) was the first FDA approved
implantable device used for the treatment of cytomegalo-
virus (CMV) retinitis. Due to controlled release rates, active
drug concentrations remain well below toxic levels and
higher concentrations of the drug may be achieved with
limited systemic side effects [4, 28]. With the original
success of the ganciclovir implant, numerous biodegradable
and non-biodegradable implants are either clinically in use
or in development.

Encapsulated cell technology

Neurotech Pharmaceuticals, Inc. (Cumberland, RI, USA)
has been developing NT-501 (Renexus®), an encapsulated
cell technology that allows for delivery of ciliary neuro-
trophic factor (CNTF) [29]. NT-501 is an implantable
polymeric device containing a genetically modified cell line
that secretes CNTF for the potential treatment of retinitis
pigmentosa (RP) and dry AMD [29]. Genetically modified
human RPE cells secrete recombinant human CNTF and are
packaged in a hollow tube capsule consisting of a semi-
permeable membrane surrounding a scaffold of six strands
of polyethylene terephthalate yarn, which can be loaded
with cells. The capsule prevents immune cell entry
yet allows nutrients and therapeutic molecules to diffuse
freely across the membrane [30, 31]. Two ends of the
polymer section are sealed, and a titanium loop is placed on
the anchoring end, which is implanted at the pars plana and
anchored to the sclera. Despite its invasive implantation and
surgical removal procedure, this system is theoretically
versatile for different cell lines and protein therapeutics with
controlled, continuous, and sustained release [32]. Neuro-
tech’s original study of dry AMD and RP did not meet the
primary endpoint and they are no longer actively investi-
gating these indications. However, they redirected the use of
NT-501 for Macular Telangiectasia and glaucoma [33, 34].
The recent Phase 2 study of MacTel type 2 showed that
NT-501 treatment slowed the progression of retinal
degeneration compared to the sham group [35]. Patients
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were randomised 1:1 to surgical implantation or sham
procedure. In addition to retinal functional benefit, reading
speed was stabilised in patients receiving the implant [35].
They are currently enroling patients in a Phase 3 clinical
trial. Based on their positive results, the FDA granted Fast
Track designation for the treatment of MacTel 2.

Solid corticosteroid implants

Solid ocular implants eliminate the need for repetitive
treatments by administering drug for prolonged periods of
time. EyePoint Pharmaceuticals (Watertown, MA, USA)
developed a solid polymer implant called Durasert™. This
implant can release small molecules for up to three years.
The implant is only 3.5 mm in length and 0.37 mm in dia-
meter, allowing it to be injected through a small gauge
needle. The Durasert™ technology has been approved by
the FDA for the following products: Iluvien® (fluocinolone
acetonide intravitreal implant), Retisert® (fluocinolone
acetonide intravitreal implant), and Vitrasert® (ganciclovir).
The properties of this system allow for the customisation of
release duration, linear release kinetics, and high drug
loading [36, 37].

Fluocinolone acetonide intravitreal implant (Retisert®,
Bausch & Lomb, Inc., Rochester, NY, USA) has been
previously approved by the FDA for the treatment of
chronic non-infectious posterior uveitis [38]. It is a non-
biodegradable delivery system composed of 0.59 mg fluo-
cinolone acetonide core compressed into a 1.5 mm tablet
encased in a silicone elastomer cup containing a release
orifice. A semi-permeable layer of polyvinyl alcohol (PVA)
coats the tablet inside the cup reservoir near the release
orifice creating a membrane between the tablet and the
orifice that serves as an additional barrier to drug release.
Retisert is capable of release for up to 2.5 years with an
initial rate of 0.6 μg/day, decreasing over the first month to a
steady-state release of 0.3–0.4 μg/day [39].

Iluvien® (Alimera Sciences, Alpharetta, GA, USA) is
also a fluocinolone acetonide intravitreal insert designed for
the treatment of DMO. It is injectable through a 25-gauge
inserter in an office setting [40]. Iluvien is a small cylind-
rical (3.5 mm × 0.37 mm) polyimide tube that releases a low
dose of fluocinolone acetonide (0.23–0.45 μg/day) for
18–36 months after injection. Like Retisert, Iluvien does not
degrade and remains in the vitreous cavity after its drug
release has been exhausted [40]. Therefore, patients
requiring repeat injections may end up with multiple devi-
ces within the vitreous cavity.

Ozurdex®, which releases dexamethasone (Allergan,
Inc., Irvine, CA, USA) is FDA-approved to treat macular
oedema following branch and central RVOs, macular
oedema secondary to noninfectious posterior segment

uveitis, and chronic pseudophakic DME as well. The
implant contains 0.7 mg dexamethasone in a biodegradable,
solid poly lactic-co-glycolic acid (PLGA) drug delivery
system and is preloaded into a single-use, specially
designed 22 gauge applicator to facilitate injection of the
rod-shaped implant directly into the vitreous cavity [41].
Although it has a relatively short duration of action of about
1 month, the therapeutic effect seems to last much longer, as
seen in a Phase 2 clinical study where therapeutic effects
persisted at 180 days in some eyes [41]. Currently, these
solid corticosteroid implants are FDA approved in USA.

Polymeric nanoparticles and microparticles

Nanoparticle (ranging in size from 10 nm to 1 µm) and
microparticle (ranging from 1 to 1000 µm) systems are
attractive drug delivery platforms due to the wide avail-
ability of different materials (natural or synthetic) that can
be tailored for specific drugs and applications. Synthetic,
biodegradable polymers are commonly used to synthesise
particles because they are biocompatible and hydro-
lytically degradable with byproducts that can be metabo-
lised by the human body [42]. Since polymers are fully
biodegradable, no removal surgery is required once drug
release is complete [43]. Nanoparticles and microparticles
have the ability to encapsulate both hydrophilic and
hydrophobic molecules, proteins, peptides, vaccines, and
biological macromolecules. Their characteristics can be
tailored for specific use through modification of polymer
composition and ratios, polysaccharide blending, and
surface modifications [44]. However, major challenges for
particle systems are low protein encapsulation efficiency
(usually <30% for nanoparticles and <60% for micro-
particles), high initial bursts (20–50% of encapsulated
protein in first 24 h), incomplete release of the entrapped
proteins, and loss of protein drug bioactivity during release
[45–47].

Varshochian et al. developed albuminated PLGA nano-
particles for sustained delivery of bevacizumab [48, 49].
The nanoparticles (~200 nm) were fabricated by water-in-
oil-in-water (w/o/w) double emulsion using albumin as a
stabiliser. Their recent studies in rabbits showed that vitr-
eous concentration of bioactive bevacizumab was main-
tained above 500 ng/ml for about 8 weeks after single
intravitreal injection [48, 49]. Bevacizumab-loaded PLGA
microparticles (2–7 µm in diameter) were also fabricated
using solid-in-oil-in-water (s/o/w) method by Ye et al. [50].
A significantly prolonged half-life of bevacizumab in the
vitreous humour (9.6 days) and aqueous humour
(10.2 days) has been achieved in New Zealand albino-rab-
bits, compared to 3.91 days in the vitreous humour and
4.1 days in the aqueous humour for free drug [50].
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Graybug Vision, Inc (Redwood City, CA, USA) has
developed injectable PLGA microparticles for applications
involving both the posterior and anterior segments. Their
microparticles platform allows drug release profiles without
initial burst of drug and can be modified to deliver drug for
up to several months [51]. GB-102 is a microparticle depot
formulation of sunitinib malate, a small molecule receptor
tyrosine kinase inhibitor (TKI). Their recent Phase 1/2a
study investigated 32 patients from eight centres in US [52].
Patients were previously treated with at least three prior
intravitreal injection of an anti-VEGF agent. They received
a single intravitreal injection of GB-102 (0.25, 0.5, 1, or 2
mg). They reported that 50–88% of patients (depend on
dose cohorts) required no additional injections of anti-
VEGF agent for 6 months. They are initiating a Phase 2 wet
AMD study where two doses of GB-102 (1 and 2 mg)
administered every six months compared to aflibercept
administered every two months [53].

Hydrogel delivery systems

Ocular Therapeutix (Bedford, MA, USA) is developing an
injectable and bioresorbable hydrogel technology for sus-
tained anti-VEGF delivery in collaboration with Regeneron
(Tarrytown, NY, USA). They are investigating the feasi-
bility of OTX-IVT for sustained delivery of aflibercept for
4–6 months targeting wet AMD and other retinal neovas-
cular diseases [54]. Since the announcement of collabora-
tion, no study updates have been released.

They are also developing a sustained-release tyrosine
kinase inhibitor (TKI) implant based on their bioresorbable
hydrogel (OTX-TKI). The implant is designed to deliver
TKI for a duration of up to 12 months [55]. Preclinical data
demonstrated that OTX-TKI can deliver TKI to the pos-
terior segment with sustained pharmacokinetic effects for
the treatment of VEGF-induced retinal leakage for a dura-
tion of up to 12 months. Ocular Therapeutix initiated an
external US Phase 1 study in Sydney, Australia [56]. The
Phase 1 trial is a multicenter, open-label study testing the
safety, durability, and tolerability of OTX-TKI. They study
will evaluate the retinal thickness and visual acuity.

Thermoresponsive hydrogels are a particularly attractive
means of extended drug delivery, as it only requires a
minimally invasive intravitreal injection, which then
employs temperature change as a trigger for gelation and
swelling. At room temperature, these hydrogels are
designed as a solution or have a fluid-like consistency. After
injection into the eye, they solidify into a solid form upon
reaching body temperature [57, 58]. These hydrogels
usually have a sharp volume phase transition temperature at
~30–33 °C, which makes them ideal candidates for loca-
lised and extended drug delivery [59]. Kang-Mieler at al.

have developed a poly(N-isopropylacrylamide) (PNI-
PAAm) based thermoresponsive hydrogel by crosslinking
PNIPAAm with either poly(ethylene glycol) diacrylate
(PEG-DA) or poly(ethylene glycol)-co-(L-lactic acid) dia-
crylate (PEG-PLLA-DA) through free radical polymerisa-
tion [59, 60]. Their thermoresponsive system has been
shown to be capable of localised release of bevacizumab or
ranibizumab for about a month and induced no long-term
effects on retinal function [60, 61]. Additionally, controlled
degradation and complete release from theses hydrogels
was achieved by incorporating biodegradable copolymer
and other additives [60].

Wang et al. used copolymer poly (2-ethyl-2-oxazoline)-b-
poly (ε-caprolactone)-b-poly (2-ethyl-2-oxazoline) (PEOz-
PCL-PEOz) to make biodegradable thermoresponsive
hydrogels for extended release of bevacizumab [62]. They
demonstrated biocompatibility in vitro and in vivo with a
human retinal pigment epithelial cell line in a rabbit model
for two months, respectively [62]. Bioactive bevacizumab
from hydrogels for one month in vitro was established,
although no in vivo efficacy data on animal models have
been reported [62].

Instead of using stimuli to initiate gelation after injection,
in situ hydrogels can be used to achieve a sustained deliv-
ery. These in situ hydrogels spontaneously form through
coupling of reactive species at the injection site [57]. These
systems are typically formulated such that the hydrogel
precursor is mixed immediately prior to use and the injected
pre-gel reacts to form a cohesive network. Loading with
adjustable drug dosage can be achieved for these hydrogels
since most protein drugs are hydrophilic and can be com-
pletely dissolved into the aqueous precursor at desirable
concentrations. In addition, since the procedure does not use
initiator, better protein stability and biocompatibility can be
anticipated [57].

Recently, vinyl sulphone functionalised hyaluronic acid
(HA-VS)-thiolated dextran (Dex-SH) in situ forming hydro-
gels have been developed by Yu et al. for controlled delivery
of bevacizumab [63]. The bevacizumab-containing polymer
solutions were injected into rabbit eyes and then chemically
cross-linked into transparent hydrogels at physiological
conditions. Binocular indirect ophthalmoscope (BIO) ima-
ges, full-field electroretinogram (ERG), and histology
showed that the hydrogels were safe for rabbit eyes after
injections. They also reported that the concentration of bev-
acizumab was ~107 times higher than bolus injection [63].

Composite drug delivery systems (DDS)

Although injectable polymeric nanoparticles and micro-
particles provide controllable and sustained drug release,
one of the challenges is to localise them to the injection site

Advances in ocular drug delivery systems 1375



in the eye. It has been shown that normal eyes can clear
microparticles within 50 days and vitrectomised eyes can
clear microparticles within 14 days [64]. To limit particle
movement in the eye, injectable hydrogels can be good
candidates as second carrier for nano and microparticles to
provide localised and extended drug release after injection
[65]. This composite DDS, a mixture of micro-/nano-par-
ticles and hydrogel, also offer advantages over both parti-
cles and hydrogels alone by further extending release and
reducing initial burst [66, 67]. In addition, both proteins and
small molecules can be encapsulated into particles and
hydrogels in a variety of ways to enhance delivery potential.

Recently, this strategy has been validated by Kang-
Mieler et al. who have combined their injectable
PNIPAAm-based thermo-responsive hydrogel with PLGA
microspheres to create a microsphere-hydrogel composite
DDS [66–68]. Figure 1 shows a schematic demonstrating
their composite DDS, where drug-loaded microspheres are
suspended in their injectable thermoresponsive hydrogel.
Their DDS was able to encapsulate ranibizumab or afli-
bercept and release them in a controlled manner for
~200 days [67, 68]. In vitro bioactivity during release and
in vivo efficacy in laser-induced CNV rodent model have
been established [69, 70]. By controlling the amounts of
microspheres suspended within the hydrogel, the total
amount of drug delivered to the retina can be controlled
without changing the volume and injectability of the sys-
tem. By introducing hydrolytically degradable polymer poly
(ethylene glycol)-co-(L-lactic acid) diacrylate to PNIPAAm-
based hydrogels, they were able to make their hydrogel also
biodegradable. It was found that this microsphere-hydrogel
DDS was biocompatible and at the same time capable of
release bioactive aflibercept for 6 months in vitro [70].
Currently, Kang-Mieler and colleagues are working on

safety and treatment efficacy of their composite DDS in
non-human primate models.

Port delivery system (PDS)

ForSight VISION4, Inc. (Menlo Park, CA, USA) developed
the PDS and licensed the technology to Genentech, Inc.
(South San Francisco, CA, USA). The PDS is a non-
degradable, refillable implant that is surgically inserted into
the vitreous. A self-sealing septum in the centre of the
implant allows refill of the drug reservoir without the need
to remove the implant. Ranibizumab diffuses passively
down a concentration gradient from the implant reservoir
into the vitreous. The passive diffusion is controlled through
a porous metal release control element specifically designed
for ranibizumab [71]. One of the biggest advantages of PDS
is that on-demand refills can be performed in an in-office
procedure using a customised exchange needle. The repla-
cement with new drug not only maintains drug potency, but
also provides reproducible and predictable drug release after
each refill. However, since the drug reservoir is non-bio-
degradable, both surgical implantation and removal are
required which may increase risks of complications [72].
Recent Phase 2 data in the treatment of choroidal neo-
vascularization secondary to AMD has shown that the
median time to refill was 8.7, 13.0, and 15.0 months in the
PDS 10 mg/ml, PDS 40 mg/ml, and PDS 100 mg/ml,
respectively [71]. The data also demonstrated that the PDS
100 mg/ml arm had visual and anatomic outcomes com-
parable with monthly intravitreal ranibizumab injection
group based on the adjusted mean BCVA [71]. The implant
insertion and refill procedures were well tolerated by the
patients. A phase 3 clinical trial in the realm of AMD has

Fig. 1 Schematic of aflibercept-loaded microsphere-hydrogel
composite DDS. Aflibercept loaded PLGA microspheres are fabri-
cated using Kang-Mieler modified double-emulsion, solvent
evaporation technique. A poly(N-isopropylacrylamide) (PNIPAAm)-
based thermoresponsive hydrogel precursors are mixed with poly

(ethylene glycol)-co-(L-lactic acid) diacrylate (PEG-PLLA-DA)
copolymer. The composite DDS is produced by suspending micro-
spheres in hydrogel precursors and polymerisation is initiated by
introducing ammonium persulfate (APS) and N,N,N′N′-tetra-
methylethylenediamine (TEMED).
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recruited its intended number of patients, and follow-up is
currently ongoing. A more recent study looking at DMO
has also been initiated.

Conclusion

Due to the ocular barriers, optimal drug delivery to the
posterior segment of the eye still remains a big challenge.
An ideal delivery system should maintain effective drug
levels for the intended duration of treatment following a
single application. Table 1 summarises a variety of drug
delivery systems such as microneedles, microcatheters, the
port delivery system, microspheres, nanoparticles, hydro-
gels, and composite applications. Each technology has its
own advantages and limitations. The effectiveness will
depend on the drug type and application.

Future improvements in drug delivery will evolve along
two fronts: the development of new pharmacologic agents,
and/or more effective delivery of currently available agents.
Emphasis will most likely continue to be placed on less
invasive, longer acting, and sustained-release formulations.
With the recent progress in the field of biomaterials and
nanotechnology, there is great promise and potential that
these sustained ocular drug delivery systems will sig-
nificantly impact the standard of care for a variety of clinical
conditions in the near future.
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