Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Characteristics of Geographic atrophy in an elderly UK population—The Bridlington Eye Assessment Project (BEAP): a cross-sectional study (2002–2006)

Abstract

Background/objectives

Geographic atrophy (GA) is a common cause of visual loss. The UK population prevalence is unknown. We studied GA prevalence, characteristics, and associations in an elderly UK population.

Methods

Masked grading of colour fundus photographs from 3549 participants in the cross-sectional study of Bridlington residents aged ≥65 years. GA size, shape and foveal involvement were correlated with demography and vision.

Results

GA was detected in 130 eyes (101 individuals) of 3480 participants with gradable images (prevalence 2.90%; 95% CI 2.39–3.52 either eye), was bilateral in 29/3252 subjects (0.89%, 95% CI 0.62–1.28) with bilateral gradable photos, with mean age of 79.26 years (SD 6.99, range 67–96). Prevalence increased with age, from 1.29% (95% CI 0.69–2.33) at 65–69 to 11.96% (95% CI 7.97–17.50) at 85–90 years. Mean GA area was 4.51 mm2 (SD 6.48, 95% CI 3.35–5.66); lesions were multifocal in 47/130 eyes (36.2%; 95% CI 28.4–44.7). Foveal involvement occurred in 41/130 eyes (31.5%; 95% CI 24.2–40.0). In eccentric GA, mean distance from circumference to fovea was 671μm (SD 463; 95% CI 570–773). Older age (OR 1.10/year increase; 95% CI 1.06–1.14), RPD (OR 1.87; 95% CI 1.10–3.19) and large drusen/RPD ≥ 125 μm (OR 6.16; 95% CI 3.51–10.75) were significantly associated with GA in multivariate analysis. GA lesions (18/31 eyes; 58%; 95% CI 40.7–73.6) had U-shape configuration more frequently in RPD subjects than those without (9/99 eyes, 9.1%; 95% CI 4.66–16.6) (p = 0.0001).

Conclusion

GA, commonly solitary and eccentric, occurred in the perifovea. However, one third of GA eyes had foveal and bilateral involvement. Possible association of RPD with GA phenotype exists. Population multimodal imaging studies may improve understanding further.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Typical U-shaped GA with foveal preservation and the presence of dot RPD which are most prominent superotemporally, with an extension of the GA seen in that direction.
Fig. 2: Multifocal GA.
Fig. 3: Dot reticular pseudodrusen (RPD) are visible.

References

  1. 1.

    Congdon N, O’Colmain B, Klaver CC, Klein R, Munoz B, Friedman DS, et al. Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol. 2004;122:477–85.

    PubMed  Google Scholar 

  2. 2.

    Klaver CC, Wolfs RC, Vingerling JR, Hofman A, de Jong PT. Age-specific prevalence and causes of blindness and visual impairment in an older population: the Rotterdam Study. Arch Ophthalmol. 1998;116:653–8.

    CAS  PubMed  Google Scholar 

  3. 3.

    Sunness JS, Gonzalez-Baron J, Applegate CA, Bressler NM, Tian Y, Hawkins B, et al. Enlargement of atrophy and visual acuity loss in the geographic atrophy form of age-related macular degeneration. Ophthalmology. 1999;106:1768–79.

    CAS  PubMed  Google Scholar 

  4. 4.

    Gass JD. Drusen and disciform macular detachment and degeneration. Arch Ophthalmol. 1973;90:206–17.

    CAS  PubMed  Google Scholar 

  5. 5.

    Schmitz-Valckenberg S, Fleckenstein M, Helb HM, Charbel Issa P, Scholl HP, Holz FG. In vivo imaging of foveal sparing in geographic atrophy secondary to age-related macular degeneration. Investig Ophthalmol Vis Sci. 2009;50:3915–21.

    Google Scholar 

  6. 6.

    Sunness JS. The natural history of geographic atrophy, the advanced atrophic form of age-related macular degeneration. Mol Vis. 1999;5:25.

    CAS  PubMed  Google Scholar 

  7. 7.

    Sunness JS, Rubin GS, Applegate CA, Bressler NM, Marsh MJ, Hawkins BS, et al. Visual function abnormalities and prognosis in eyes with age-related geographic atrophy of the macula and good visual acuity. Ophthalmology. 1997;104:1677–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Sunness JS, Rubin GS, Zuckerbrod A, Applegate CA. Foveal-sparing scotomas in advanced dry age-related macular degeneration. J Vis Impair Blind. 2008;102:600–10.

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Sunness JS, Margalit E, Srikumaran D, Applegate CA, Tian Y, Perry D, et al. The long-term natural history of geographic atrophy from age-related macular degeneration: enlargement of atrophy and implications for interventional clinical trials. Ophthalmology. 2007;114:271–7.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Calabrese A, Bernard JB, Hoffart L, Faure G, Barouch F, Conrath J, et al. Wet versus dry age-related macular degeneration in patients with central field loss: different effects on maximum reading speed. Investig Ophthalmol Vis Sci. 2011;52:2417–24.

    Google Scholar 

  11. 11.

    Mauschitz MM, Fonseca S, Chang P, Gobel AP, Fleckenstein M, Jaffe GJ, et al. Topography of geographic atrophy in age-related macular degeneration. Investig Ophthalmol Vis Sci. 2012;53:4932–9.

    Google Scholar 

  12. 12.

    Jonasson F, Arnarsson A, Peto T, Sasaki H, Sasaki K, Bird AC. 5-year incidence of age-related maculopathy in the Reykjavik Eye Study. Ophthalmology. 2005;112:132–8.

    PubMed  Google Scholar 

  13. 13.

    Jonasson F, Arnarsson A, Sasaki H, Peto T, Sasaki K, Bird AC. The prevalence of age-related maculopathy in iceland: Reykjavik eye study. Arch Ophthalmol. 2003;121:379–85.

    PubMed  Google Scholar 

  14. 14.

    Joachim N, Mitchell P, Rochtchina E, Tan AG, Wang JJ. Incidence and progression of reticular drusen in age-related macular degeneration: findings from an older Australian cohort. Ophthalmology. 2014;121:917–25.

    PubMed  Google Scholar 

  15. 15.

    Klein R, Klein BE, Linton KL. Prevalence of age-related maculopathy. The Beaver Dam Eye Study. Ophthalmology. 1992;99:933–43.

    CAS  PubMed  Google Scholar 

  16. 16.

    Klein R, Meuer SM, Knudtson MD, Klein BE. The epidemiology of progression of pure geographic atrophy: the Beaver Dam Eye Study. Am J Ophthalmol. 2008;146:692–9.

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Mitchell P, Wang JJ, Foran S, Smith W. Five-year incidence of age-related maculopathy lesions: the Blue Mountains Eye Study. Ophthalmology. 2002;109:1092–7.

    PubMed  Google Scholar 

  18. 18.

    Sunness JS, Gonzalez-Baron J, Bressler NM, Hawkins B, Applegate CA. The development of choroidal neovascularization in eyes with the geographic atrophy form of age-related macular degeneration. Ophthalmology. 1999;106:910–9.

    CAS  PubMed  Google Scholar 

  19. 19.

    Yehoshua Z, Rosenfeld PJ, Gregori G, Feuer WJ, Falcao M, Lujan BJ, et al. Progression of geographic atrophy in age-related macular degeneration imaged with spectral domain optical coherence tomography. Ophthalmology. 2011;118:679–86.

    PubMed  Google Scholar 

  20. 20.

    Klein ML, Ferris FL 3rd, Armstrong J, Hwang TS, Chew EY, Bressler SB, et al. Retinal precursors and the development of geographic atrophy in age-related macular degeneration. Ophthalmology. 2008;115:1026–31.

    PubMed  Google Scholar 

  21. 21.

    Wilde C, Poostchi A, Mehta RL, MacNab HK, Hillman JG, Vernon SA, et al. Prevalence of age-related macular degeneration in an elderly UK Caucasian population-The Bridlington Eye Assessment Project: a cross-sectional study. Eye. 2017;31:1042–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Fleckenstein M, Schmitz-Valckenberg S, Lindner M, Bezatis A, Becker E, Fimmers R, et al. The “diffuse-trickling” fundus autofluorescence phenotype in geographic atrophy. Investig Ophthalmol Vis Sci. 2014;55:2911–20.

    Google Scholar 

  23. 23.

    Arnold JJ, Sarks SH, Killingsworth MC, Sarks JP. Reticular pseudodrusen. A risk factor in age-related maculopathy. Retina. 1995;15:183–91.

    CAS  PubMed  Google Scholar 

  24. 24.

    Marsiglia M, Boddu S, Bearelly S, Xu L, Breaux BE Jr., Freund KB, et al. Association between geographic atrophy progression and reticular pseudodrusen in eyes with dry age-related macular degeneration. Investig Ophthalmol Vis Sci. 2013;54:7362–9.

    Google Scholar 

  25. 25.

    Xu L, Blonska AM, Pumariega NM, Bearelly S, Sohrab MA, Hageman GS, et al. Reticular macular disease is associated with multilobular geographic atrophy in age-related macular degeneration. Retina. 2013;33:1850–62.

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Pumariega NM, Smith RT, Sohrab MA, Letien V, Souied EH. A prospective study of reticular macular disease. Ophthalmology. 2011;118:1619–25.

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Sunness JS, Bressler NM, Tian Y, Alexander J, Applegate CA. Measuring geographic atrophy in advanced age-related macular degeneration. Investig Ophthalmol Vis Sci. 1999;40:1761–9.

    CAS  Google Scholar 

  28. 28.

    Schmitz-Valckenberg S, Sahel JA, Danis R, Fleckenstein M, Jaffe GJ, Wolf S, et al. Natural history of Geographic atrophy progression secondary to age-related macular degeneration (Geographic Atrophy Progression Study). Ophthalmology. 2016;123:361–8.

    PubMed  Google Scholar 

  29. 29.

    Sarks SH. Drusen patterns predisposing to geographic atrophy of the retinal pigment epithelium. Aust J Ophthalmol. 1982;10:91–7.

    CAS  PubMed  Google Scholar 

  30. 30.

    Sarks JP, Sarks SH, Killingsworth MC. Evolution of geographic atrophy of the retinal pigment epithelium. Eye. 1988;2:552–77.

    PubMed  Google Scholar 

  31. 31.

    Grunwald JE, Pistilli M, Ying GS, Maguire MG, Daniel E, Martin DF, et al. Growth of geographic atrophy in the comparison of age-related macular degeneration treatments trials. Ophthalmology. 2015;122:809–16.

    PubMed  Google Scholar 

  32. 32.

    Bressler NM, Bressler SB, West SK, Fine SL, Taylor HR. The grading and prevalence of macular degeneration in Chesapeake Bay watermen. Arch Ophthalmol. 1989;107:847–52.

    CAS  PubMed  Google Scholar 

  33. 33.

    Joachim N, Mitchell P, Kifley A, Rochtchina E, Hong T, Wang JJ. Incidence and progression of geographic atrophy: observations from a population-based cohort. Ophthalmology. 2013;120:2042–50.

    PubMed  Google Scholar 

  34. 34.

    Klaver CC, Assink JJ, van Leeuwen R, Wolfs RC, Vingerling JR, Stijnen T, et al. Incidence and progression rates of age-related maculopathy: the Rotterdam Study. Investig Ophthalmol Vis Sci. 2001;42:2237–41.

    CAS  Google Scholar 

  35. 35.

    Bunce C, Xing W, Wormald R. Causes of blind and partial sight certifications in England and Wales: April 2007–March 2008. Eye. 2010;24:1692–9.

    CAS  PubMed  Google Scholar 

  36. 36.

    Evans JR, Fletcher AE, Wormald RP. Age-related macular degeneration causing visual impairment in people 75 years or older in Britain: an add-on study to the Medical Research Council Trial of Assessment and Management of Older People in the Community. Ophthalmology. 2004;111:513–7.

    PubMed  Google Scholar 

  37. 37.

    Owen CG, Jarrar Z, Wormald R, Cook DG, Fletcher AE, Rudnicka AR. The estimated prevalence and incidence of late stage age related macular degeneration in the UK. Br J Ophthalmol. 2012;96:752–6.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Brader HS, Ying GS, Martin ER, Maguire MG. Complications of Age-Related Macular Degeneration Prevention Trial Research Group. Characteristics of incident geographic atrophy in the complications of age-related macular degeneration prevention trial. Ophthalmology. 2013;120:1871–9.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Fleckenstein M, Schmitz-Valckenberg S, Martens C, Kosanetzky S, Brinkmann CK, Hageman GS, et al. Fundus autofluorescence and spectral-domain optical coherence tomography characteristics in a rapidly progressing form of geographic atrophy. Investig Ophthalmol Vis Sci. 2011;52:3761–6.

    Google Scholar 

  40. 40.

    Casswell AG, Kohen D, Bird AC. Retinal pigment epithelial detachments in the elderly: classification and outcome. Br J Ophthalmol. 1985;69:397–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Cukras C, Agron E, Klein ML, Ferris FL 3rd, Chew EY, Gensler G, et al. Natural history of drusenoid pigment epithelial detachment in age-related macular degeneration: age-related eye disease study report no. 28. Ophthalmology. 2010;117:489–99.

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Klein R, Meuer SM, Knudtson MD, Iyengar SK, Klein BE. The epidemiology of retinal reticular drusen. Am J Ophthalmol. 2008;145:317–26.

    PubMed  Google Scholar 

  43. 43.

    Buitendijk GH, Hooghart AJ, Brussee C, de Jong PT, Hofman A, Vingerling JR, et al. Epidemiology of reticular pseudodrusen in age-related macular degeneration: the Rotterdam study. Investig Ophthalmol Vis Sci. 2016;57:5593–601.

    CAS  Google Scholar 

  44. 44.

    Finger RP, Chong E, McGuinness MB, Robman LD, Aung KZ, Giles G, et al. Reticular pseudodrusen and their association with age-related macular degeneration: the Melbourne Collaborative Cohort Study. Ophthalmology. 2016;123:599–608.

    PubMed  Google Scholar 

  45. 45.

    Wilde C, Patel M, Lakshmanan A, Morales MA, Dhar-Munshi S, Amoaku WM. Prevalence of reticular pseudodrusen in eyes with newly presenting neovascular age-related macular degeneration. Eur J Ophthalmol. 2016;26:128–34.

    PubMed  Google Scholar 

  46. 46.

    Zweifel SA, Imamura Y, Spaide TC, Fujiwara T, Spaide RF. Prevalence and significance of subretinal drusenoid deposits (reticular pseudodrusen) in age-related macular degeneration. Ophthalmology. 2010;117:1775–81.

    PubMed  Google Scholar 

  47. 47.

    Cohen SY, Dubois L, Tadayoni R, Delahaye-Mazza C, Debibie C, Quentel G. Prevalence of reticular pseudodrusen in age-related macular degeneration with newly diagnosed choroidal neovascularisation. Br J Ophthalmol. 2007;91:354–9.

    CAS  PubMed  Google Scholar 

  48. 48.

    Finger RP, Wu Z, Luu CD, Kearney F, Ayton LN, Lucci LM, et al. Reticular pseudodrusen: a risk factor for geographic atrophy in fellow eyes of individuals with unilateral choroidal neovascularization. Ophthalmology. 2014;121:1252–6.

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Querques G, Canoui-Poitrine F, Coscas F, Massamba N, Querques L, Mimoun G, et al. Analysis of progression of reticular pseudodrusen by spectral domain-optical coherence tomography. Investig Ophthalmol Vis Sci. 2012;53:1264–70.

    Google Scholar 

  50. 50.

    Knudtson MD, Klein R, Klein BE, Lee KE, Meuer SM, Tomany SC. Location of lesions associated with age-related maculopathy over a 10-year period: the Beaver Dam Eye Study. Investig Ophthalmol Vis Sci. 2004;45:2135–42.

    Google Scholar 

  51. 51.

    Sarks J, Arnold J, Ho IV, Sarks S, Killingsworth M. Evolution of reticular pseudodrusen. Br J Ophthalmol. 2011;95:979–85.

    PubMed  Google Scholar 

  52. 52.

    Steinberg JS, Fleckenstein M, Holz FG, Schmitz-Valckenberg S. Foveal sparing of reticular drusen in eyes with early and intermediate age-related macular degeneration. Investig Ophthalmol Vis Sci. 2015;56:4267–74.

    CAS  Google Scholar 

  53. 53.

    Curcio CA, Messinger JD, Sloan KR, McGwin G, Medeiros NE, Spaide RF. Subretinal drusenoid deposits in non-neovascular age-related macular degeneration: morphology, prevalence, topography, and biogenesis model. Retina. 2013;33:265–76.

    PubMed  Google Scholar 

  54. 54.

    Brader HS, Ying GS, Martin ER, Maguire MG. Complications of age-related macular degeneration prevention trial CRG. New grading criteria allow for earlier detection of geographic atrophy in clinical trials. Investig Ophthalmol Vis Sci. 2011;52:9218–25.

    Google Scholar 

Download references

Acknowledgements

This research was funded in part by a Research Grant from the Macular Society UK, Andover, Hants and an unrestricted grant from Guide Dogs for the Blind, Reading, Berkshire, UK. The BEAP was funded by an unrestricted grant from Pfizer. We would also like to thank the following organisations for financial support of the Project: Pharmacia, Yorkshire Wolds and Coast Primary Care Trust, The Lords Feoffees of Bridlington, Bridlington Hospital League of Friends, The Hull and East Riding Charitable Trust, The National Eye Research Centre (Yorkshire), The Rotary Club of Bridlington, The Alexander Pigott Wernher Memorial Trust, Bridlington Lions Club, The Inner Wheel Club of Bridlington, Soroptimist International of Bridlington, and The Patricia and Donald Shepherd Charitable Trust.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Winfried M. Amoaku.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wilde, C., Poostchi, A., Hillman, J.G. et al. Characteristics of Geographic atrophy in an elderly UK population—The Bridlington Eye Assessment Project (BEAP): a cross-sectional study (2002–2006). Eye (2020). https://doi.org/10.1038/s41433-020-01169-3

Download citation

Search

Quick links