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Abstract
Tissue healing is one of the mysteries of modern medicine. Healing involves complex processes and many cellular types,
amongst which the myofibroblast plays a major role. In the eye, when needed, myofibroblasts can be found from the cornea to
the retina, derived from a wide variety of different cells, and aimed at effectively repairing tissue damage. Myofibroblast
differentiation requires transforming growth factor (TGF)-β1, the presence of specific extracellular matrix components such as
the ED-A domain of fibronectin, and mechanical tension. Control of this process may, in some cases, be abnormal leading to
development of fibrotic tissue, which alters and compromises the integrity of the original tissue. The eye is no exception to this
rule with normal visual function, a highly demanding process, only possible in a fully integrated organ. The cornea, a transparent
protective tissue and first dioptre of the eye, has the particularity of being entirely avascular and very richly innervated under
normal physiological conditions. However, these anatomical features do not prevent it from developing myofibroblasts in the
event of a deep corneal lesion. Activated by growth factors such as TGF-β1 and platelet-derived growth factor from the aqueous
humour, tears or corneal epithelial cells, myofibroblasts can cause corneal scarring, sometimes with devastating consequences.
Understanding the factors involved in healing and its signalling pathways, will potentially enable us to control corneal healing in
the future, and thus avoid fibrotic ocular surface disease and the blindness that this may induce. Currently, this issue is the subject
of very active research and development with the aim of discovering new antifibrotic therapies.

Introduction

Tissue repair or healing, which remained poorly understood
for a long time, is one of the many mysteries of medicine.
Scientific advances at the cellular and molecular level have
led to a better understanding of the biological and patho-
physiological mechanisms of wound healing. The myofi-
broblast, a real cornerstone of tissue repair, is the origin of
significant contractile forces, via linking the extracellular
matrix (ECM) to its cytoskeleton. In scar tissue this has
anatomical but also functional consequences, particularly in
those tissues whose properties depend on the tensile char-
acteristics of the tissue [1]. The eye is not an exception to

this rule [2]. Indeed, the cornea is a perfect example of the
anatomo-functional interweaving necessary for this avas-
cular and transparent structure to transmit, diffuse and
refract light rays. If this structural organization is modified
through the presence or activity of cells involved in healing,
optical properties can be affected leading to a decrease in
vision and leading eventually to blindness [3].

Knowledge of the structure and activity of myofibroblasts
has progressed significantly in recent years, giving rise to
promising therapeutic strategies, the aim of which is to limit
the action of myofibroblastic cells in a variety of important
pathologies. The purpose of this article is to give an over-
view of myofibroblast biological activities and to underline
the roles of myofibroblasts in normal and pathological
healing processes in the eye, with a focus on corneal repair.

What is a myofibroblast?

Classically, it has been accepted that myofibroblasts derive
from fibroblasts, a cell type found in most organs of the
human body. Morphologically fusiform or star-shaped,
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myofibroblasts are relatively elongated cells, about
20–30 µm long, rich in protein and energy-producing
organelles, making them very metabolically active within
the connective tissue. They possess a highly developed
cytoskeleton, including a specific network of actin isoforms
and intermediate filaments. Myofibroblasts also play an
important supporting role thanks to the secretion and reg-
ulation of ECM components (Fig. 1), and then strong
interactions exist between the ECM and the cytoskeleton
via cell attachment proteins. They are highly metabolically
active, allowing them to maintain the homeostasis of ECM
during tissue repair processes. Aside from their important
role in regulation of the ECM, myofibroblasts also play
roles in immunomodulation and angiogenesis [4].

Embryologically, myofibroblasts have a mesenchymal
origin and can exhibit different a range of phenotypes from
non-contractile fibroblasts to truly contractile myofibro-
blasts as well as numerous intermediate phenotypes
including the proto-myofibroblast [5]. As underlined above,
in most cases, the myofibroblast is directly derived from the
fibroblast. Though similar in makeup to fibroblasts, they
differ essentially in the presence of α-smooth muscle actin
(the actin isoform typically found in contractile smooth
muscle cells), microfilaments are also associated with tight
junctions, linking them together and conferring contractile
properties within the scar tissue (Fig. 1). This contractile
activity, combined with cellular connections to the ECM
and to each other, enables the edges of a wound to be
brought together. In summary, these cells play an important
role in plasticity, migration and cell mobility during tissue
repair in addition to their ECM-regulatory functions.

Origin of myofibroblasts and factors
involved in their activation

One of the most interesting characteristics of myofibroblasts
is the fact that they can be derived from a very large variety
of different cell types [6]. Apart from local fibroblasts, other
cells can also be the origin of myofibroblasts, including
pericytes, hepatic stellate cells [7] or keratocytes in the eye
[3]. Bone marrow may also be a source of myofibroblasts
via circulating stem cells and/or fibrocytes [8]. Lastly, it has
been suggested that the process of epithelial or
endothelial–mesenchymal transition, resulting from a ded-
ifferentiation of epithelial or endothelial cells, can in some
situations be the origin of myofibroblasts [9].

During tissue repair, myofibroblasts appear during the
formation of granulation tissue that is responsible for
replacement of the damaged or lost tissue. Prior to this
phase, during the vascular and inflammatory phases,
numerous factors are released stimulating angiogenesis in
this newly formed tissue and also inducing myofibroblast

differentiation. Among these factors, platelet-derived
growth factor (PDGF) and more importantly, transforming
growth factor (TGF)-β1, play major roles. The migration of
myofibroblast precursor cells, endothelial cells and peri-
cytes is supported by PDGF, while TGF-β1 is involved in
induction of α-smooth muscle actin expression by myofi-
broblasts and also stimulates increased synthesis and
secretion of ECM [10]. Interestingly, to obtain complete
myofibroblast differentiation, in addition to TGF-β1, spe-
cific extracellular components including the ED-A domain
of fibronectin, and mechanical stress are also necessary
(Fig. 1) [11]. In fact, depending on the stiffness or com-
pliance of the ECM, TGF-β1 may be bound and trapped in a
large latent complex (also containing latency TGF-β bind-
ing protein and latency associated peptide) in the case of
soft compliant ECM, while it is cleaved and released if the
ECM is stiff. During the last phase of tissue repair leading
to scar formation, there is remodelling of the granulation
tissue due to the action of matrix metalloproteinases and the
disappearance of cells, including myofibroblasts and vas-
cular cells, by apoptosis (Fig. 1) [12]. Though the first phase
of tissue repair is mainly devoted to inflammation,
throughout the tissue repair process, inflammatory cells and
particularly macrophages, which secrete TGF-β1 and pro-
teases, orchestrate the relationships between myofibroblasts
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Fig. 1 Illustration showing the appearance of the myofibroblast phe-
notype during normal repair conditions. Fully differentiated myofi-
broblasts possess stress fibres expressing α-smooth muscle actin
(dotted lines) and secrete important amount of extracellular matrix
(ECM). Pro-fibrotic cytokines such as transforming growth factor-β1,
ECM components such as ED-A fibronectin and the mechanical
microenvironment are all involved in myofibroblastic differentiation.
Myofibroblasts are highly contractile cells that stiffen the ECM,
leading to an activation of pro-fibrotic growth factors, further stimu-
lating the activation of new myofibroblasts
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and the ECM, in particular macrophages that are in close
contact with contractile myofibroblasts modulate both ECM
composition and biophysical state [13, 14]. Lastly, in
pathological situations where chronic activation of myofi-
broblast activation develops, excessive scarring leading to
fibrosis can be observed [1].

Myofibroblasts in the eye

One of our most precious sense organs, the eye is one organ
in the body where the integrity of all tissues is essential to
maintain a very demanding function, sight. This function is
dependent on a multitude of factors, including stable cel-
lular and molecular regulation that maintains the original
tissue integrity and architecture. In the eye, myofibroblasts
are also present and can behave similarly to other myofi-
broblasts in the human body. As the cornerstone of wound
healing, they can be activated in variety of ocular tissues
despite the immune privilege of the organ. Such activation
of myofibroblasts can compromise the perfect architecture
of the various ocular tissues and thus profoundly change
visual function.

The myofibroblast is therefore implicated in many eye
diseases. At the level of the conjunctiva, it is involved in the
pathogenesis of fibrotic conjunctivitis [15] or pterygia
[16, 17]. The development and progression of this degen-
erative fibrovascular sub-epithelial protrusion is multi-
factorial, with a link between UV irradiation and
overexpression of heparin-binding epidermal growth factor-
like growth factor and of TGF-β [18], a well-known dif-
ferentiation factor for myofibroblasts (see above).

The epithelial–mesenchymal transition process under the
influence of TGF-β leads to a transdifferentiation of lens
epithelial cells into myofibroblasts, which then produce an
aberrant ECM. The aberrant ECM is then responsible for
opacification of the anterior lens capsule [19], as well as
opacification of the posterior capsule secondary to residual
lens epithelial cells after cataract surgery [20] or using an
in vitro capsular bag model [21]. Interestingly, in the pos-
terior capsule opacification observed after surgery (sec-
ondary cataract), contractile myofibroblasts also cause
wrinkles on the posterior capsule [22]. Several factors such
as eye trauma [23], uveitis [21] or atopic dermatitis [24, 25]
have been identified as possible causes of opacification of
the anterior lens capsule.

Chronic glaucoma is a progressive optic neuropathy
characterized by papillary excavation, secondary to the loss
of the retinal nerve fibre layer with ocular hypertonia.

An extensive deposition of ECM, associated with cel-
lular and molecular events (including myofibroblast acti-
vation), leads to tissue fibrosis and stiffening [26].
Myofibroblasts are found in the anterior chamber and

induce morphological changes in the trabeculum, thus
reducing the evacuation of aqueous humour and this is in
turn responsible for an increase in pressure [27, 28]. These
cells, at the conjunctival level, also cause excessive scarring
in the flaps and filter bubbles of glaucoma filtration surgery
[29], often resulting in unsatisfactory results in terms of
pressure and possibly requiring needling in post-operative
follow-up, with subconjunctival injection of mitomycin C
for its antimetabolite and antifibrotic properties [30].

The retina, a neurosensory tissue that lines the interior of
the globe, can also be subject to the effects of myofibro-
blasts. These cells, activated by growth factors provided by
neovascularization following a rupture of the blood–retinal
barrier, are responsible for sub-retinal fibrosis of age-related
macular degeneration [31], fibrovascular membranes in
diabetic retinopathy [32, 33], and for vitreoretinal pro-
liferation observed as a result of rhegmatogenic retinal
detachment after transdifferentiation of pigment epithelial
cells [34, 35].

The myofibroblast is also present in the orbit and is
involved in the spectrum of Graves’ orbitopathies, driven by
TGF-β again playing a key role in both orbital inflammation
and tissue remodelling [36].

Myofibroblasts in corneal repair

As underlined above, myofibroblasts are found in all ocular
tissues as a key element of the healing process and they
are very active particularly in the cornea. The cornea being
the first dioptre of the eye is one of the components of the
ocular surface and is therefore subjected to the environment
and to external insults. To maintain its privileged avascular
structure, the cornea possesses its own tissue repair
mechanisms. The epithelium is an ideal first physiological
barrier protecting the eye from pathogenic microorganisms.
However, superficial corneal trauma leads to an epithelial
defect for which the speed of healing under physiological
conditions is aided by epithelial cell migration and
increased epithelial proliferation (Fig. 2) [37]. The cells for
this are derived from a pool of corneal-limbic stem cells and
rapid healing helps to avoid both microbial infection and
additional trauma to the underlying stroma. Good healing of
superficial corneal wounds seems to provide a very good
prognosis for recovery of vision.

The same situation is not true in the case of deeper
corneal lesions where there is stromal damage, for example
seen in corneal ulcers. In this case, restoration of vision is
threatened by a lack of healing of the basement membrane,
by the formation of a stromal haze, by sub-epithelial fibrosis
or epithelial keratinization (Fig. 2) [37, 38].

As the third leading cause of blindness in the world
among the working-age population [39], understanding
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Fig. 2 Schematic diagram of the
corneal wound healing process.
a Implementation of the healing
process. Corneal injury involves
rupture of the corneal epithelial
layer and of the Bowman’s
membrane. The anterior stroma
therefore is highly exposed to
cytokines and others growth
factors, particularly transforming
growth factor-β1 (TGFß1) and
platelet-derived growth factor
(PDGF), from corneal epithelial
cells, aqueous humour,
conjunctiva and tears. Under the
influence of active TGFß1,
keratocytes of the anterior
stroma and/or cells derived from
bone marrow, which normally
are in a quiescent state,
transdifferentiate into
myofibroblasts, proliferate and
then spread to the site of the
lesion by centripetal migration.
b Physiological wound healing.
Epithelial cells migrate and
epithelial proliferation appears.
Myofibroblasts synthesize new
extracellular matrix (ECM). In
the absence of pathological
phenomena, myofibroblasts
disappear by interleukin (IL)-1-
induced apoptosis and tissue
transparency is maintained.
c Pathological conditions.
Myofibroblasts live on and
continue to secrete excessive
amounts of aberrant ECM
proteins. This situation leads to
fibrosis and the clinical onset of
corneal opacification. This
chronic corneal injury
subsequently induces corneal
neoangiogenesis
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corneal scarring is essential for the management of patients
with corneal trauma. Indeed, the stages of tissue repair are
slightly rearranged for the cornea with differences in the
inflammatory and vascular phase. This phase, which results
in temporary matrix deposition and the secretion of pro-
inflammatory factors, cannot take place in this avascular
tissue.

After a corneal wound, the healing sequence is complex
and finely regulated: inflammatory cells and cytokines are
present in the acute phase in the cornea but arrive via non-
vascular paths. In part secreted by corneal cells, particularly
epithelial cells [40], these growth factors are also provided
by the aqueous humour, in the case of posterior lesions of
the cornea [41], and to a lesser extent by tears and the
conjunctiva (Fig. 2) [42–44]. Among the most active factors
are TGF-β and PDGF, to which corneal cells are very much
exposed if the Bowman layer is affected [25]. Under the
influence of active TGF-β1 [10], keratocytes of the anterior
stroma and/or cells derived from bone marrow, which
would normally be in a quiescent state, transdifferentiate
into myofibroblasts, proliferate and then spread to the site of
the lesion by centripetal migration (Fig. 2). As in other
tissues, the maintenance of an effective level of TGF-β1 is
ensured, among other means, by the presence of the ED-A
domain of fibronectin in the ECM [45] and mechanical
tensile forces, exerted by myofibroblast contraction on the
ECM, releases this growth factor. These cells then cover the
wound and begin to synthesize new ECM. While neoan-
giogenesis is a mandatory and normal physiological phase
of early inflammation in all tissues of the body, in the case
of the cornea, it is supplemented by the haemato–aqueous
barrier.

Once the healing of a corneal lesion is complete, and in
the absence of pathological phenomena, myofibroblasts
disappear by interleukin-1-induced apoptosis [46]. This
regulatory factor, produced by stromal cells, allows the
recolonization of the anterior stroma by keratocytes. These
cells will then remodel the ECM at the wound site by the
action of metalloproteinases and thus restructure the corneal
tissue architecture, which is essential to restore transparency
and achieve corneal integrity (Fig. 2).

In certain pathological conditions, the persistence of
TGF-β1 can be problematic because it contributes to the
maintenance of myofibroblasts that continue to secrete
excessive amounts of aberrant ECM proteins. This situation
leads to fibrosis repairing tissue and the clinical onset of
corneal opacification, which may persist long after the
myofibroblasts have disappeared from the lesion site
(Fig. 2) [47]. The impact on visual function is, of course,
highly variable, being asymptomatic for the most discrete
impairments, but ranging from photophobia and irregular
astigmatism to legal blindness in some cases of major
corneal fibrosis located in the visual axis. This chronic

corneal injury subsequently leads to corneal neoangiogen-
esis (Figs. 2 and 3). Pathological situations where there is
development of new corneal vessels are responsible for
corneal diseases that also result in damage to vision. In
these pathologies, the epithelium and epithelial basement
membrane and/or the endothelium and Descemet’s base-
ment membrane can be disrupted. Resolution of fibrosis and
the restoration of stromal transparency appears to depend, in
part, on the reconstruction/regeneration of these basement
membranes [48].

Role of corneal innervation

In the body, the peripheral nervous system influences a
variety of physiological and pathophysiological functions.
In the skin, autonomic nerve fibres derived from sympa-
thetic (cholinergic) neurons are present, playing a role
particularly in the regulation of body temperature. However,
the skin is most importantly a highly sensitive organ, den-
sely innervated with different types of sensory nerve end-
ings, which are responsible for pain, temperature and touch
sensation [49].

Lesions to the peripheral nervous system that are
observed in clinical situations influence tissue repair, which
can result in chronic wounds within the affected area, as is
often seen in the skin. Indeed, patients with cutaneous
sensory defects may develop ulcers that fail to heal (e.g.
diabetic neuropathy). In addition, after surgical resection of
nerves in animal models, delayed healing has been
observed, suggesting that neurogenic stimuli profoundly
affect tissue repair after injury. Overall these data clearly
indicate that innervation and neuromediators play a major
role in tissue repair processes [50].

Fig. 3 Corneal neovascularization in pathological situations. Recurrent
stromal herpetic keratitis on corneal graft, 8 years after penetrating
keratoplasty. This leads to corneal opacities responsible for a major
loss of vision for the patient and a very probable risk of graft rejection
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As discussed above, in the eye, in most cases the
repair process follows a classical course similar to that
seen in other parts of the body. However, in the cornea,
which is devoid of blood and lymphatic vessels, the first
phase (traditionally referred to as the vascular and
inflammatory phase) is one phase that differs compared
with the phases seen in other tissues. Interestingly, the
cornea contains a dense network of autonomic and sen-
sory nerve fibres [51]. Indeed, it seems that the cornea is
the most densely innervated structure in the human body
(Fig. 4). As in the skin, corneal nerves are involved in
pain, temperature and touch sensation and play important

roles in the blink reflex, and in tear production and
secretion to achieve normal corneo-conjunctival lubri-
cation [52].

Reinnervation of the cornea following disease, injury
or surgery is an important point to consider. Moreover
we can also suggest that innervation counterbalances, at
least in part, the absence of blood vessels and is
responsible after damage for supplying many neurome-
diators, which replace the soluble factors (cytokines and
growth factors) classically provided by vascular cells
during the first inflammatory and vascular phases of
tissue repair.

Fig. 4 Sub-basal nervous plexus
in a healthy patient, shown using
confocal microscopy. The fibres
are derived from the sub-
epithelial nerve plexus after
crossing the Bowman layer. This
combined image shows the
complex architecture and
interconnections of nerve fibres
within the sub-basal area,
constituting, in the form of a
vortex, one of the densest
nervous networks in the
organism
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Conclusion and perspectives

Good visual function is based on perfect tissue integrity of
the eye. In this equation, the myofibroblast has good
intentions but tends to do more harm than good. Indeed,
after an eye injury, myofibroblast activation helps to limit
the damage and preserve a certain degree of tissue integrity,
at the cost of scar formation which has potential con-
sequences on vision. When visual degradation becomes
disabling, the available therapeutic solutions include sur-
gery, especially corneal transplantation, where current
technical prowess allows lamellar grafts to replace only the
altered part of the cornea [53], or phacoemulsification of the
lens in the event of cataract replacement by an intraocular
implant [54]. The current treatments using surgery, in some
cases preventive surgery such as refractive and glaucoma
surgeries, combined with the use of a cytotoxic antibiotic,
mitomycin C, for its immunomodulatory properties on the
sub-epithelial haze [55–57], and on bleb scarring [30], point
to the management of fibrosis not lacking in future ther-
apeutic strategies.

The discovery of the molecular mechanisms involved in
modifying cellular responses has increased our under-
standing of healing and scarring. Despite the heterogeneity
of their origins, all differentiated myofibroblasts perform
very similar functions, such as tissue remodelling and ECM
synthesis. The processes regulating these functions would
therefore seem to be promising therapeutic targets [58].
Indeed, it is now possible to put our finger on the bio-
chemical signalling pathways involved in this phenomenon.
It therefore seems appropriate to now try to control the
molecular mediators and epigenetic regulators involved in
order to affect the pathogenesis of ocular fibrosis [59].

However, this is not an easy task. Indeed, even for TGF-
β1, a molecule whose involvement in tissue healing has
long been demonstrated, the complexity of its signalling
pathways still means that the perfect understanding of its
mechanisms is elusive. This growth factor has a dual role in
epithelial–mesenchymal transdifferentiation in various
fibrotic diseases and in normal physiological healing,
making it an ideal target. At the wound site, it would be
necessary to be able to prevent transdifferentiation of
myofibroblasts while preserving the pathways required for
homeostasis and healing of ocular wounds [2]. This is the
approach used, for example, in recent gene therapies tar-
geting SMAD7, which regulates the expression of ECM and
myogenic proteins. There are close links between the mul-
tiple signalling cascades, transcription factors and inhibition
factors common to the different ocular tissues where
SMAD7 in particular could be targeted for improvement of
corneal stromal fibrosis [60], endothelial wound healing
[61], and post-traumatic crystalline fibrosis [62]. These new
therapies will also need to have effects on ECM

remodelling and replacement by degrading fibrotic matrix
and then delivering cells with regenerative potential to
recreate a functional ECM close to that of the original tissue
[63].

Current research has also looked at using stem cell-based
therapies, isolated from different non-ocular tissues [64], to
support corneal regeneration by accelerating the healing of
corneal wounds, compensating for the loss of epithelial
cells, keratocytes and endothelial cells in certain diseases
and allowing the repair of the ECM, which must be regular
and transparent. In addition, new techniques of treatment
delivery could improve the efficacy of the treatment [65].

Finally, the area of antifibrotic treatment is now
expanding for patients with the goal of inhibiting patholo-
gical aspects of ocular tissue fibrosis without affecting the
primary mechanisms of wound healing and tissue restora-
tion. This still represents a major challenge but will be
essential for the rehabilitation of visual function and thus
limiting secondary blindness that can result from these
disorders.
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