A review of systemic medications that may modulate the risk of glaucoma

Article metrics

Abstract

With increasing longevity, patients are developing more and more chronic diseases that require treatment with medications. Yet, it is not fully understood the extent by which these systemic medications affect ocular structures and whether they may increase or decrease the risk of sight-threatening ocular diseases. This review provides a summary of reported associations between different systemic medications and the risk of developing glaucoma or experiencing disease progression. Medication classes covered in this review that are known to or may modulate the risk of open-angle glaucoma include corticosteroids, beta blockers, calcium channel blockers, metformin, statins, selective serotonin reuptake inhibitors, bupropion, postmenopausal hormones, and cannabinoids. Medication classes addressed in this review that may increase the risk of angle closure glaucoma include anticholinergics, adrenergic agonists, certain classes of antidepressants, sulfonamides, and topiramate.

可能增加青光眼发病风险的全身药物

随着寿命延长, 患者正在面临越来越多的需要药物治疗的慢性疾病。然而, 目前还不完全了解这些全身性药物对眼结构的影响程度, 以及它们是否可能增加或降低威胁视力的眼部疾病的风险。该综述提供了所报道的不同系统性药物之间的关联性以及发生青光眼或疾病进展的风险的总结。本综述中囊括了可能会增加开角型青光眼风险的药物包括皮质类固醇, β受体阻滞剂, 钙通道阻滞剂, 二甲双胍, 他汀类药物, 选择性5-羟色胺再摄取抑制剂, 苯丙胺, 绝经后激素和大麻素。本综述中提到的可能增加闭角型青光眼风险的药物包括抗胆碱能类药物, 肾上腺素能激动剂, 某些类型的抗抑郁药, 磺胺类药物和托吡酯。

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Flaxman SR, Bourne RRA, Resnikoff S, et al. Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health. 2017;5:e1221–e1234.

  2. 2.

    Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121:2081–90.

  3. 3.

    Foster PJ, Buhrmann R, Quigley HA, Johnson GJ. The definition and classification of glaucoma in prevalence surveys. Br J Ophthalmol. 2002;86:238–42.

  4. 4.

    Kapetanakis VV, Chan MP, Foster PJ, Cook DG, Owen CG, Rudnicka AR. Global variations and time trends in the prevalence of primary open angle glaucoma (POAG): a systematic review and meta-analysis. Br J Ophthalmol. 2016;100:86–93.

  5. 5.

    Charlesworth CJ, Smit E, Lee DS, Alramadhan F, Odden MC. Polypharmacy among adults aged 65 years and older in the United States: 1988–2010. J Gerontol A Biol Sci Med Sci. 2015;70:989–95.

  6. 6.

    Kantor ED, Rehm CD, Haas JS, Chan AT, Giovannucci EL. Trends in prescription drug use among adults in the United States From 1999–2012. JAMA. 2015;314:1818–31.

  7. 7.

    Bernstein HN, Schwartz B. Effects of long-term systemic steroids on ocular pressure and tonographic values. Arch Ophthalmol. 1962;68:742–53.

  8. 8.

    Fini ME, Schwartz SG, Gao X, et al. Steroid-induced ocular hypertension/glaucoma: Focus on pharmacogenomics and implications for precision medicine. Prog Retin Eye Res. 2017;56:58–83.

  9. 9.

    Overby DR, Bertrand J, Tektas OY, et al. Ultrastructural changes associated with dexamethasone-induced ocular hypertension in mice. Investig Ophthalmol Vis Sci. 2014;55:4922–33.

  10. 10.

    Johnson D, Gottanka J, Flugel C, Hoffmann F, Futa R, Lutjen-Drecoll E. Ultrastructural changes in the trabecular meshwork of human eyes treated with corticosteroids. Arch Ophthalmol. 1997;115:375–83.

  11. 11.

    Johnson DH, Bradley JM, Acott TS. The effect of dexamethasone on glycosaminoglycans of human trabecular meshwork in perfusion organ culture. Investig Ophthalmol Vis Sci. 1990;31:2568–71.

  12. 12.

    Zhang X, Ognibene CM, Clark AF, Yorio T. Dexamethasone inhibition of trabecular meshwork cell phagocytosis and its modulation by glucocorticoid receptor beta. Exp Eye Res. 2007;84:275–84.

  13. 13.

    Kasetti RB, Maddineni P, Patel PD, Searby C, Sheffield VC, Zode GS. Transforming growth factorbeta2 (TGFbeta2) signaling plays a key role in glucocorticoid-induced ocular hypertension. J Biol Chem. 2018;293:9854–68.

  14. 14.

    Al Hanaineh AT, Hassanein DH, Abdelbaky SH, El Zawahry OM. Steroid-induced ocular hypertension in the pediatric age group. Eur J Ophthalmol. 2018;28:372–7.

  15. 15.

    Bartlett JD, Woolley TW, Adams CM. Identification of high intraocular pressure responders to topical ophthalmic corticosteroids. J Ocul Pharmacol. 1993;9:35–45.

  16. 16.

    Moss EB, Buys YM, Low SA, et al. A randomized controlled trial to determine the effect of inhaled corticosteroid on intraocular pressure in open-angle glaucoma and ocular hypertension: the ICOUGH study. J Glaucoma. 2017;26:182–6.

  17. 17.

    Tawara A, Tou N, Kubota T, Harada Y, Yokota K. Immunohistochemical evaluation of the extracellular matrix in trabecular meshwork in steroid-induced glaucoma. Graefes Arch Clin Exp Ophthalmol. 2008;246:1021–8.

  18. 18.

    Armaly MF. Effect of corticosteroids on intraocular pressure and fluid dynamics. I. The effect of dexamethasone in the normal eye. Arch Ophthalmol. 1963;70:482–91.

  19. 19.

    Armaly MF, Becker B. Intraocular pressure response to topical corticosteroids. Fed Proc. 1965;24:1274–8.

  20. 20.

    Tripathi RC, Tripathi BJ, Haggerty C. Drug-induced glaucomas: mechanism and management. Drug Saf. 2003;26:749–67.

  21. 21.

    Becker B. Intraocular pressure response to topical corticosteroids. Invest Ophthalmol. 1965;4:198–205.

  22. 22.

    Francois J. Corticosteroid glaucoma. Ann Ophthalmol. 1977;9:1075–80.

  23. 23.

    Tripathi RC, Parapuram SK, Tripathi BJ, Zhong Y, Chalam KV. Corticosteroids and glaucoma risk. Drugs Aging. 1999;15:439–50.

  24. 24.

    el-Harazi SM, Ruiz RS, Feldman RM, Villanueva G, Chuang AZ. A randomized double-masked trial comparing ketorolac tromethamine 0.5%, diclofenac sodium 0.1%, and prednisolone acetate 1% in reducing post-phacoemulsification flare and cells. Ophthalmic Surg Lasers. 1998;29:539–44.

  25. 25.

    Ngai P, Kim G, Chak G, Lin K, Maeda M, Mosaed S. Outcome of primary trabeculotomy ab interno (Trabectome) surgery in patients with steroid-induced glaucoma. Medicine. 2016;95:e5383.

  26. 26.

    Brusini P, Tosoni C, Zeppieri M. Canaloplasty in corticosteroid-induced glaucoma. Preliminary results. J Clin Med. 2018;7.

  27. 27.

    Bozkurt E, Kara N, Yazici AT, et al. Prophylactic selective laser trabeculoplasty in the prevention of intraocular pressure elevation after intravitreal triamcinolone acetonide injection. Am J Ophthalmol. 2011;152:976–81.e972.

  28. 28.

    Sousa DC, Leal I, Abegao Pinto L. Steroid-induced protracted severe ocular hypertension in a 14-year-old girl. BMJ Case Rep. 2018;2018:bcr-2018-225244.

  29. 29.

    Waljee AK, Rogers MA, Lin P, et al. Short term use of oral corticosteroids and related harms among adults in the United States: population based cohort study. BMJ. 2017;357:j1415.

  30. 30.

    Phillips CI, Howitt G, Rowlands DJ. Propranolol as ocular hypotensive agent. Br J Ophthalmol. 1967;51:222–6.

  31. 31.

    Hohn R, Mirshahi A, Nickels S, et al. Cardiovascular medication and intraocular pressure: results from the Gutenberg Health Study. Br J Ophthalmol. 2017;101:1633–7.

  32. 32.

    Williamson J, Atta HR, Kennedy PA, Muir JG. Effect of orally administered nadolol on the intraocular pressure in normal volunteers. Br J Ophthalmol. 1985;69:38–40.

  33. 33.

    Elliot MJ, Cullen PM, Phillips CI. Ocular hypotensive effect of atenolol (Tenormin, I.C.I.). A new beta-adrenergic blocker. Br J Ophthalmol. 1975;59:296–300.

  34. 34.

    Khawaja AP, Chan MP, Broadway DC, et al. Systemic medication and intraocular pressure in a British population: the EPIC-Norfolk Eye Study. Ophthalmology. 2014;121:1501–7.

  35. 35.

    van der Valk R, Webers CA, Schouten JS, Zeegers MP, Hendrikse F, Prins MH. Intraocular pressure-lowering effects of all commonly used glaucoma drugs: a meta-analysis of randomized clinical trials. Ophthalmology. 2005;112:1177–85.

  36. 36.

    Muskens RP, de Voogd S, Wolfs RC, et al. Systemic antihypertensive medication and incident open-angle glaucoma. Ophthalmology. 2007;114:2221–6.

  37. 37.

    Schuman JS. Effects of systemic beta-blocker therapy on the efficacy and safety of topical brimonidine and timolol. Brimonidine Study Groups 1 and 2. Ophthalmology. 2000;107:1171–7.

  38. 38.

    Taniguchi T, Kitazawa Y. The potential systemic effect of topically applied beta-blockers in glaucoma therapy. Curr Opin Ophthalmol. 1997;8:55–8.

  39. 39.

    Lin HC, Stein JD, Nan B, et al. Association of geroprotective effects of metformin and risk of open-angle glaucoma in persons with diabetes mellitus. JAMA Ophthalmol. 2015;133:915–23.

  40. 40.

    Maleskic S, Kusturica J, Gusic E, et al. Metformin use associated with protective effects for ocular complications in patients with type 2 diabetes—observational study. Acta Med Acad. 2017;46:116–23.

  41. 41.

    Rosen P, Wiernsperger NF. Metformin delays the manifestation of diabetes and vascular dysfunction in Goto-Kakizaki rats by reduction of mitochondrial oxidative stress. Diabetes Metab Res Rev. 2006;22:323–30.

  42. 42.

    Wang SV, Li N, Rice DS, et al. Using healthcare databases to refine understanding of exploratory associations between drugs and progression of open angle glaucoma. Clin Pharm Ther. 2019;106:874–83.

  43. 43.

    Zacco A, Togo J, Spence K, et al. 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors protect cortical neurons from excitotoxicity. J Neurosci. 2003;23:11104–11.

  44. 44.

    Honjo M, Tanihara H, Nishijima K, et al. Statin inhibits leukocyte-endothelial interaction and prevents neuronal death induced by ischemia-reperfusion injury in the rat retina. Arch Ophthalmol. 2002;120:1707–13.

  45. 45.

    Kim ML, Sung KR, Shin JA, Young Yoon J, Jang J. Statins reduce TGF-beta2-modulation of the extracellular matrix in cultured astrocytes of the human optic nerve head. Exp Eye Res. 2017;164:55–63.

  46. 46.

    McGwin G, Jr., McNeal S, Owsley C, Girkin C, Epstein D. Statins and other cholesterol-lowering medications and the presence of glaucoma. Arch Ophthalmol. 2004;122:822–6.

  47. 47.

    Nagaoka T, Takahashi A, Sato E, et al. Effect of systemic administration of simvastatin on retinal circulation. Arch Ophthalmol. 2006;124:665–70.

  48. 48.

    Rikitake Y, Liao JK. Rho GTPases, statins, and nitric oxide. Circ Res. 2005;97:1232–5.

  49. 49.

    Rao PV, Deng PF, Kumar J, Epstein DL. Modulation of aqueous humor outflow facility by the Rho kinase-specific inhibitor Y-27632. Investig Ophthalmol Vis Sci. 2001;42:1029–37.

  50. 50.

    Bosel J, Gandor F, Harms C, et al. Neuroprotective effects of atorvastatin against glutamate-induced excitotoxicity in primary cortical neurones. J Neurochem. 2005;92:1386–98.

  51. 51.

    Talwar N, Musch DC, Stein JD. Association of daily dosage and type of statin agent with risk of open-angle glaucoma. JAMA Ophthalmol. 2017;135:263–7.

  52. 52.

    Stein JD, Newman-Casey PA, Talwar N, Nan B, Richards JE, Musch DC. The relationship between statin use and open-angle glaucoma. Ophthalmology. 2012;119:2074–81.

  53. 53.

    Marcus MW, Muskens RP, Ramdas WD, et al. Cholesterol-lowering drugs and incident open-angle glaucoma: a population-based cohort study. PLoS ONE. 2012;7:e29724.

  54. 54.

    Kang JH, Boumenna T, Stein JD, et al. Association of Statin use and high serum cholesterol levels with risk of primary open-angle glaucoma. JAMA Ophthalmol. 2019;137:756–65.

  55. 55.

    Whigham B, Oddone EZ, Woolson S, et al. The influence of oral statin medications on progression of glaucomatous visual field loss: a propensity score analysis. Ophthalmic Epidemiol. 2018;25:207–14.

  56. 56.

    Leung DY, Li FC, Kwong YY, Tham CC, Chi SC, Lam DS. Simvastatin and disease stabilization in normal tension glaucoma: a cohort study. Ophthalmology. 2010;117:471–6.

  57. 57.

    De Castro DK, Punjabi OS, Bostrom AG, et al. Effect of statin drugs and aspirin on progression in open-angle glaucoma suspects using confocal scanning laser ophthalmoscopy. Clin Exp Ophthalmol. 2007;35:506–13.

  58. 58.

    Chen HY, Hsu SY, Chang YC, et al. Association between statin use and open-angle glaucoma in hyperlipidemia patients: a Taiwanese population-based case-control study. Medicine. 2015;94:e2018.

  59. 59.

    Ho H, Shi Y, Chua J, et al. Association of systemic medication use with intraocular pressure in a multiethnic Asian population: the Singapore Epidemiology of Eye Diseases Study. JAMA Ophthalmol. 2017;135:196–202.

  60. 60.

    Iskedjian M, Walker JH, Desjardins O, et al. Effect of selected antihypertensives, antidiabetics, statins and diuretics on adjunctive medical treatment of glaucoma: a population based study. Curr Med Res Opin. 2009;25:1879–88.

  61. 61.

    Aguilar M, Bhuket T, Torres S, Liu B, Wong RJ. Prevalence of the metabolic syndrome in the United States, 2003–212. JAMA. 2015;313:1973–4.

  62. 62.

    Newman-Casey PA, Talwar N, Nan B, Musch DC, Stein JD. The relationship between components of metabolic syndrome and open-angle glaucoma. Ophthalmology. 2011;118:1318–26.

  63. 63.

    Zheng W, Dryja TP, Wei Z, et al. Systemic medication associations with presumed advanced or uncontrolled primary open-angle glaucoma. Ophthalmology. 2018;125:984–93.

  64. 64.

    Costagliola C, Parmeggiani F, Sebastiani A. SSRIs and intraocular pressure modifications: evidence, therapeutic implications and possible mechanisms. CNS Drugs. 2004;18:475–84.

  65. 65.

    Stein JD, Talwar N, Kang JH, Okereke OI, Wiggs JL, Pasquale LR. Bupropion use and risk of open-angle glaucoma among enrollees in a large U.S. managed care network. PLoS ONE. 2015;10:e0123682.

  66. 66.

    Masis M, Kakigi C, Singh K, Lin S. Association between self-reported bupropion use and glaucoma: a population-based study. Br J Ophthalmol. 2017;101:525–9.

  67. 67.

    Tezel G, Li LY, Patil RV, Wax MBTNF-alpha. and TNF-alpha receptor-1 in the retina of normal and glaucomatous eyes. Investig Ophthalmol Vis Sci. 2001;42:1787–94.

  68. 68.

    Roh M, Zhang Y, Murakami Y, et al. Etanercept, a widely used inhibitor of tumor necrosis factor-alpha (TNF-alpha), prevents retinal ganglion cell loss in a rat model of glaucoma. PLoS ONE. 2012;7:e40065.

  69. 69.

    Lee AJ, Mitchell P, Rochtchina E, Healey PR. Female reproductive factors and open angle glaucoma: the Blue Mountains Eye Study. Br J Ophthalmol. 2003;87:1324–8.

  70. 70.

    Hulsman CA, Westendorp IC, Ramrattan RS, et al. Is open-angle glaucoma associated with early menopause? The Rotterdam Study. Am J Epidemiol. 2001;154:138–44.

  71. 71.

    Newman-Casey PA, Talwar N, Nan B, Musch DC, Pasquale LR, Stein JD. The potential association between postmenopausal hormone use and primary open-angle glaucoma. JAMA Ophthalmol. 2014;132:298–303.

  72. 72.

    Vajaranant TS, Ray RM, Pasquale LR, et al. Racial differences in the effects of hormone therapy on incident open-angle glaucoma in a randomized trial. Am J Ophthalmol. 2018;195:110–20.

  73. 73.

    Tint NL, Alexander P, Tint KM, Vasileiadis GT, Yeung AM, Azuara-Blanco A. Hormone therapy and intraocular pressure in nonglaucomatous eyes. Menopause. 2010;17:157–60.

  74. 74.

    Uncu G, Avci R, Uncu Y, Kaymaz C, Develioglu O. The effects of different hormone replacement therapy regimens on tear function, intraocular pressure and lens opacity. Gynecol Endocrinol. 2006;22:501–5.

  75. 75.

    Vajaranant TS, Maki PM, Pasquale LR, Lee A, Kim H, Haan MN. Effects of hormone therapy on intraocular pressure: The Women's Health Initiative-Sight Exam Study. Am J Ophthalmol. 2016;165:115–24.

  76. 76.

    Pasquale LR, Kang JH. Female reproductive factors and primary open-angle glaucoma in the Nurses' Health Study. Eye. 2011;25:633–41.

  77. 77.

    Pasquale LR, Rosner BA, Hankinson SE, Kang JH. Attributes of female reproductive aging and their relation to primary open-angle glaucoma: a prospective study. J Glaucoma. 2007;16:598–605.

  78. 78.

    Doshi V, et al. Los Angeles Latino Eye Study Group. Sociodemographic, family history, and lifestyle risk factors for open-angle glaucoma and ocular hypertension. The Los Angeles Latino Eye Study. Ophthalmology. 2008;115:639–47.e2.

  79. 79.

    Kang JH, et al. Endothelial nitric oxide synthase gene variants and primary open-angle glaucoma: interactions with sex and postmenopausal hormone use. Invest Ophthalmol Vis Sci. 2010;51:971–9.

  80. 80.

    Affinito P, Di Spiezio Sardo A, Di Carlo C, et al. Effects of hormone replacement therapy on ocular function in postmenopause. Menopause. 2003;10:482–7.

  81. 81.

    Altintas O, Caglar Y, Yuksel N, Demirci A, Karabas L. The effects of menopause and hormone replacement therapy on quality and quantity of tear, intraocular pressure and ocular blood flow. Ophthalmologica. 2004;218:120–9.

  82. 82.

    Coksuer H, Ozcura F, Oghan F, Haliloglu B, Coksuer C. Effects of estradiol-drospirenone on ocular and nasal functions in postmenopausal women. Climacteric. 2011;14:482–7.

  83. 83.

    Sator MO, Joura EA, Frigo P, et al. Hormone replacement therapy and intraocular pressure. Maturitas. 1997;28:55–8.

  84. 84.

    Treister G, Mannor S. Intraocular pressure and outflow facility. Effect of estrogen and combined estrogen-progestin treatment in normal human eyes. Arch Ophthalmol. 1970;83:311–8.

  85. 85.

    Abramov Y, Borik S, Yahalom C, et al. Does postmenopausal hormone replacement therapy affect intraocular pressure? J Glaucoma. 2005;14:271–5.

  86. 86.

    Guaschino S, Grimaldi E, Sartore A, et al. Visual function in menopause: the role of hormone replacement therapy. Menopause. 2003;10:53–7.

  87. 87.

    Toker E, Yenice O, Temel A. Influence of serum levels of sex hormones on intraocular pressure in menopausal women. J Glaucoma. 2003;12:436–40.

  88. 88.

    Chen X, Liu Y, Zhang Y, Kam WR, Pasquale LR, Sullivan DA. Impact of aromatase absence on murine intraocular pressure and retinal ganglion cells. Sci Rep. 2018;8:3280.

  89. 89.

    Straiker AJ, Maguire G, Mackie K, Lindsey J. Localization of cannabinoid CB1 receptors in the human anterior eye and retina. Investig Ophthalmol Vis Sci. 1999;40:2442–8.

  90. 90.

    Tiedeman JS, Shields MB, Weber PA, et al. Effect of synthetic cannabinoids on elevated intraocular pressure. Ophthalmology. 1981;88:270–7.

  91. 91.

    Novack GD. Cannabinoids for treatment of glaucoma. Curr Opin Ophthalmol. 2016;27:146–50.

  92. 92.

    Zhan GL, Camras CB, Palmberg PF, Toris CB. Effects of marijuana on aqueous humor dynamics in a glaucoma patient. J Glaucoma. 2005;14:175–7.

  93. 93.

    Buys YM, Rafuse PE. Canadian Ophthalmological Society policy statement on the medical use of marijuana for glaucoma. Can J Ophthalmol. 2010;45:324–6. England.

  94. 94.

    Jampel H. American glaucoma society position statement: marijuana and the treatment of glaucoma. J Glaucoma. 2010;19:75–76. United States.

  95. 95.

    Tomita K, Araie M, Tamaki Y, Nagahara M, Sugiyama T. Effects of nilvadipine, a calcium antagonist, on rabbit ocular circulation and optic nerve head circulation in NTG subjects. Investig Ophthalmol Vis Sci. 1999;40:1144–51.

  96. 96.

    Luksch A, Rainer G, Koyuncu D, et al. Effect of nimodipine on ocular blood flow and colour contrast sensitivity in patients with normal tension glaucoma. Br J Ophthalmol. 2005;89:21–5.

  97. 97.

    Koseki N, Araie M, Yamagami J, Shirato S, Yamamoto S. Effects of oral brovincamine on visual field damage in patients with normal-tension glaucoma with low-normal intraocular pressure. J Glaucoma. 1999;8:117–23.

  98. 98.

    Netland PA, Chaturvedi N, Dreyer EB. Calcium channel blockers in the management of low-tension and open-angle glaucoma. Am J Ophthalmol. 1993;115:608–13.

  99. 99.

    Quill B, Irnaten M, Docherty NG, et al. Calcium channel blockade reduces mechanical strain-induced extracellular matrix gene response in lamina cribrosa cells. Br J Ophthalmol. 2015;99:1009–14.

  100. 100.

    Tamaki Y, Araie M, Fukaya Y, et al. Effects of lomerizine, a calcium channel antagonist, on retinal and optic nerve head circulation in rabbits and humans. Investig Ophthalmol Vis Sci. 2003;44:4864–71.

  101. 101.

    Acelajado MC, Hughes ZH, Oparil S, Calhoun DA. Treatment of Resistant and Refractory Hypertension. Circ Res. 2019;124:1061–70.

  102. 102.

    Korol EA. Transitory myopia in combination with transitory glaucoma. Zdravookhr Beloruss. 1962;8:66–7.

  103. 103.

    Rapoport Y, Benegas N, Kuchtey RW, Joos KM. Acute myopia and angle closure glaucoma from topiramate in a seven-year-old: a case report and review of the literature. BMC Pediatr. 2014;14:96.

  104. 104.

    Lan YW, Hsieh JW. Bilateral acute angle closure glaucoma and myopic shift by topiramate-induced ciliochoroidal effusion: case report and literature review. Int Ophthalmol. 2018;38:2639–48.

  105. 105.

    Rhee DJ, Goldberg MJ, Parrish RK. Bilateral angle-closure glaucoma and ciliary body swelling from topiramate. Arch Ophthalmol. 2001;119:1721–3.

  106. 106.

    Ikeda N, Ikeda T, Nagata M, Mimura O. Ciliochoroidal effusion syndrome induced by sulfa derivatives. Arch Ophthalmol. 2002;120:1775. United States

  107. 107.

    Czyz CN, Clark CM, Justice JD, Pokabla MJ, Weber PA. Delayed topiramate-induced bilateral angle-closure glaucoma. J Glaucoma. 2014;23:577–8.

  108. 108.

    Kozner P, Simonova K, Brozek B, Singh K. Late acute myopia syndrome induced by combination of sulfonamide drugs. J Glaucoma. 2014;23:e119–121.

  109. 109.

    Caglar C, Yasar T, Ceyhan D. Topiramate induced bilateral angle-closure glaucoma: low dosage in a short time. J Ocul Pharm Ther. 2012;28:205–7.

  110. 110.

    Kamal S, Yadava U, Kumar S, Goel R. Topiramate-induced angle-closure glaucoma: cross-sensitivity with other sulphonamide derivatives causing anterior uveitis. Int Ophthalmol. 2014;34:345–9.

  111. 111.

    Saffra N, Smith SN, Seidman CJ. Topiramate-induced refractive change and angle closure glaucoma and its ultrasound bimicroscopy findings. BMJ Case Rep. 2012;2012 bcr2012006509.

  112. 112.

    Sankar PS, Pasquale LR, Grosskreutz CL. Uveal effusion and secondary angle-closure glaucoma associated with topiramate use. Arch Ophthalmol. 2001;119:1210–1.

  113. 113.

    Malagola R, Arrico L, Giannotti R, Pattavina L. Acetazolamide-induced cilio-choroidal effusion after cataract surgery: unusual posterior involvement. Drug Des Devel Ther. 2013;7:33–6.

  114. 114.

    Parthasarathi S, Myint K, Singh G, Mon S, Sadasivam P, Dhillon B. Bilateral acetazolamide-induced choroidal effusion following cataract surgery. Eye. 2007;21:870–2. England

  115. 115.

    Lee GC, Tam CP, Danesh-Meyer HV, Myers JS, Katz LJ. Bilateral angle closure glaucoma induced by sulphonamide-derived medications. Clin Exp Ophthalmol. 2007;35:55–8.

  116. 116.

    Aref AA, Sayyad FE, Ayres B, Lee RK. Acute bilateral angle closure glaucoma induced by methazolamide. Clin Ophthalmol. 2013;7:279–82. New Zealand

  117. 117.

    Kwon SJ, Park DH, Shin JP. Bilateral transient myopia, angle-closure glaucoma, and choroidal detachment induced by methazolamide. Jpn J Ophthalmol. 2012;56:515–7.

  118. 118.

    Murphy RM, Bakir B, O'Brien C, Wiggs JL, Pasquale LR. Drug-induced bilateral secondary angle-closure glaucoma: a literature synthesis. J Glaucoma. 2016;25:e99–105.

  119. 119.

    Boundaoui ON, Woodruff TE. Presumed furosemide-associated bilateral angle-closure glaucoma. J Glaucoma. 2016;25:e748–750.

  120. 120.

    Weiler DL. Zonisamide-induced angle closure and myopic shift. Optom Vis Sci. 2015;92:e46–51.

  121. 121.

    Sen HA, O'Halloran HS, Lee WB. Case reports and small case series: topiramate-induced acute myopia and retinal striae. Arch Ophthalmol. 2001;119:775–7.

  122. 122.

    Craig JE, Ong TJ, Louis DL, Wells JM. Mechanism of topiramate-induced acute-onset myopia and angle closure glaucoma. Am J Ophthalmol. 2004;137:193–5.

  123. 123.

    Symes RJ, Etminan M, Mikelberg FS. Risk of angle-closure glaucoma with bupropion and topiramate. JAMA Ophthalmol. 2015;133:1187–9.

  124. 124.

    Fraunfelder FW, Fraunfelder FT, Keates EU. Topiramate-associated acute, bilateral, secondary angle-closure glaucoma. Ophthalmology. 2004;111:109–11.

  125. 125.

    Mancino R, Varesi C, Cerulli A, Aiello F, Nucci C. Acute bilateral angle-closure glaucoma and choroidal effusion associated with acetazolamide administration after cataract surgery. J Cataract Refract Surg. 2011;37:415–7.

  126. 126.

    Parikh R, Parikh S, Das S, Thomas R. Choroidal drainage in the management of acute angle closure after topiramate toxicity. J Glaucoma. 2007;16:691–3.

  127. 127.

    Patel KH, Javitt JC, Tielsch JM, et al. Incidence of acute angle-closure glaucoma after pharmacologic mydriasis. Am J Ophthalmol. 1995;120:709–17.

  128. 128.

    Wolfs RC, Grobbee DE, Hofman A, de Jong PT. Risk of acute angle-closure glaucoma after diagnostic mydriasis in nonselected subjects: the Rotterdam Study. Investig Ophthalmol Vis Sci. 1997;38:2683–7.

  129. 129.

    Jain D, Dhua A, Ravisankar V, Chellam L, Joshi M. Acute angle closure glaucoma after hypospadias surgery: A vision-threatening complication of oxybutynin. J Indian Assoc Pediatr Surg. 2015;20:161–2.

  130. 130.

    Haddad A, Arwani M, Sabbagh O. A novel association between oxybutynin use and bilateral acute angle closure glaucoma: a case report and literature review. Cureus. 2018;10:e2732.

  131. 131.

    Rudkin AK, Gray TL, Awadalla M, Craig JE. Bilateral simultaneous acute angle closure glaucoma precipitated by non-prescription cold and flu medication. Emerg Med Australas. 2010;22:477–9.

  132. 132.

    Lentschener C, Ghimouz A, Bonnichon P, Parc C, Ozier Y. Acute postoperative glaucoma after nonocular surgery remains a diagnostic challenge. Anesth Analg. 2002;94:1034–5. table of contents

  133. 133.

    Raj KM, Reddy PA, Kumar VC. Bilateral angle closure glaucoma following general anaesthesia. J Pharm Bioallied Sci. 2015;7:S70–71. India

  134. 134.

    Lotery AJ, Frazer DG. Iatrogenic acute angle closure glaucoma masked by general anaesthesia and intensive care. Ulst Med J. 1995;64:178–80.

  135. 135.

    Oksuz H, Tamer C, Akoglu S, Duru M. Acute angle-closure glaucoma precipitated by local tiotropium absorption. Pulm Pharm Ther. 2007;20:627–8.

  136. 136.

    Reuser T, Flanagan DW, Borland C, Bannerjee DK. Acute angle closure glaucoma occurring after nebulized bronchodilator treatment with ipratropium bromide and salbutamol. J R Soc Med. 1992;85:499–500.

  137. 137.

    Hall SK. Acute angle-closure glaucoma as a complication of combined beta-agonist and ipratropium bromide therapy in the emergency department. Ann Emerg Med. 1994;23:884–7.

  138. 138.

    Corridan P, Nightingale S, Mashoudi N, Williams AC. Acute angle-closure glaucoma following botulinum toxin injection for blepharospasm. Br J Ophthalmol. 1990;74:309–10.

  139. 139.

    Tsai JC. Acute angle closure following periorbital botulinum toxin injection in a patient with retinitis pigmentosa. Taiwan J Ophthalmol. 2017;7:104–7. India

  140. 140.

    Massaoutis P, Goh D, Foster PJ. Bilateral symptomatic angle closure associated with a regular dose of citalopram, an SSRI antidepressant. Br J Ophthalmol. 2007;91:1086–7. England

  141. 141.

    Croos R, Thirumalai S, Hassan S, Davis Jda R. Citalopram associated with acute angle-closure glaucoma: case report. BMC Ophthalmol. 2005;5:23.

  142. 142.

    Zelefsky JR, Fine HF, Rubinstein VJ, Hsu IS, Finger PT. Escitalopram-induced uveal effusions and bilateral angle closure glaucoma. Am J Ophthalmol. 2006;141:1144–7.

  143. 143.

    Sierra-Rodriguez MA, Saenz-Frances F, Santos-Bueso E, Garcia-Feijoo J, Gonzelez-Romero JC. Chronic angle-closure glaucoma related to paroxetine treatment. Semin Ophthalmol. 2013;28:244–6.

  144. 144.

    Levy J, Tessler Z, Klemperer I, Shneck M, Lifshitz T. Late bilateral acute angle-closure glaucoma after administration of paroxetine in a patient with plateau iris configuration. Can J Ophthalmol. 2004;39:780–1.

  145. 145.

    Bennett HG, Wyllie AM. Paroxetine and acute angle-closure glaucoma. Eye. 1999;13(Pt 5):691–2.

  146. 146.

    Zhou N, Zhao JX, Zhu YN, Zhang P, Zuo Y. Acute angle-closure glaucoma caused by venlafaxine. Chin Med J. 2018;131:1502–3. China

  147. 147.

    de Guzman MH, Thiagalingam S, Ong PY, Goldberg I. Bilateral acute angle closure caused by supraciliary effusions associated with venlafaxine intake. Med J Aust. 2005;182:121–3.

  148. 148.

    Aragona M, Inghilleri M. Increased ocular pressure in two patients with narrow angle glaucoma treated with venlafaxine. Clin Neuropharmacol. 1998;21:130–1.

  149. 149.

    Ritch R, Krupin T, Henry C, Kurata F. Oral imipramine and acute angle closure glaucoma. Arch Ophthalmol. 1994;112:67–8.

  150. 150.

    Postel EA, Assalian A, Epstein DL. Drug-induced transient myopia and angle-closure glaucoma associated with supraciliary choroidal effusion. Am J Ophthalmol. 1996;122:110–2.

  151. 151.

    Barnett NL, Osborne NN. The presence of serotonin (5-HT1) receptors negatively coupled to adenylate cyclase in rabbit and human iris-ciliary processes. Exp Eye Res. 1993;57:209–16.

  152. 152.

    Martin XD, Brennan MC, Lichter PR. Serotonin in human aqueous humor. Ophthalmology. 1988;95:1221–6.

  153. 153.

    De Vries GW, Mobasser A, Wheeler LA. Stimulation of endogenous cyclic AMP levels in ciliary body by SK&F 82526, a novel dopamine receptor agonist. Curr Eye Res. 1986;5:449–55.

  154. 154.

    Lowe RF. Amitriptyline and glaucoma. Med J Aust. 1966;2:509–10.

  155. 155.

    Shifera AS, Leoncavallo A, Sherwood M. Probable association of an attack of bilateral acute angle-closure glaucoma with duloxetine. Ann Pharmacother. 2014;48:936–9.

  156. 156.

    Ho HY, Kam KW, Young AL, Chan LK, Yu EC. Acute angle closure glaucoma after sertraline. Gen Hosp Psychiatry. 2013;35:575.e571–572.

  157. 157.

    Ahmad S. Fluoxetine and glaucoma. Dicp. 1991;25:436.

  158. 158.

    Jimenez-Jimenez FJ, Orti-Pareja M, Zurdo JM. Aggravation of glaucoma with fluvoxamine. Ann Pharmacother. 2001;35:1565–6.

  159. 159.

    Seitz DP, Campbell RJ, Bell CM, et al. Short-term exposure to antidepressant drugs and risk of acute angle-closure glaucoma among older adults. J Clin Psychopharmacol. 2012;32:403–7.

  160. 160.

    Chen HY, Lin CL, Lai SW, Kao CH. Association of selective serotonin reuptake inhibitor use and acute angle-closure glaucoma. J Clin Psychiatry. 2016;77:e692–696.

  161. 161.

    Zenzen CT, Eliott D, Balok EM, Watnick RL, German P. Acute angle-closure glaucoma associated with intranasal phenylephrine to treat epistaxis. Arch Ophthalmol. 2004;122:655–6.

  162. 162.

    Khan MA, Watt LL, Hugkulstone CE. Bilateral acute angle-closure glaucoma after use of Fenox nasal drops. Eye. 2002;16:662–3.

  163. 163.

    Nicoara SD, Damian I. Bilateral simultaneous acute angle closure attack triggered by an over-the-counter flu medication. Int Ophthalmol. 2018;38:1775–8.

  164. 164.

    Gayat E, Gabison E, Devys JM. Case report: bilateral angle closure glaucoma after general anesthesia. Anesth Analg. 2011;112:126–8.

  165. 165.

    Day AC, Nolan W, Malik AN, Viswanathan AC, Foster PJ. Pilocarpine induced acute angle closure. BMJ Case Rep. 2012;2012:bcr0120125694.

  166. 166.

    Schlote T, Freudenthaler N, Gelisken F. Anticoagulative therapy in patients with exudative age-related macular degeneration: acute angle closure glaucoma after massive intraocular hemorrhage. Ophthalmologe. 2005;102:1090–6.

  167. 167.

    Caronia RM, Sturm RT, Fastenberg DM, Berke SJ, Weintraub J. Bilateral secondary angle-closure glaucoma as a complication of anticoagulation in a nanophthalmic patient. Am J Ophthalmol. 1998;126:307–9.

  168. 168.

    Neudorfer M, Leibovitch I, Goldstein M, Loewenstein A. Massive choroidal hemorrhage associated with low molecular weight heparin therapy. Blood Coagul Fibrinolysis. 2002;13:257–9.

  169. 169.

    Masri I, Smith JM, Wride NK, Ghosh S. A rare case of acute angle closure due to spontaneous suprachoroidal haemorrhage secondary to loss of anti-coagulation control: a case report. BMC Ophthalmol. 2018;18(Suppl 1):224.

  170. 170.

    De Marco R, Aurilia P, Mele A. Massive spontaneous choroidal hemorrhage in a patient with chronic renal failure and coronary artery disease treated with Plavix. Eur J Ophthalmol. 2009;19:883–6.

  171. 171.

    Pesin SR, Katz LJ, Augsburger JJ, Chien AM, Eagle RC Jr. Acute angle-closure glaucoma from spontaneous massive hemorrhagic retinal or choroidal detachment. An updated diagnostic and therapeutic approach. Ophthalmology. 1990;97:76–84.

  172. 172.

    Lee YJ, Kang SM, Kang IB. Acute angle-closure glaucoma from spontaneous massive hemorrhagic retinal detachment. Korean J Ophthalmol. 2007;21:61–4.

Download references

Author information

Correspondence to Joshua D. Stein.

Ethics declarations

Conflict of interest

Dr. Pasquale is a consultant for Bausch+Lomb, Eyenovia, Nicox, and Verily.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark