The impact of artificial intelligence in the diagnosis and management of glaucoma

Abstract

Deep learning (DL) is a subset of artificial intelligence (AI), which uses multilayer neural networks modelled after the mammalian visual cortex capable of synthesizing images in ways that will transform the field of glaucoma. Autonomous DL algorithms are capable of maximizing information embedded in digital fundus photographs and ocular coherence tomographs to outperform ophthalmologists in disease detection. Other unsupervised algorithms such as principal component analysis (axis learning) and archetypal analysis (corner learning) facilitate visual field interpretation and show great promise to detect functional glaucoma progression and differentiate it from non-glaucomatous changes when compared with conventional software packages. Forecasting tools such as the Kalman filter may revolutionize glaucoma management by accounting for a host of factors to set target intraocular pressure goals that preserve vision. Activation maps generated from DL algorithms that process glaucoma data have the potential to efficiently direct our attention to critical data elements embedded in high throughput data and enhance our understanding of the glaucomatous process. It is hoped that AI will realize more accurate assessment of the copious data encountered in glaucoma management, improving our understanding of the disease, preserving vision, and serving to enhance the deep bonds that patients develop with their treating physicians.

摘要

深度学习 (Deep learning,DL) 是人工智能的一个分支, 通过模仿哺乳动物视皮层合成影像的能力, 建立多层神经网络模型。 这种技术会在青光眼领域起到变革的作用。自主DL算法能够最大化地收集眼底图像和OCT中包含的信息, 在疾病探查方面甚至能够超越眼科医生。其他的无监管算法例如主成分分析 (纵学习) 和原型分析 (角点学习) 有助于对视野结果进行解释, 并且与传统软件包相比能够更好地检测青光眼功能性进展, 并与非青光眼相鉴别。此外, 如卡尔曼滤波器等预测性工具可收录一系列影响因素后确定维持视力的目标眼压值, 从而彻底改变了青光眼的管理。DL算法通过处理青光眼数据可生成激活图, 引导我们关注高通量数据中嵌入的关键数据元素, 并加强我们对青光眼发展过程的理解。最后, 希望AI能够更加精准地评估青光眼治疗管理过程中的大量数据, 提高我们对青光眼、保护视力的认识, 成为患者与医生之间的深厚纽带。

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Turing AM. Computing machinery and intelligence. Mind. 1950;49:433–60.

    Google Scholar 

  2. 2.

    DeVries PMR, Viegas F, Wattenberg M, Meade BJ. Deep learning of aftershock patterns following large earthquakes. Nature. 2018;560:632–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T. The rise of deep learning in drug discovery. Drug Discov Today. 2018;23:1241–50.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Ho KC, Speier W, El-Saden S, Arnold CW. Classifying acute ischemic stroke onset time using deep imaging features. AMIA Annu Symp Proc. 2017;2017:892–901.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8.

    CAS  Google Scholar 

  6. 6.

    Ehteshami Bejnordi B, Veta M, Johannes van Diest P, van Ginneken B, Karssemeijer N, Litjens G, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. J Am Med Assoc. 2017;318:2199–210.

    Google Scholar 

  7. 7.

    Trebeschi S, van Griethuysen JJM, Lambregts DMJ, Lahaye MJ, Parmar C, Bakers FCH, et al. Deep learning for fully-automated localization and segmentation of rectal cancer on multiparametric MR. Sci Rep. 2017;7:5301.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Asaoka R, Murata H, Hirasawa K, Fujino Y, Matsuura M, Miki A, et al. Using deep learning and transfer learning to accurately diagnose early-onset glaucoma from macular optical coherence tomography images. Am J Ophthalmol. 2019;198:136–45.

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Shibata N, Tanito M, Mitsuhashi K, Fujino Y, Matsuura M, Murata H, et al. Development of a deep residual learning algorithm to screen for glaucoma from fundus photography. Sci Rep. 2018;8:14665.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Li Z, He Y, Keel S, Meng W, Chang RT, He M. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology. 2018;125:1199–206.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Asaoka R, Murata H, Iwase A, Araie M. Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier. Ophthalmology. 2016;123:1974–80.

    Google Scholar 

  12. 12.

    Ting DSW, Cheung CY, Lim G, Tan GSW, Quang ND, Gan A, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. J Am Med Assoc. 2017;318:2211–23.

    Google Scholar 

  13. 13.

    Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. J Am Med Assoc. 2016;316:2402–10.

    Google Scholar 

  14. 14.

    Abramoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest Ophthalmol Vis Sci. 2016;57:5200–6.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology. 2017;124:962–9.

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Burlina PM, Joshi N, Pekala M, Pacheco KD, Freund DE, Bressler NM. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA Ophthalmol. 2017;135:1170–6.

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Treder M, Lauermann JL, Eter N. Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning. Graefes Arch Clin Exp Ophthalmol. 2018;256:259–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Schlegl T, Waldstein SM, Bogunovic H, Endstrasser F, Sadeghipour A, Philip AM, et al. Fully automated detection and quantification of macular fluid in OCT using deep learning. Ophthalmology. 2018;125:549–58.

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Redd TK, Campbell JP, Brown JM, Kim SJ, Ostmo S, Chan RVP, et al. Evaluation of a deep learning image assessment system for detecting severe retinopathy of prematurity. Br J Ophthalmol. 2019;103:580–4.

    Google Scholar 

  20. 20.

    Wang J, Ju R, Chen Y, Zhang L, Hu J, Wu Y, et al. Automated retinopathy of prematurity screening using deep neural networks. EBioMedicine. 2018;35:361–8.

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25:44–56.

    CAS  Google Scholar 

  22. 22.

    Samuel A. Some studies in machine learning using the game of checkers. IBM J Res Dev. 1959;3:210–29.

    Google Scholar 

  23. 23.

    LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

    CAS  Google Scholar 

  24. 24.

    Poggio T, Anselmi F. Visual cortex and deep networks: learning invariant representations. Cambridge, Massachusetts: The MIT Press; 2016.

    Google Scholar 

  25. 25.

    Lindsay PH, Norman DA. Human information processing: introduction to psychology. New York, NY: Aacademic Press; 1972.

    Google Scholar 

  26. 26.

    Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol. 1962;160:106–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Lee TS, Mumford D. Hierarchical Bayesian inference in the visual cortex. J Opt Soc Am. 2003;20:1434–48.

    Google Scholar 

  28. 28.

    Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323:533–6.

    Google Scholar 

  29. 29.

    Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121:2081–90.

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Harwerth RS, Carter-Dawson L, Shen F, Smith EL 3rd, Crawford ML. Ganglion cell losses underlying visual field defects from experimental glaucoma. Invest Ophthalmol Vis Sci. 1999;40:2242–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Harwerth RS, Carter-Dawson L, Smith EL 3rd, Barnes G, Holt WF, Crawford ML. Neural losses correlated with visual losses in clinical perimetry. Invest Ophthalmol Vis Sci. 2004;45:3152–60.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Hoffmann EM, Zangwill LM, Crowston JG, Weinreb RN. Optic disk size and glaucoma. Surv Ophthalmol. 2007;52:32–49.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Quigley HA, Brown AE, Morrison JD, Drance SM. The size and shape of the optic disc in normal human eyes. Arch Ophthalmol. 1990;108:51–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Varma R, Steinmann WC, Scott IU. Expert agreement in evaluating the optic disc for glaucoma. Ophthalmology. 1992;99:215–21.

    CAS  Google Scholar 

  35. 35.

    Ting DSW, Peng L, Varadarajan AV, Keane PA, Burlina P, Chiang MF, et al. Deep learning in ophthalmology: the technical and clinical considerations. Prog Retin Eye Res. 2019;72:100759.

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Cantor SB, Kattan MW. Determining the area under the ROC curve for a binary diagnostic test. Med Decis Mak. 2000;20:468–70.

    CAS  Google Scholar 

  37. 37.

    Medeiros FA, Jammal AA, Thompson AC. From machine to machine: an OCT-trained deep learning algorithm for objective quantification of glaucomatous damage in fundus photographs. Ophthalmology. 2019;126:513–21.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Lee J, Kim Y, Kim JH, Park KH. Screening glaucoma with red-free fundus photography using deep learning classifier and polar transformation. J Glaucoma. 2019;28:258–64.

    Google Scholar 

  39. 39.

    Masumoto H, Tabuchi H, Nakakura S, Ishitobi N, Miki M, Enno H. Deep-learning classifier with an ultrawide-field scanning laser ophthalmoscope detects glaucoma visual field severity. J Glaucoma. 2018;27:647–52.

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Thompson AC, Jammal AA, Medeiros FA. A deep learning algorithm to quantify neuroretinal rim loss from optic disc photographs. Am J Ophthalmol. 2019;201:9–18.

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Prum BE Jr, Rosenberg LF, Gedde SJ, Mansberger SL, Stein JD, Moroi SE, et al. Primary Open-Angle Glaucoma Preferred Practice Pattern® guidelines. Ophthalmology. 2016;123:P41–111.

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Phan S, Satoh S, Yoda Y, Kashiwagi K, Oshika T, Japan Ocular Imaging Registry Research G. Evaluation of deep convolutional neural networks for glaucoma detection. Jpn J Ophthalmol. 2019;63:276–83.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Christopher M, Belghith A, Bowd C, Proudfoot JA, Goldbaum MH, Weinreb RN, et al. Performance of deep learning architectures and transfer learning for detecting glaucomatous optic neuropathy in fundus photographs. Sci Rep. 2018;8:16685.

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Goldbaum MH, Sample PA, White H, Colt B, Raphaelian P, Fechtner RD, et al. Interpretation of automated perimetry for glaucoma by neural network. Invest Ophthalmol Vis Sci. 1994;35:3362–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Li F, Wang Z, Qu G, Song D, Yuan Y, Xu Y, et al. Automatic differentiation of glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network. BMC Med Imaging. 2018;18:35.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Ferreras A, Pablo LE, Garway-Heath DF, Fogagnolo P, Garcia-Feijoo J. Mapping standard automated perimetry to the peripapillary retinal nerve fiber layer in glaucoma. Invest Ophthalmol Vis Sci. 2008;49:3018–25.

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Keltner JL, Johnson CA, Cello KE, Edwards MA, Bandermann SE, Kass MA, et al. Classification of visual field abnormalities in the ocular hypertension treatment study. Arch Ophthalmol. 2003;121:643–50.

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Elze T, Pasquale LR, Shen LQ, Chen TC, Wiggs JL, Bex PJ. Patterns of functional vision loss in glaucoma determined with archetypal analysis. J R Soc Interface. 2015;12:20141118.

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Cai S, Elze T, Bex PJ, Wiggs JL, Pasquale LR, Shen LQ. Clinical correlates of computationally derived visual field defect archetypes in patients from a glaucoma clinic. Curr Eye Res. 2017;42:568–74.

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Wang M, Pasquale LR, Shen LQ, Boland MV, Wellik SR, De Moraes CG, et al. Reversal of glaucoma hemifield test results and visual field features in glaucoma. Ophthalmology. 2018;125:352–60.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Saeedi OJ, Elze T, D’Acunto L, Swamy R, Hegde V, Gupta S, et al. Agreement and predictors of discordance of six visual field progression algorithms. Ophthalmology. 2019;126:822–8.

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Wang M, Shen LQ, Pasquale LR, Petrakos P, Formica S, Boland MV, et al. An artificial intelligence approach to detect visual field progression in glaucoma based on spatial pattern analysis. Invest Ophthalmol Vis Sci. 2019;60:365–75.

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Janz NK, Wren PA, Guire KE, Musch DC, Gillespie BW, Lichter PR, et al. Fear of blindness in the Collaborative Initial Glaucoma Treatment Study: patterns and correlates over time. Ophthalmology. 2007;114:2213–20.

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Munoz B, West SK, Rubin GS, Schein OD, Quigley HA, Bressler SB, et al. Causes of blindness and visual impairment in a population of older Americans: The Salisbury Eye Evaluation Study. Arch Ophthalmol. 2000;118:819–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Lefferts EJ, Markley FL, Shuster MD. Kalman filtering for spacecraft attitude estimation. J Guid Control Dyn. 1982;5:417–29.

    Google Scholar 

  56. 56.

    Catlin DE. The discrete Kalman filter. In: Estimation, control, and the discrete Kalman filter. 71st ed. New York, NY: Springer Science & Business Media; 2012. p. 133–63.

  57. 57.

    Schell GJ, Lavieri MS, Helm JE, Liu X, Musch DC, Van Oyen MP, et al. Using filtered forecasting techniques to determine personalized monitoring schedules for patients with open-angle glaucoma. Ophthalmology. 2014;121:1539–46.

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Garcia GP, Nitta K, Lavieri MS, Andrews C, Liu X, Lobaza E, et al. Using Kalman filtering to forecast disease trajectory for patients with normal tension glaucoma. Am J Ophthalmol. 2019;199:111–9.

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Kazemian P, Lavieri MS, Van Oyen MP, Andrews C, Stein JD. Personalized prediction of glaucoma progression under different target intraocular pressure levels using filtered forecasting methods. Ophthalmology. 2018;125:569–77.

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Ting DSW, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, et al. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019;103:167–75.

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med. 2018;24:1342–50.

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Asaoka R, Hirasawa K, Iwase A, Fujino Y, Murata H, Shoji N, et al. Validating the usefulness of the “random forests” classifier to diagnose early glaucoma with optical coherence tomography. Am J Ophthalmol. 2017;174:95–103.

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Yoshida T, Iwase A, Hirasawa H, Murata H, Mayama C, Araie M, et al. Discriminating between glaucoma and normal eyes using optical coherence tomography and the ‘random forests’ classifier. PLoS One. 2014;9:e106117.

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Wu PC, Huang HM, Yu HJ, Fang PC, Chen CT. Epidemiology of myopia. Asia Pac J Ophthalmol. 2016;5:386–93.

    Google Scholar 

  65. 65.

    Rudnicka AR, Owen CG, Nightingale CM, Cook DG, Whincup PH. Ethnic differences in the prevalence of myopia and ocular biometry in 10- and 11-year-old children: the Child Heart and Health Study in England (CHASE). Investig Ophthalmol Vis Sci. 2010;51:6270–6.

    Google Scholar 

  66. 66.

    Cho HK, Kee C. Population-based glaucoma prevalence studies in Asians. Surv Ophthalmol. 2014;59:434–47.

    Google Scholar 

  67. 67.

    Stein JD, Kim DS, Niziol LM, Talwar N, Nan B, Musch DC, et al. Differences in rates of glaucoma among Asian Americans and other racial groups, and among various Asian ethnic groups. Ophthalmology. 2011;118:1031–7.

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Lynch SK, Shah A, Folk JC, Wu X, Abramoff MD. Catastrophic failure in image-based convolutional neural network algorithms for detecting diabetic retinopathy. Investig Ophthalmol Vis Sci. 2017;58:3776–3776.

    Google Scholar 

  69. 69.

    Cvenkel B, Atanasovska Velkovska M. Self-monitoring of intraocular pressure using Icare HOME tonometry in clinical practice. Clin Ophthalmol. 2019;13:841–7.

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Sircar T, Mishra A, Bopardikar A, Tiwari VN. GearVision: smartphone based head mounted perimeter for detection of visual field defects. Conf Proc IEEE Eng Med Biol Soc. 2018;2018:5402–5.

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Gunasekera CD, Thomas P. High-resolution direct ophthalmoscopy with an unmodified iPhone X. JAMA Ophthalmol. 2019;137:212–3.

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Wicklund E. CMS to reimburse providers for remote patient monitoring services. Telehealth News. www.mhealthintelligence.com. Accessed Jun 2019.

Download references

Acknowledgements

MW: Pending patents for 2018 Visual Field Progression U.S. application no. 036770–571001WO, 2018 Predicting Result Reversals of Glaucoma Hemifield Tests U.S. application no. 036770–572001WO, and 2019 Archetypal Defect Classes of Functional Vision Loss in Glaucoma to Diagnose Glaucomatous Vision Loss and its Progression U.S. Provisional application no. 62804903. TE: pending patents for 2018 Visual Field Progression U.S. application no. 036770–571001WO, 2018 Predicting Result Reversals of Glaucoma Hemifield Tests U.S. application no. 036770–572001WO, and 2019 Archetypal Defect Classes of Functional Vision Loss in Glaucoma to Diagnose Glaucomatous Vision Loss and its Progression U.S. Provisional application no. 62804903. LP: consultant for Verily, eyenovia, Bausch + Lomb, and Nicox.

Funding

This work was supported by NIH R01 EY015473 (LRP), NIH R21 EY030142 (TE), NIH R21 EY030631 (TE), NIH R01 EY030575 (TE), NIH K99 EY028631 (MW), and BrightFocus Foundation (MW and TE).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eileen L. Mayro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mayro, E.L., Wang, M., Elze, T. et al. The impact of artificial intelligence in the diagnosis and management of glaucoma. Eye 34, 1–11 (2020). https://doi.org/10.1038/s41433-019-0577-x

Download citation

Further reading