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Abstract
Adaptive optics (AO) is an insightful tool that has been increasingly applied to existing imaging systems for viewing the
retina at a cellular level. By correcting for individual optical aberrations, AO offers an improvement in transverse resolution
from 10–15 μm to ~2 μm, enabling assessment of individual retinal cell types. One of the settings in which its utility has been
recognised is that of the inherited retinal diseases (IRDs), the genetic and clinical heterogeneity of which warrants better
cellular characterisation. In this review, we provide a summary of the basic principles of AO, its integration into multiple
retinal imaging modalities and its clinical applications, focusing primarily on IRDs. Furthermore, we present a
comprehensive summary of AO-based cellular findings in IRDs according to their associated disease-causing genes.

Introduction

Since its first use in retinal imaging just over 20 years ago
[1], adaptive optics (AO) has undergone immense growth in
its applications amongst vision scientists and clinicians.
This technique has allowed imaging of the living retina at a
cellular resolution, leading to revolutionary changes in our
understanding of retinal diseases and especially those of
monogenic aetiology. In doing so, it has opened exciting
avenues for research, monitoring retinal diseases [2–4], and
providing new tools for refining diagnosis [5, 6].

Adaptive optics was originally a component added to
astronomical telescopes to rectify loss of resolution from
atmospheric irregularities (wind and moisture) [7]. Its uses
have since evolved and have been employed in the fields of
microscopy, communication and medicine. In ophthalmic
applications, AO is a tool by which monochromatic aber-
rations present in the optical path of the eye are measured
and then compensated. In reference to the eye, the

measurement and full wavefront correction can improve the
transverse optical resolution from 10–15 μm to ~2 μm. This
enhanced resolution enables visualisation of numerous ret-
inal cell types including ganglion cells [8, 9], photo-
receptors [10–13], and retinal pigment epithelial (RPE) cells
[14, 15]. AO, as a bolt-on technique, has been integrated
into multiple existing retinal imaging systems, including
flood illumination ophthalmoscopy (FIO) [1, 16], scanning
laser ophthalmoscopy (SLO) [17, 18] and, most recently,
optical coherence tomography (OCT) [19, 20]. Although it
is yet to be in widespread clinical use, the advent of AO has
truly redefined the possibilities for in vivo retinal imaging
and transformed the ophthalmic research space.

One of the most common targets of ophthalmic AO
imaging has been in patients with mendelian inherited ret-
inal diseases (IRDs). Patients with IRDs are clinically and
genetically heterogeneous; over 250 disease-associated
genes have been identified to date, with patients display-
ing retinal dysfunction, which can be either stationary or
progressive, leading to sight loss [21]. Given that the pri-
mary cell types affected in IRD patients are photoreceptors
and RPE cells, AO-based retinal imaging provides a vital
tool for shedding light on cellular pathogenesis, disease
progression and its clinical correlation. This is especially
true as studies show the detection of microstructural retinal
changes prior to functional changes occurring in a patient’s
vision [22, 23]. Similarly, AO plays a crucial role in sen-
sitively assessing the efficacy of interventions rapidly
developing for IRDs, including stem cell, gene replacement
and gene modification therapy [24]. In view of the sig-
nificance of AO retinal imaging in IRDs, our review
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summarises the cellular changes corresponding with
mutation-specific disease, whilst exploring its basic princi-
ples, uses and clinical applications.

Basic principles of adaptive optics

Optical aberrations are deviations of incoming light rays
from the ideal path, such that they do not converge into a
single point of focus on the retina. Aberrations can largely
be attributed to the three optical elements of the eye: the
cornea, the pupil and the crystalline lens, however other
components (aqueous/vitreous humour and retinal tissue)
can also contribute [25]. Whilst the corneal surface con-
tributes to approximately two-thirds of the eye’s optical
aberrations, the crystalline lens is largely responsible for the
remainder through its shape, thickness and cellular align-
ment. Sitting in-between the cornea and lens, the pupil also
affects optical quality by regulating the quantity of light
entering and exiting the eye during imaging [26]. Optical
aberrations can be classified as being of either low- or high-
order. Low-order aberrations, such as defocus and astig-
matism, are of greatest magnitude, but corrected with
glasses or contact lenses. In contrast, high-order aberrations,
such as keratoconus, constitute a small proportion of optical
aberrations and have proven more challenging to correct
for. Although the effects of many optical aberrations are
only detectable with specialist testing [27], others can sig-
nificantly distort both a patient’s vision and their retinal
images.

AO-aided imaging compensates for a patient’s indivi-
dual optical aberrations to provide a high-resolution view of
the retina. These systems classically consist of three major
components: a wavefront sensor, a wavefront corrector, and
a control system linking the prior two constituents (Fig. 1).
The wavefront sensor measures the patient’s ocular aber-
rations, whilst the control system interprets these to com-
municate the required adjustments to the wavefront
corrector. In the closed-loop configuration conventionally
used, the wavefront sensor is positioned after the wavefront
corrector to provide feedback regarding residual aberrations
until the wavefront matrix is minimised. This is ideally the
diffraction limit of the patient’s eye, however this is not
always possible [28].

Wavefront sensor

The Shack-Hartmann Wavefront Sensor (SHWS) is the
most commonly used wavefront measurement technique in
ophthalmology. It consists of an array of micro-lenslets
located in front of an area detector [29]. In the SHWS, the
aberrated light leaving the eye illuminates micro-lenslets to
produce an arrangement of spots on the detector. Since each

micro-lenslet corresponds to a location at the pupil, the
SHWS assesses how much each detected spot position
deviates from its intended position. The calculated deviation
is used to make inferences about the wavefront slope and
amplitude at each location and is compiled across the pupil,
thus determining the type and magnitude of optical aber-
ration across the wavefront.

Wavefront corrector

Numerous techniques are available to correct the wavefront
and are generally divided into two categories: piston-
segmented devices and continuous surface mirrors. The
most commonly used wavefront corrector, the deformable
mirror, is comprised of a reflective faceplate deflected by a
series of actuators, which can be either segmented or con-
tinuous. As the segmented deformable mirror leads to more
diffraction-induced spurious effects, continuous deformable
mirrors are the mainstay of use in AO retinal imaging. Over
the last decade, a dual deformable mirror configuration,
known as a ‘woofer-tweeter system’, has come into use in
which the differing specifications of each mirror confers
correction of a wider range of aberrations [30–33]. The
woofer-tweeter arrangement involves both deformable
mirrors conjugated to the plane of the pupil. In contrast,
multiple groups have applied a dual-conjugate configuration
in which one deformable mirror conjugates to the pupil
whilst the other deformable mirror conjugates to a plane in
front of the retina [34, 35]. This enables aberration correc-
tion for a greater field of view, allowing wide-field high-
resolution retinal imaging.

Fig. 1 Schematic diagram of an adaptive optics-assisted retinal ima-
ging system. An AO system measures the aberrated wavefront using a
wavefront sensor (a), and compensates for this using a wavefront
corrector (c). These usually take the form of a Shack-Hartmann
Wavefront Sensor (SHWS) and deformable mirror, respectively. These
two components are connected by a central control system (b). The
resulting AO-corrected retinal image is recorded using a high-
resolution camera
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Wavefront sensor-less systems

More recently, a wavefront sensor-less AO correction sys-
tem has been implemented in ophthalmic imaging, using
image quality in place of a wavefront sensor to correct for
aberrations [36–38]. Whilst this offers simplification of
current AO systems, the serial assessment required of
parameters, such as image sharpness, denotes an increased
aberration correction time. This trade-off has implications in
patients with temporally fluctuating aberrations or eye
movements (nystagmus). Efforts are thus being made to
reduce the time required for wavefront sensor-less correc-
tion to allow its application to become more widespread.
This reduction is being spurred by the continual increase of
computing power (CPU cores) and newer array-based
computing possibilities (GPU) [39].

Retinal imaging modalities using adaptive
optics

Adaptive optics flood illumination ophthalmoscopy

The first published AO retinal images were produced at the
University of Rochester in 1997, where this technique was
incorporated in FIO [1]. Its original applications were to
understand cone density and arrangement underlying psy-
chophysical responses. It was several years before AO use
in retinal imaging progressed from understanding normal
vision, to investigating retinal pathology [40]. Further
complicating the uptake of AO-based imaging in ophthal-
mic practice was the reliance on custom-built systems,
oversized for the clinical setting. However, the first compact
AO retinal imaging system became commercially available
in 2011 in the form of the rtx1 (Imagine Eyes, France),
providing a 4 × 4˚ (~1.3 × ~1.3 mm) retinal view [41].

The advantages of AO-FIO include its incorporation of a
spinning diffuser to eliminate speckle from its light source.
Conversely, it is limited by a poor axial resolution (~300
μm), which reduces cone photoreceptor contrast and
decreases repeatability of longitudinal cone density mea-
surements [42, 43]. The efficiency of AO-FIO was pre-
viously restricted by its long imaging time per frame due to
light source and detector technologies. However, the advent
of the superluminescent diode (SLD) as a light source,
paired with a high-speed charge-coupled device, has
enabled faster frame rates [16]. This has conferred AO-FIO
with the capacity to record real-time retinal videos, parti-
cularly in the context of retinal perfusion [44]. In one of the
earliest studies of its use in IRDs, Choi et al. [45] employed
AO-FIO to directly correlate the extent of cone abnormal-
ities with functional loss of vision in patients with retinal
dystrophy.

Adaptive optics scanning laser ophthalmoscopy

The next AO ophthalmic imaging breakthrough arrived in
the form of the AOSLO in 2002 [18], which improved upon
the AO-FIO’s image contrast and added the ability to
optically section. In AOSLO, a single-point light beam is
raster scanned across the retina, with scattered light from
each point recorded by a light-sensitive detector to construct
an image. This system allows the incorporation of multiple
detection modes, including confocal, offset pinhole and
non-confocal methods. In confocal imaging, a pinhole is
positioned in front of the detector, which allows the rejec-
tion of light scattered from areas other than those within the
retinal focal plane. As a result, the image at the point of
focus is of significantly greater contrast and allows a system
to be designed that enables retinal sectioning. Confocal
AOSLO is particularly useful in permitting the imaging of
rod photoreceptors [10, 46, 47] and elements of the optic
nerve, including the nerve fibre layer [48] and lamina cri-
brosa [49].

Over the last 5 years, the advantages of non-confocal
AOSLO have also emerged. In contrast to confocal
AOSLO, this involves collecting scattered light surrounding
the point of focus instead of the confocal signal itself. The
resultant annular signal enables effective visualisation of the
RPE without the need for autofluorescence, known as ‘dark-
field imaging’ [15]. Alternatively, this signal can be divided
in two to reveal inner segments of photoreceptors not seen
on confocal AOSLO, termed ‘split-detection imaging’
(Fig. 2) [50]. This confers advantages in IRDs in which
photoreceptor outer segment (OS) composition and align-
ment are affected, such as achromatopsia [51], choroider-
emia [52], Stargardt disease [53], and Leber congenital
amaurosis [54]. There is, therefore, strong rationale for the
complementary use of both confocal and non-confocal
AOSLO in the assessment of retinal structure, especially in
IRDs (Fig. 3) [23, 55–57]. Disadvantages of AOSLO
include its propensity for image distortion, as well as the
inefficiency of its serial image creation [58].

Adaptive optics optical coherence tomography

The latest advent in retinal imaging has been the incor-
poration of AO in OCT. Now in widespread clinical use, the
introduction of OCT in 1991 made possible a cross-
sectional view of the retina previously only seen ex vivo as
a histological section [59]. Although native OCT provides a
subcellular axial optical resolution, its axial and transverse
resolution is still limited by optical aberrations, thus making
its partnership with AO ideal. AO-OCT has facilitated
three-dimensional visualisation of single photoreceptors
[60], retinal nerve fibre bundles [61], the lamina cribrosa
[62], and retinal vasculature [63]. An exciting recent
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development is the simultaneous use of AOSLO and AO-
OCT, which offers the ultrahigh axial resolution of the latter
whilst utilising eye tracking advantages of the former to
reduce the effect of saccade [13, 64].

The effect of optical resolution and image sampling
on cell visibility

One challenge in understanding the AO imaging literature has
been discrepancies in interpretations of the same disease, due
to differences in capabilities between the various AO-enabled
platforms and devices [56, 57, 65–68]. These variations may
be initially interpreted as inherent differences in resolution
across AO imaging modalities. However, this is more often
due to a difference in image sampling, rather than optical
resolution. For instance, foveal cones and near-fovea rods (<2
mm from centre) are roughly 2 µm in diameter [69], which is
near the theoretical optical resolution for a nominal eye
[70, 71]. Rod photoreceptors change in size modestly,
reaching roughly 2-4 µm in the peripheral retina (>8mm
from centre). In comparison, cone photoreceptors markedly
increase in diameter from their 2 µm foveal size, to >10 µm by
3mm from the centre of fixation [69, 72]. The differences in
photoreceptor diameter have contributed towards their vari-
able visibility across modalities. Rod photoreceptors were first
observed in IRD patients using FIO technology [73] in 2006,
and seen using the same technology in normal subjects in
early 2011 [74], before first being published using AOSLO
[10] later that year. Subsequently, rods have also been
visualised using AO-OCT methods [13, 60]. Many of the
early FIO systems had a sampling resolution between 1–2 µm

per pixel, including commercially available systems [11].
Alternatively, custom built AOSLO systems have been
designed with sub-micron sampling resolutions [71, 75]
which, due to Nyquist limits and contrast enhancements from
confocal imaging [76], are better positioned to take advantage
of and achieve the theoretical limits of resolution. Therefore,
the common differences observed between modalities to date
has been due to differences in image sampling. The interac-
tion between sampling, optical resolution and device design
has been reviewed elsewhere [70, 71].

Applications of adaptive optics in inherited
retinal diseases

The application of AO in IRDs has progressed from
exploring disease genotype-phenotype correlations [77–79],
to longitudinal assessment of disease progression using
cellular metrics as potential trial endpoints [2–4, 80]. To
enable the latter, AO-aided imaging has demonstrated the
ability to image the same retinal area with microscopic
precision longitudinally [81, 82]. Several aspects of
retinal microstructure, such as photoreceptor density and
morphology, have consequently emerged as significant to
the disease process and assisted in characterisation of
each condition. These have been proposed as metrics
for evaluating therapeutic potential and efficacy in
patients [83, 84], and are therefore of great clinical
relevance.

To understand the differences between normal and
abnormal cell densities, an understanding of normal

Fig. 2 Comparison of detection modes using adaptive optics scanning
laser ophthalmoscopy (AOSLO) in healthy retina. Detector views of
the annular reflective mirror (top) represent the relative contributions
of scattered/non-scattered light in producing each AOSLO modality
image (bottom). Confocal imaging utilises light within the retinal focal
plane, whereas non-confocal (split-detection and dark-field) images are

produced from scattered light. Individual photoreceptor cells can be
identified on both confocal and split-detection imaging. Dark-field
imaging reveals the underlying retinal pigment epithelium (RPE) as a
hexagonal mosaic. The AOSLO images shown are from different
retinal locations in the same healthy eye
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variability must be assessed. Most optical imaging literature
still refer back to the seminal histological work by Curcio
et al. [69], to assess the density and organisation of the rod
and cone photoreceptors. Several groups have since looked
at larger cohorts of healthy retina using AO-aided imaging,
and have now developed extensive normal subject photo-
receptor density data [10, 82, 85–87]. It is largely agreed
that the very centre of the fovea is rod-free, expanding out
to a region of 250–500 µm in diameter [69, 88]. Cone pho-
toreceptor density drops precipitously from ~300,000 to
100,000 photoreceptors per mm2 as you move from the
centre to the edge of this region (~50% less)

[69, 72, 82, 88]. The photoreceptor density continues to
drop to nominally 5000 mm2 by 3 mm from the centre, but
this is affected by several factors such as axial length
[69, 82, 85]. Over the same area, rod photoreceptors
transition from absence at the centre to a peak of 125,000
rods per mm2 at about 4 mm radius, before slowly
decreasing in density as you move to the far periphery.

Photoreceptor-based metrics

The ideal photoreceptor mosaic is organised in a regular
triangular lattice with hexagonal packing [89]. Several
metrics aim to detect and quantify photoreceptor loss in this
arrangement, and can be broadly categorised into measures
of density, spacing and regularity (Fig. 4) [90]. Cone

Fig. 3 Comparison of confocal and non-confocal (split-detection)
AOSLO in a healthy control and an USH2A-associated type II Usher
syndrome patient. AOSLO imaging of a 35-year-old male healthy
control shows a regular and densely packed photoreceptor mosaic at
the fovea (top left), with larger and less dense photoreceptors in the
periphery. Although these photoreceptors demonstrate varying degrees
of reflectance, there are no prominent dark regions. In contrast, ima-
ging of a 43-year-old female with USH2A-associated retinitis pig-
mentosa reveals a disrupted foveal mosaic with non-waveguiding
areas, which increases in severity peripherally. Split-detection imaging
(bottom right) of non-waveguiding areas in the peripheral confocal
mosaic (bottom left) shows remnant cone inner segments in this
patient. Scale bar= 10 μm

Fig. 4 Application of photoreceptor mosaic-based metrics. Shown here
are simultaneously acquired confocal (a) and split-detection (b)
AOSLO images. Photoreceptors can be directly identified using
automated or manual methods (blue spots) in the confocal (c) and
split-detection (d) image. The modalities provide different rates of
identifiable cones. Once cone centres are identified, the nearest
neighbour distance (dashed line) or mean inter-cone distance (average
of all lines) can be measured. Additional metrics include Voronoi
diagrams of the foveal cone photoreceptors (e, f), the colouration of
which is used to illustrate the number of neighbours each cell has
surrounding it
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density is the most commonly used mosaic metric, with
good reliability and repeatability established in healthy
controls [91–93]. However, the comparative difficulty of
cone identification in retinal degenerations has rendered this
metric variable when applied to patients with Stargardt
disease [94], RPGR-associated retinopathy [94], and
achromatopsia [79]. In addition to inter-disease variances,
several studies demonstrate inter-imaging modality differ-
ences in cone density reliability, with split-detector AOSLO
conferring the best results [94, 95]. Limitations in reliability
and repeatability are similarly reported for cone spacing
metrics in IRDs [96], largely due to differences in mosaic
sampling window size and areas with increased cone
reflectivity loss. Nevertheless, both cone density and spa-
cing were successfully used by Talcott et al. [97] as mea-
sures of treatment efficacy in patients with retinitis
pigmentosa (RP) and Usher syndrome, in which ciliary
neurotrophic factor administration led to a reduced rate of
cone loss.

Photoreceptor reflectance properties have also been
explored for their utility as cellular metrics. On viewing the
in vivo retina using confocal AOSLO, bright Gaussian
profiles representing individual waveguiding photoreceptors
are visible, with their intensity exhibiting temporospatial
variation [46, 98]. The degree of cone illumination is pro-
posed to reflect OS function [99], and is supported by

functional imaging studies demonstrating stimulus-evoked
increases in cone brightness [100–102]. In the context of
IRDs, Dubis et al. [83] validated cone reflectance as a
functional metric in achromatopsia by correlating greater
mean cone reflectivity with better residual cone function. In
corroboration with this, a hyporeflective annulus sur-
rounding a central region of atrophy was noted in Stargardt
disease, which correlated with areas of cone loss [103].
However, occurrence of rod hyperreflectivity in Oguchi
disease [104] supports an alternative hypothesis linking
photoreceptor intensity to their OS length [105], which are
reported as shortened in this condition [106]. Raising fur-
ther questions regarding the validity of this metric, Bruce
et al. [107] reported weakly waveguiding cones in healthy
retina which performed normally on functional testing with
cone-based microperimetry.

Finally, AO imaging may be used to quantify morpho-
logical changes in individual photoreceptors during the
degeneration process [108], namely in OS length and inner
segment (IS) diameter. Jonnal et al. [109] recently devised a
method using phase-sensitive AO-OCT to detect changes in
OS length down to 45 nm, whilst Liu et al. [55] have uti-
lised split-detection AOSLO to measure remnant cone IS.
Despite its use as a marker by Sun et al. in RP [23] and
choroideremia [57], the utility of IS diameter is confounded
by enlargement of some cones secondary to neighbouring

Fig. 5 Multimodal imaging of
USH2A-associated type II Usher
syndrome. (a) Infrared
reflectance (IR) fundus
photograph, with the central red
arrow representing the optical
coherence tomography (OCT)
section shown in (b). (c) Fundus
auto-fluorescence (FAF)
photograph with confocal
adaptive optics scanning laser
ophthalmoscopy (AOSLO)
imaging of the fovea and
its surrounding region
superimposed and magnified in
(d). Further magnification of a
peripheral area (dashed
rectangle) in the confocal image
(e), and its corresponding
AOSLO split-detection image
(f), shows intact photoreceptor
inner segments in non-
waveguiding areas of the
confocal mosaic (yellow arrows)
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cone loss rather than their own degeneration [110]. Further
studies using morphology-based metrics are required to
better elucidate their utility.

RPE-based metrics

The use of RPE-based metrics for retinal diseases is one of
the most recent and exciting research avenues in AO-based
imaging. The RPE maintains a close structural and func-
tional relationship with its adjacent photoreceptors, holding
essential roles in OS phagocytosis, the visual cycle, light
absorption and transepithelial transport [111, 112]. In spite
of its dysfunction and/or atrophy underlying multiple IRDs,
including RP [113], biomarkers signifying its change have
been limited. This is mainly attributable to difficulty in its
direct visualisation, first being imaged after the degenera-
tion of its overlying photoreceptors [114]. However, Liu
et al. [14] recently applied AO-OCT to provide three-
dimensional characterisation of RPE cells, proposing
quantification of their organelle motility as a functional
metric [115]. Potential for RPE density as a biomarker has

also emerged by implementation of AO in infrared auto-
fluorescence imaging (AO-IRAF) [116]. Application of
AO-IRAF in an RP patient delivered a resolution that
enabled precise calculation of RPE density and RPE-to-
photoreceptor ratio.

Comparison of metrics

Selection of the ‘best’ metric in a patient or clinical study is
based on two factors: its functional relevance, and its sen-
sitivity in detecting change. At present, both are only well-
characterised in photoreceptor mosaic-based metrics [90].
Morphology- and RPE-based metrics are relatively well
understood regarding their structure-function
relationships, but warrant further exploration to assess
their sensitivity and robustness. Photoreceptor
reflectance, on the other hand, remains ambiguous in both
its origin and utility. Although based on data from
healthy controls, Cooper et al. [90] showed significantly
greater sensitivity of mosaic regularity metrics in identify-
ing cone loss than of spacing metrics, suggesting

Fig. 6 Multimodal imaging of
CHM-associated choroideremia.
(a) IR fundus photograph, with
the central red arrow representing
the OCT section shown in (b).
(c) FAF photograph with
confocal AOSLO imaging of the
fovea and its surrounding region
superimposed and magnified in
(d). Further magnification of a
perifoveal area (dashed rectangle)
in the confocal image (e), and its
corresponding AOSLO split-
detection image (f), shows a well-
circumscribed island of intact
photoreceptors surrounded by
non-waveguiding cones (red
arrows). Intact photoreceptor
inner segments are seen in non-
waveguiding areas of the
confocal mosaic (yellow arrows)
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their utility in longitudinal disease monitoring. However,
combining multiple metrics, as opposed to using a single
measure, may confer the greatest accuracy in monitoring
retinal disease [87, 117].

A major issue in the comparison of metrics, and in their
robust application, is the lack of multicentre standardisation.
This includes the absence of a central normative dataset to
assess findings against, as well as variation in the size of
retinal sampling windows used. These differences can cause
discrepancies in results, and thus prevent us from assim-
ilating data from different research groups when evaluating
metric utility.

Findings using adaptive optics in inherited
retinal diseases

AO-based imaging allows clinical diagnosis from early
pathological changes and disease monitoring using the
aforementioned metrics, thus conferring advantages that
imaging systems prior to it had been unable to offer. The
use of AO to study abnormalities in IRDs in conjunction
with established imaging methods has enabled the cellular
characterisation of these conditions (Figs. 5–7). We have

collated the phenotypic findings for each IRD investigated
thus far and categorised them based on their monogenetic
disease-causing gene (Table 1). This provides a compre-
hensive and up-to-date summary of AO imaging findings in
the IRDs.

Limitations and future prospects

The heterogeneity and rare prevalence of IRDs necessitates
larger cohort sizes in AO-based clinical studies, for which
multicentre collaborations are required [118]. However,
inter-centre discrepancies, in the form of differing AO-aided
imaging modalities and image acquisition methods, com-
plicate collaborative efforts. Aside from difficulties in
accurate cone identification, the impracticality of manual
image grading by observers and its poor repeatability can
also render metric applications as unreliable [95]. Recent
efforts to produce automated analytic tools for AO images
have shown promise in both confocal and non-confocal
settings [119, 120], with the latter being used in achroma-
topsia and Stargardt disease [121, 122]. Although further
work is needed to characterise the performance of these
algorithms in relation to different metrics [123], this

Fig. 7 Multimodal imaging of
MYO7A-associated type I Usher
syndrome. (a) IR fundus
photograph, with the central red
arrow representing the
OCT section shown in (b). (c)
FAF photograph with confocal
AOSLO imaging of the fovea
and its surrounding region
superimposed and magnified in
(d). Further magnification of a
peripheral area (dashed
rectangle) in the confocal image
(e), and its corresponding
AOSLO split-detection image
(f), shows the demarcation line
between a contiguous mosaic of
intact photoreceptors and their
degenerating neighbours
(dashed arc). It is important to
note the stark contrast above and
below this arc on the split-
detection image (f), compared to
the lack of difference in the
confocal image (e)
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provides AO retinal imaging with good prospects in ful-
filling their clinical potential.

In summary, the correction of optical aberrations using
adaptive optics has enabled high-resolution microscopic
visualisation of the living retina, thereby furthering our
understanding of IRD pathogenesis. Despite drawbacks in
cost and technical complexity, the benefits of applying AO
in this context are vast, including early diagnosis, detection
of subclinical disease changes, patient stratification for
treatment and assessment of treatment efficacy. The chal-
lenge for the coming years is in transferring this tool from
the research laboratory to the clinical setting, where it could
transform patient outcomes in both the IRDs and other
retinal diseases.

Method of literature search

A literature search was conducted in February 2018 using
the term ‘adaptive optics’ on Pubmed in combination with
each of the following key terms: ‘retinal imaging’, ‘retina’,
‘cones’ and ‘photoreceptors’. This generated 687 publica-
tion results, of which 79 were directly related to IRDs. For
each IRD, the condition name (e.g. Stargardt disease) was
additionally searched in conjunction with ‘adaptive optics’
on Pubmed. Finally, abstracts presented at previous Asso-
ciation for Research in Vision and Ophthalmology (ARVO)
annual meetings were reviewed using the search term
‘adaptive optics’. This yielded 1,602 results, of which 81
were directly related to IRDs.
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