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Decreased calcium permeability caused by biallelic TRPV5
mutation leads to autosomal recessive renal calcium-wasting
hypercalciuria
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Hypercalciuria is the most common metabolic risk factor in people with kidney stone disease. Its etiology is mostly multifactorial,
although monogenetic causes of hypercalciuria have also been described. Despite the increased availability of genetic diagnostic
tests, the vast majority of individuals with familial hypercalciuria remain unsolved. In this study, we investigated a consanguineous
pedigree with idiopathic hypercalciuria. The proband additionally exhibited severe skeletal deformities and hyperparathyroidism.
Whole-exome sequencing of the proband revealed a homozygous ultra-rare variant in TRPV5 (NM_019841.7:c.1792G>A;
p.(Val598Met)), which encodes for a renal Ca2+-selective ion channel. The variant segregates with the three individuals with
hypercalciuria. The skeletal phenotype unique to the proband was due to an additional pathogenic somatic mutation in GNAS
(NM_000516.7:c.601C>T; p.(Arg201Cys)), which leads to polyostotic fibrous dysplasia. The variant in TRPV5 is located in the TRP
helix, a characteristic amphipathic helix that is indispensable for the gating movements of TRP channels. Biochemical
characterization of the TRPV5 p.(Val598Met) channel revealed a complete loss of Ca2+ transport capability. This defect is caused by
reduced expression of the mutant channel, due to misfolding and preferential targeting to the proteasome for degradation. Based
on these findings, we conclude that biallelic loss of TRPV5 function causes a novel form of monogenic autosomal recessive
hypercalciuria, which we name renal Ca2+-wasting hypercalciuria (RCWH). The recessive inheritance pattern explains the rarity of
RCWH and underscores the potential prevalence of RCWH in highly consanguineous populations, emphasizing the importance of
exploration of this disorder within such communities.
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INTRODUCTION
Hypercalciuria is a condition of increased urinary calcium (Ca2+)
excretion, present in ~4-10% of the otherwise healthy population
[1, 2]. It is defined as >250mg/24 h urine and >200mg/24 h urine
in men and women respectively, and an increased urinary
calcium/creatinine ratio compared to age-matched children
[3, 4]. People who suffer from hypercalciuria are mostly asympto-
matic but may have nephrocalcinosis or increased bone resorp-
tion [5, 6]. Hypercalciuria is multifactorial, with an estimated
heritability of ~50% [7]. To date, at least 25 genes have been
linked to monogenic hypercalciuria, some accompanied by other
systemic findings [8]. Nevertheless, the basis of hypercalciuria is
still unidentifiable in the majority [8]. Many of these people have
idiopathic hypercalciuria (IH), which is used as an umbrella term
for hypercalciuric individuals with normocalcemia and no other
systemic diseases, such as hyperparathyroidism [9].
Hypercalciuria can arise due to defects in three organs/systems

and is classified according to the primary defect as absorptive

(intestine), resorptive (bone), or renal leak type hypercalciuria [10].
These three organs collaborate to maintain a steady blood Ca2+

concentration and the interplay between them is controlled by a
hormonal feedback loop mainly involving parathyroid hormone
(PTH) and 1,25-dihydroxy vitamin D3 (calcitriol) [8]. The main role
of kidneys is to regulate Ca2+ excretion. The fine-tuning of renal
Ca2+ reabsorption takes place in the distal convoluted (DCT) and
connecting tubules (CNT) [8]. TRPV5 (formerly known as ECaC1,
Epithelial Calcium Channel 1), encoded by the TRPV5 gene on
7q34 [MIM: 606679], is the main Ca2+ channel in the apical
membranes. TRPV5-dependent Ca2+ transport constitutes the
rate-limiting step in DCT/CNT-mediated Ca2+ reabsorption [11].
Knockout Trpv5 mouse models, which suffer from a phenotype of
renal Ca2+ wasting, illustrate the importance of this channel in
Ca2+ homeostasis [12]. In addition, several human TRPV5 variants
have been associated with hypercalciuria and nephrolithiasis in
case-control studies [13, 14]. Despite its role in Ca2+ homeostasis,
TRPV5 is yet to be linked to a monogenic disorder [11].
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In this study, we explored the genetic cause of hypercalciuria
driven by renal Ca2+ wasting in a family of consanguineous
parents and three affected individuals. We employed a combina-
tion of homozygosity mapping and massively parallel sequencing
to identify a homozygous missense mutation in TRPV5 in all
affected individuals. The proband also demonstrated hyperpar-
athyroidism and severe bone deformities explained by a blended
phenotype due to an additional somatic GNAS mutation.
Biochemical and functional analyses on the mutated TRPV5
channel demonstrated failure to increase plasma membrane
Ca2+ permeability in HEK293 cells and increased proteasomal
degradation. Taken together, our data demonstrate that biallelic
TRPV5 mutations are responsible for a novel form of monogenic
hypercalciuria in humans, which we term renal calcium-wasting
hypercalciuria (RCWH).

SUBJECTS AND METHODS
Study participants
A single-family of 8 individuals was evaluated for hypercalciuria by
urinary Ca2+/creatinine ratio (uCa/Cr) from either spot or 24-hour urine
samples. uCa/Cr levels were compared to age-matched reference values
[4]. Additionally, all individuals underwent physical examination and
systematic evaluation. Genomic DNA was extracted using QIAamp DNA
Mini Kit (Qiagen, Hilden, Germany) from the peripheral blood of all
family members. Additionally, peripheral whole blood RNA was obtained
from the proband (II-2) for splice-site sequencing (Supplementary
Information).
The study protocol was approved by the local ethics committees of

Hacettepe University and Dr. Sami Ulus Obstetrics and Gynecology,
Children Health and Disease Training and Research Hospital (GO21/446,
30.03.2021, and 2012-KAEK-15/2030, 22.01.2020). The study was conducted
in accordance with the Declaration of Helsinki and written informed
consent was obtained from all participants and/or their parents.

DNA sequencing
Whole-exome sequencing (WES) using peripheral blood DNA from the
proband was utilized to uncover the genetic etiology. WES library was
generated using Twist Human Core Exome Kit v2 (Twist Bioscience, San
Francisco, CA, USA) and was sequenced on the Illumina NextSeq 500
(Illumina, San Diego, CA, USA) platform. Sequence reads were aligned to
hg19/GRCh37 and germline/somatic variants were called and analyzed
following the pipelines provided in Supplementary Information. The strong
implication of identity-by-descent prompted us to perform homozygosity
mapping for all family members and focus variant analysis on shared long
contiguous stretches of homozygosity (LCSHs) in either all individuals with
hypercalciuria (II:1, II:2, II:6) or those unique to the proband (II:2).
Furthermore, gene panels were adopted into the pipeline as detailed in
Supplementary Information.
Any candidate variants were inspected via Integrative Genomics Viewer

(IGV) and sequenced in family members by Sanger sequencing using
BigDye Terminator v3.1 (ThermoFisher Scientific, Waltham, MA, USA) on
ABI 3500 Genetic Analyzer (ThermoFisher Scientific, Waltham, MA, USA) for
evaluating segregation and validation.

Homozygosity mapping
For all eight individuals, genome-wide single nucleotide polymorphism
(SNP) genotyping was performed using Infinium HumanCytoSNP-12 v2.1
microarrays, according to the manufacturer’s protocol. GenomeStudio
software v2.0 (Illumina, San Diego, CA, USA) was utilized for calling SNP
genotypes according to hg19/GRCh37, and obtained genotypes were
viewed by MS-Excel to look for ≥2 Mbp LCSHs, indicating homozygosity-
by-descent.

Generation of TRPV5 p.(Val598Met) construct
Site-directed mutagenesis was used to introduce a point mutation in the
wildtype TRPV5 sequence, using the Q5 hot-start kit (New England Biolabs,
Ipswich, MA, USA) according to the manufacturer’s protocol. Details of the
protocol are presented in Supplementary Information. The resulting
construct contained the TRPV5 p.(Val598Met) ORF, CMV promoter, and
GFP tag and was validated using Sanger sequencing.

Functional evaluation of TRPV5 in HEK293 cells
HEK293 cells were transfected with the aforementioned constructs using
Lipofectamine2000 (Thermo Fisher Scientific, Waltham, MA, USA). TRPV5
protein levels were evaluated in a semi-quantitative manner using Western
Blotting, either on total cellular proteins or on cell-surface proteins marked
by biotinylation. The effect of the mutation on protein stability was
assessed using inhibitors of proteasomal (MG-132 (MG), 5 µM, obtained
from Merck, Darmstadt, Germany) and lysosomal (Bafilomycin A1 (Baflo),
100 nM, obtained from Cell Signaling Technology, Beverly, MA, USA)
degradation. Finally, the permeability of the TRPV5 channel was evaluated
using a previously described radioactive 45Ca2+ uptake protocol [15]. Each
assay and statistical method are detailed in Supplementary Information.

RESULTS
Clinical features of the affected individuals
The 10-year old proband has been evaluated at the Pediatric
Endocrinology and Medical Genetics Departments of Dr. Sami Ulus
Obstetrics and Gynecology, Children Health and Disease Training
and Research Hospital for short stature, bone deformities with
several fractures, and hypercalciuria. He was the second of six
siblings born to consanguineous parents of Syrian origin (Fig. 1A).
He appeared unaffected at birth and started to walk indepen-
dently when he was 1 year old. At 1.5 years, parents noticed
unusual bending of the limbs, gradually progressing and
becoming painful. During his first visit to the medical genetics
clinic at 7 years old, he was not able to walk. He had caput
quadratum, thickening of joints, and bent limbs, also documented
by radiological imaging (Fig. 1B). Neurodevelopmental milestones
throughout his life and cognitive development assessed at 7.5
years were clinically appropriate for his age. Ophthalmologic,
audiologic, and dermatologic evaluations were normal, and
echocardiography revealed a patent foramen ovale.
The combination of the proband’s skeletal findings and

hypercalciuria resembled severe rickets or osteogenesis imper-
fecta. At 5 years, laboratory tests to evaluate Ca2+ metabolism
revealed hypercalciuria, normocalcemia, hypophosphatemia,
hyperphosphaturia, elevated serum alkaline phosphatase (ALP)
and parathyroid hormone (PTH) but with normal 25-hydroxy
vitamin D3 and calcitriol levels (Fig. 1C and Supplementary
Table S1). Additionally, the Tc-99m sestamibi scintigraphy in the
proband did not reveal any abnormal uptake by parathyroids. This
metabolic profile partially coincided with those seen in four
disorders; (1) primary hyperparathyroidism, which contradicts
proband’s normocalcemia and normal parathyroid scintigraphy;
(2) hereditary hypophosphatemic rickets except for proband’s
hypercalciuria; (3) hereditary hypophosphatemic rickets with
hypercalciuria (HHRH) except for hyperparathyroidism and normal
calcitriol levels seen in the proband; (4) Polyostotic fibrous
dysplasia (POFD) albeit hyperparathyroidism and hypercalciuria.
Although each of these conditions differed from the proband’s
metabolic profile to some extent, initially sodium phosphate was
administered for HHRH treatment. Additionally, due to low 1,25-
(OH)2 Vitamin D levels, calcitriol was supplemented, which did not
benefit the calcium metabolism and was eventually discontinued.
After the identification of a potentially pathogenic variant in
TRPV5, the treatment was tailored towards a renal Ca2+-wasting
condition. Prior treatments were replaced by oral Ca2+-lactate,
which succeeded in decreasing PTH levels but failed to improve
bone phenotype in the short term. The bone turnover parameters
under this treatment indicated increased bone formation,
represented by continuously high ALP and osteocalcin levels with
normal bone resorption characterized by normal urinary deox-
ypyridinoline excretion. The evolution of Ca2+ metabolism
indicators is summarized in Fig. 1C and details can be found in
Supplementary Table S1.
Repeated renal ultrasounds during the proband’s follow-up

revealed intermittent kidney stones and microscopic urinalysis
identified multiple calcium oxalate crystals (Fig. 1D).
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He consistently had normal urinary pH, and no glucosuria,
aminoaciduria, or proteinuria. His siblings were also screened for
hypercalciuria (Supplementary Table S1). These measurements
demonstrated persistent hypercalciuria in individuals II-1, II-2, and
II-6. None of the skeletal abnormalities found in the proband were
observed in these individuals. The mother (individual I-2) had
nephrolithiasis during her fifth pregnancy at 25 years of age,
presumptively suggesting that heterozygosity for the TRPV5
variant may be a predisposing factor for nephrolithiasis.

Genome-wide search for the cause of hypercalciuria in the
family identifies biallelic p.(Met598Val) in TRPV5
Considering the parental consanguinity and three hypercalciuric
children, we carried out genome-wide homozygosity mapping of
the whole family to explore genomic regions identical-by-descent.
This revealed 2 shared LCSH regions in affected individuals (II-1, II-2,

and II-6), which were located on 1q24.2–1q32.1 (168,891,735-
201,400,200) and 7q33–7q35 (141,672,604–145,136,645) (Fig. 2A, B),
excluding 98.85% of the genome. When high-quality (GQ ≥ 30 and
read depth ≥20), homozygous, and rare (MAF ≤ 0.01 and no
homozygous individual in gnomAD v4.0) variants in shared LCSHs
from WES data were filtered in only 3 candidate variants remained
(Table S2). The variant containing genes, MROH9 and METTL11B,
have no renal expression [16]. Additionally, these are unlikely to be
disease-causing genes as healthy individuals harboring homozygous
loss-of-function variants in MROH9 have already been reported in
gnomAD v4.0 and METTL11B-knockout mice have no significant
phenotypic abnormality [17]. On the other hand, the only remaining
candidate, TRPV5, is exclusively expressed in the kidney and under
selection pressure in the healthy human population (LOEUF= 0.97)
with no reported homozygous predicted loss-of-function variants in
gnomAD v4.0 [16, 18]. The NM_019841.7:c.1792G>A (p.(Val598Met))

Fig. 1 Clinical findings of the proband. A The hypercalciuria and skeletal defects running in the family are indicated on the pedigree.
B Photographs and radiological images of the proband demonstrate severe skeletal deformities. Radiographs revealed generalized
osteopenia. The severe bowing deformities in the right leg (B1, red arrow) and left arm (B2, red arrow) are seen upon inspection, along with
the widening of the left wrist, metacarpophalangeal and interphalangeal joints (B3, red arrows). The bone age is delayed and appropriate for
~4 years (B4). Radiographs (B4-6) reveal extensive POFD-related findings; including the characteristic “ground-glass” appearance; composed of
mixed radiolucent (cystic) and sclerotic lesions indicated by orange asterisks, metaphyseal flaring & cupping (green arrows), and bowing of
long bones (red arrows). Occasional cortical thinning and medullary enlargement of the long bones are also evident. Vertebrae appear spared
(B7). The computed tomography scans also show radiolucent bony lesions with sclerotic rims (B8, orange asterisks) and 3D-reconstructions of
CT scans demonstrate bowing in femora (Shepherd’s crook sign) and tibiae (red arrows). Bowing of the bones within radiological images
indicates poorly healed new and old appendicular fractures. C Age-dependent change in Ca2+ metabolism-related biochemical parameters of
the proband is shown. Any missing measurements are indicated as dashed lines. The three rectangles at the bottom indicate the various
treatments the proband received over time. D Urinalysis reveals multiple typical octahedral calcium oxalate crystals in the proband.
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variant in the TRPV5 protein disturbed the highly conserved ‘VATVV’
motif (Fig. 2C). Sanger sequencing confirmed this variant in the
proband and demonstrated cosegregation with hypercalciuria
within the family (Fig. 2D).
Furthermore, the proband’s exceptionally severe skeletal pheno-

type hinted towards genetic variants besides TRPV5 in this
individual. For this purpose, we initially explored 7 LCSH regions
unique to the proband (Fig. 2A). These regions contain 2 candidate
high-quality, homozygous, and rare variants in POP1 and TSPAN6
which are excluded as shown in Table S2. Additionally, the
synonymous variant 3 bp to the nearest intron-exon boundary in
POP1 did not alter the mRNA splicing (Supplementary Fig. S1). We

also investigated the WES data with 2 virtual panels. The virtual
Skeletal Disorders panel uncovered 8 candidate variants, which are
further excluded (Table S2). On the other hand, the virtual
Hypercalciuria/Hyper-PTH panel uncovered only the TRPV5 variant,
but this variant being not unique to the proband, cannot explain his
severe skeletal phenotype. Lastly, we looked for somatic variants in
the virtual Skeletal Disorders panel and identified a well-
characterized pathogenic GNAS variant (NM_000516.7:c.601C>T;
p.(Arg201Cys)), exclusively present in the proband (Fig. 2D) with a
variant allele fraction of 0.12 (Supplementary Fig. S2). In light of this
finding, a reevaluation of the clinical and radiological findings
established the diagnosis of POFD (OMIM 174800).

Fig. 2 Investigation of the genetic disease etiology in the family. A LCSHs (≥2 Mbp) on all autosomes and the X chromosome are shown for
each member of the family, specified by the color legend on the right. Gray dashed rectangles on chromosomes 1 (left) and 7 (right) indicated
LCSHs shared by all affected individuals, while blue dashed rectangles on 7 genomic loci on 6 chromosomes correspond to LCSHs unique to
the proband. B A detailed view of the two genomic loci common in all affected siblings is shown. Each row represents an individual genome
and the vertical lines indicate the genotype for the aligned genomic loci. Homozygous and heterozygous loci in the proband (II-2) are
indicated in blue and orange, respectively. The same color code is also valid for other individuals with the addition of white and red lines
which symbolize contrasting homozygous genotypes and erroneous genotypes, respectively. Note that 4 genes with candidate variants on
both chromosomes are marked with red arrowheads. C Evolutionary conservation of the 598th residue of TRPV5 across 10 commonly used
model organisms. Note that this position is occupied by either valine or alanine residues in all species, while the p.(Val598Met) variant replaces
these with the bulkier methionine residue containing Sulfur. D Sanger electropherograms of the TRPV5:c.1792G>A and GNAS:c.601C>T variants
reveal respective genotypes for all family members. Note that the somatic GNAS variant is only present in the proband with distinctively lower
peak amplitude.
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TRPV5 p.(Val598Met) mutant channel is not functional
The p.(Val598Met) residue is located in the TRP helix region of
TRPV5, which plays an instrumental role in controlling the channel
pore gating, folding, and assembly. Initially, we visualized the
wildtype and TRPV5 p.(Val598Met) variant structure models in
UCSF Chimera, using an existing full-length wildtype TRPV5
structure and Dynamut2 prediction software [19–21]. We found
that the TRPV5 p.(Val598Met) variant is more tightly contacted by
surrounding structures (Fig. 3A, B). DynaMut2 prediction also
suggests that the variant decreases protein flexibility. Interestingly,
several papers have highlighted that the TRP channel lower pore
opening and closing depends on movement within the S4-S5
linker, the TRP helix, and the pore helices [22, 23]. In addition, a
new group of transient potential ankyrin type 1 (TRPA1)
antagonists, a channel that is structurally related to TRPV5, have
been shown to antagonize transitional movement in the S4-S5
linker and TRP helix, which are required for channel opening [24].
Taken together, these studies suggest that reduced flexibility in
the TRP helix could have detrimental effects on protein function.
As such, we investigated whether the channel function of the
TRPV5 p.(Val598Met) variant is altered. To this end, TRPV5 wildtype
and p.(Val598Met) plasmids were transfected in HEK293 cells and

TRPV5-dependent Ca2+ transport was quantified using a 45Ca2+

uptake assay. Uptake is significantly increased in HEK293 cells that
express the wildtype TRPV5 channel, compared to mock-
transfected HEK293 cells (p= 0.0026) (Fig. 3C). In contrast,
transfection with the TRPV5 p.(Val598Met) mutant channel
produces 45Ca2+ uptake similar to mock-transfected cells
(p= 0.6), suggesting that the TRPV5 p.(Val598Met) channel is
non-functional. Functional TRPV5 channels consist of four
subunits. To see whether TRPV5 p.(Val598Met) could have a
dominant negative effect on the channel activity (simulating the
heterozygous state), we co-transfected TRPV5 wildtype and
p.(Val598Met) plasmids (1:1 ratio) in HEK293 cells. While there is
a slight decrease in 45Ca2+ uptake compared to the TRPV5
wildtype condition, this is likely due to less TRPV5 wildtype DNA
used in the co-transfection setup than in the condition that
contains only TRPV5 wildtype DNA (Fig. 3C). In support of this,
there is no significant difference (p= 0.2119) compared to the co-
transfection of TRPV5 and mock (condition added to control for
DNA amount) (Fig. 3C), indicating that TRPV5 p.(Val598Met) does
not produce a dominant negative effect.
We further investigated the underlying cause of the loss of

function seen in the TRPV5 p.(Val598Met) channel by measuring

Fig. 3 TRPV5 p.(Val598Met) function is impaired in 45Ca2+ uptake experiments. A Zoom of the wildtype TRPV5 channel structure (model
obtained from the protein data bank (PDB) database with accession number: 6O1P) with p.(Val598Met) and its surroundings highlighted.
Helix-loop-helix (HLH), transmembrane helices 1 and 6 (S1/S6), pre helix before first transmembrane helix (pre-S1). B Zoom of the mutated
TRPV5 channel with a focus on the interactions that p.Met598 makes with residues in the pre-S1 and HLH domains. The mutated protein
model was made by DynaMut2 prediction software. C Relative 45Ca2+ uptake in HEK293 cells transiently transfected with either mock, TRPV5
wildtype (wt), TRPV5 p.(Val598Met) (V598M), co-transfection of TRPV5 wildtype with TRPV5 p.Val598Met (wt/V598M), co-transfection of mock
with TRPV5 wildtype (mock/wt) and transfection of TRPV5 wildtype treated with the TRPV5 blocker ruthenium red (RR). Uptake is normalized
to the TRPV5 wt condition. The experiment consists of 4 independent biological replicates (N= 4) and individual data points corresponding to
3 technical replicates per condition. RR=ruthenium red. TRPV5 wt vs TRPV5 p.(Val598Met): p= 0.0026. D Representative immunoblot showing
expression of TRPV5 (via HA-tag) and β-actin from one of the biological replicates of the 45Ca2+ uptake experiment shown in A. The triangle
on the right side of the blot serves as an indicator for the complex glycosylated band of TRPV5.
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protein expression via immunoblotting in TRPV5 wildtype and
p.(Val598Met) transfected HEK293 cells. Interestingly, the TRPV5
p.(Val598Met) mutant channel lacks the complex-glycosylation
band typically seen when visualizing TRPV5 (Fig. 3D). The
condition where TRPV5 wildtype and TRPV5 p.(Val598Met) are
co-transfected also showed reduced complex-glycosylation.

TRPV5 p.(Val598Met) mutant channel plasma membrane
insertion is unaffected but proteasomal degradation is
enhanced
The lack of complex-glycosylation on the TRPV5 p.(Val598Met)
channel could point to a trafficking or folding defect that prevents
TRPV5 p.(Val598Met) from reaching the plasma membrane. As
such, the abundance of both channels at the plasma membrane
was assessed with a cell-surface biotinylation assay. The abun-
dance of TRPV5 p.(Val598Met) is clearly diminished in both the
plasma membrane and whole-cell fractions, compared to the
wildtype channel (Fig. 4A). However, the plasma membrane to
whole-cell TRPV5 expression ratio is similar between all of the
conditions (Fig. 4B), indicating no trafficking defect of TRPV5
p.(Val598Met) to the plasma membrane. The fact that TRPV5
p.(Val598Met) expression levels are lower in both cellular
compartments, suggests a more upstream effect. To test this
further, we treated TRPV5 wildtype and p.(Val598Met) transfected
HEK293 cells with inhibitors of lysosomal (bafilomycin A1) and
proteasomal (MG-132) protein degradation. Interestingly, inhibi-
tion of the proteasomal degradation rescued non-glycosylated
TRPV5 p.(Val598Met) protein expression levels, while inhibition of
the lysosomal protein degradation had no effect (Fig. 4C, D).
Neither inhibitor changed the expression level of the TRPV5
wildtype, indicating that the rescue observed in the TRPV5
p.(Val598Met) condition is due to targeting of this defective
protein to the proteasome.

DISCUSSION
Renal Ca2+ reabsorption by DCT and CNT is an important factor in
determining the blood Ca2+ level and is under strict endocrine
control [8]. The apical membranes of cells lining these tubules
harbor TRPV5 as the central protein controlling calcium perme-
ability. Herein, using a combination of homozygosity mapping and
WES, we describe the homozygous missense variant (c.1792G>A;
p.(Val598Met)) in TRPV5 that causes renal Ca2+-wasting hypercal-
ciuria (RCWH). Functional characterization of the TRPV5 p.(Val598-
Met) mutant in HEK293 cells revealed that the channel is
incapable of transporting significant amounts of Ca2+. TRPV5
p.(Val598Met) mutant had a complete absence of complex
N-linked glycosylation and was also subject to increased
proteasomal degradation.
Since its discovery in 1999, TRPV5 has been in the spotlight as a

candidate gene causing IH. Despite the expectation, extensive
GWASs failed to demonstrate any association between common
variants in TRPV5 and nephrolithiasis/IH. However, in a large case-
control study from Iceland, the rare missense TRPV5 variant
(rs757494578, c.1589T>G; p.(Leu530Arg)) was associated with
recurrent kidney stones [14]. The Ca2+ transport defect and the
absence of complex-glycosylation that were observed in the
TRPV5 p.(Leu530Arg) variant are remarkably similar to our
observations for the p.(Val598Met) mutant channel [25]. Each
TRPV5 monomer is synthesized as a 6-pass transmembrane
protein in the endoplasmic reticulum (ER), undergoes N-linked
glycosylation at p.Asn358 which is completed as complex-
glycosylation in Golgi apparatus, and finally reaches the plasma
membrane [11, 26, 27]. While it is noteworthy that both of these
variants lose their complex-glycosylation, it does not fully explain
the loss of transport function. Studies have shown that disruption
of TRPV5 complex-glycosylation, via a p.(Asn358Gln) mutation,

does not drastically reduce 45Ca2+ uptake and trafficking to
plasma membrane in HEK293 cells [28].
We initially speculated, based on the decreased flexibility

predicted by structural modeling and the observed loss-of-
function effect, that channel pore opening and closing may be
affected in the TRPV5 p.(Val598Met) mutant. However, the follow-
up experiments showed that the loss-of-function effect could be
attributed to increased breakdown of the mutant channel and a
potential folding defect. Furthermore, a loss of complex-
glycosylation can point to a folding defect in the mutated protein.
It is known that proteins that repeatedly fail their folding
checkpoints in the ER are de-mannosylated and transported to
the cytosol, where they are broken down by the proteasome [29].
A well-known example is the cystic fibrosis transmembrane
conductance regulator (CFTR) channel. Studies have shown that
mutated versions of CFTR lose their complex-glycosylation tree,
fail to fold correctly, and are subsequently broken down [30]. To
check if this also applies to TRPV5, we inhibited the two main
pathways of protein degradation. Inhibition of the proteasomal
degradation by MG132, which reduces the degradation of mutant
CFTR, resulted in the rescue of TRPV5 p.(Val598Met) protein,
showing that the mutant protein is recognized as misfolded and
targeted for destruction.
Although a well-defined TRPV5-related phenotype has not been

previously described in humans, the critical role of Trpv5 in renal
Ca2+ handling has long been demonstrated in mice [12, 31].
Trpv5-knockout mice (Trpv5−/−) present with marked hypercal-
ciuria as a result of renal Ca2+ wasting, which is compensated by
an increase of 1,25-dihydroxy vitamin D3 leading to normocalce-
mia. Additionally, these mice have PTH levels comparable to
control mice [12]. This phenotypic picture is strikingly similar to
the clinical phenotype observed in the individuals with homo-
zygous TRPV5 mutations presented here (II-1, II-2, II-6), except for
hyperparathyroidism in the proband. On the other hand, the
heterozygous mice (Trpv5+ /−) do not have any significant
hypercalciuria compared to wildtypes, which is in line with our
observations that only show an insignificant reduction of TRPV5
function in double-transfected HEK293 cells [12]. These are in
parallel with the phenotype of the heterozygotes (I-1, I-2, II-4, II-5)
who either are not hypercalciuric or exhibit non-persistent mild
hypercalciuria (Supplementary Table S1). It is known that dietary
factors have a significant impact on calcium excretion [32]. Thus, it
is likely that the non-persistent hypercalciuria in the unaffected
family members is due to temporary environmental factors. Even
so, any possible contribution of pathogenic heterozygous TRPV5
variants to urinary calcium excretion in humans is yet to be
explored.
The severe skeletal findings and unexpectedly high PTH levels

which are neither observed in the proband’s siblings nor the
Trpv5-knockout mice are highly indicative of an additional intrinsic
bone disorder in individual II-2. In fact, the mice lacking
Trpv5 show no major bone deformation even at long-term
follow-up (up to 78 weeks) [33, 34]. However, these mice
demonstrate an accelerated reduction in trabecular and cortical
bone thickness [12, 35]. Similar to the proband presented here,
knockout mice do not manifest any increase in the bone
resorption marker urinary deoxypyridinoline, while the bone
formation marker, serum osteocalcin, is significantly higher
compared to wild-type mice. In contrast to observations in the
knockout mice, another bone formation marker, ALP, is strikingly
higher in the proband, which also differs from his siblings with
homozygous p.(Val598Met) [12].
All in all, the proband’s severe bone phenotype accompanied

by increased PTH and ALP cannot be explained only by the TRPV5
defect. In recent years, with the widespread diagnostic utilization
of WES, previously underestimated blended phenotypes have
frequently been discovered, reaching up to 7.5% in certain
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Fig. 4 Trafficking efficiency of TRPV5 p.(Val598Met) is not altered, but proteasomal degradation is increased. A Representative
immunoblot of a cell-surface biotinylation experiment in HEK293 cells transfected with TRPV5 wildtype (wt) and TRPV5 p.(Val598Met). The top
panel shows the membrane fraction whereas the bottom panel corresponds to the whole-cell lysate fraction. No biotin control, where biotin is
not added to the cells, confirms that there is no non-specific binding of unbiotinylated TRPV5 to the neutravidin beads. B Semi-quantification
of expression signal of TRPV5 wt and TRPV5 p.(Val598Met) protein, plotted as the area under the curve (AUC), normalized to the TRPV5 wt
expression. The top two panels show the whole-cell lysate and membrane fraction expression respectively, while the bottom panel depicts
the trafficking efficiency as the ratio of membrane fraction expression divided by whole-cell lysate expression. The individual data points
indicate the 3 independent biological replicates (N= 3). C Representative immunoblot of HEK293 cells transiently transfected with TRPV5 wt
and TRPV5 p.(Val598Met) (TRPV5 V598M), treated with inhibitors of proteasomal and lysosomal protein degradation pathways. MG=MG-132
and baflo= Bafilomycin A1. D Semi-quantification of TRPV5 wt and TRPV5 p.(Val598Met) expression levels in 3 independent experiments
where MG-132 and Bafilomycin A1 were added. Expression levels are normalized to the untreated TRPV5 wt condition. The asterisk denotes
the significant difference between the conditions TRPV5 p.(Val598Met) without any inhibitors and TRPV5 p.(Val598Met) with Bafilomycin A1
(p < 0.05).

N. Guleray Lafci et al.

7

European Journal of Human Genetics



populations [36]. Based on this observation, the search for an
additional variant in the proband using a virtual hypercalciuria/
hyperparathyroidism panel for disease-causing variants did not
uncover any other germline variant (Supplementary Table S2).
Nevertheless, a search for somatic variants revealed the mosaic
pathogenic GNAS variant (p.(Arg201Cys)) which is a well-known
cause of fibrous dysplasia. Considering the involvement of
multiple long bones, increased serum ALP levels, and absence of
GNAS-related McCune-Albright-Syndrome-associated extraskeletal
findings, the skeletal deformities seen in the proband are
compatible with POFD [37, 38]. Clinical presentation in POFD
becomes apparent during early childhood and progresses until
adulthood despite normal in-utero skeletal development similar to
the clinical course seen in the proband [38]. However, hypercal-
ciuria is inexplicable solely by fibrous dysplasia, because
hypercalciuria has only been mentioned in a few cases of fibrous
dysplasia that are complicated by Cushing’s Syndrome [39, 40].
Thus, the hypercalciuria is a consequence of the TRPV5 mutation,
but not the GNAS mutation, in the proband.
Hyperparathyroidism in the proband can be explained neither

by GNAS nor TRPV5 mutations alone. However, it is possible that
hyperparathyroidism may arise as a result of an additive effect of
these mutations [36]. Some individuals with fibrous dysplasia can
have hyperparathyroidism due to accompanying vitamin D
deficiency or primary hyperparathyroidism (parathyroid ade-
noma, hyperplasia), which are both ruled out in the proband
[41–44]. The observation that elder Trpv5−/− mice demonstrate
severely elevated serum PTH in contrast to young knockout mice
may provide some explanation for the hyperparathyroidism seen
in the proband [45]. It has been proposed that the elevated PTH
level is a necessary compensatory mechanism to sustain
normocalcemia in elder Trpv5−/− mice that cannot tolerate the
age-related changes in intestinal and bone Ca2+ metabolism
due to the already strained Ca2+ homeostasis [45]. The POFD in
the proband undoubtedly burdens the Ca2+ metabolism and
decreases the bone mineral density, which can presumably be
compensated by increased PTH [42]. Normal PTH levels in
proband’s affected siblings without the somatic GNAS mutation
support the additive effect hypothesis. However, it is yet to be
seen if hyperparathyroidism would arise in these siblings with
advancing age.
Blended phenotypes caused by a combination of germline and

somatic variants are quite rare and primarily observed in
hematological disorders that involve a germline disorder amelio-
rated by indirect somatic genetic rescue [46, 47]. A previous study
showed that osteoclast activity is decreased in Trpv5−/− mice,
whereas fibrous dysplasia lesions demonstrate excessive osteo-
clast activation due to increased Gsα signaling [35, 48, 49].
Considering the contrasting impact of TRPV5 and GNAS mutations
on osteoclastic activity, it is reasonable to postulate that the
acquisition of a somatic GNAS mutation would lead to a transient
and partial rescue of defective osteoclastic activity due to TRPV5
mutation.
In conclusion, comprehensive genetic and functional studies

performed here demonstrate that TRPV5 is involved in autosomal
recessively inherited IH through increased renal calcium excre-
tion, which we name “Renal Calcium-Wasting Hypercalciuria”
(RCWH). The anticipated relation between TRPV5 and IH is now
demonstrated in humans after >20 years. The complete loss of
function seen in the TRPV5 p.(Val598Met) channel, coupled with
the unexpected autosomal recessive inheritance pattern sug-
gests that a complete absence of TRPV5 function may be
required to cause RCWH in childhood. The recessive inheritance
pattern and extremely low allele frequency of the TRPV5 variant
described in this work suggest that RCWH could be found most
often in highly consanguineous populations and emphasize
the importance of exploration of this disorder within those
communities.

DATA AVAILABILITY
Disease-causing TRPV5 variants have been submitted to ClinVar with the accession
number SCV003852754. All data for cell culture studies were collected and saved in
accordance with the FAIR principles. The whole-exome sequencing, SNP microarray,
and other raw data are available upon reasonable request.
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