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Rare diseases affect millions of people worldwide, and most have a genetic etiology. The incorporation of next-generation
sequencing into clinical settings, particularly exome and genome sequencing, has resulted in an unprecedented improvement in
diagnosis and discovery in the past decade. Nevertheless, these tools are unavailable in many countries, increasing health care gaps
between high- and low-and-middle-income countries and prolonging the “diagnostic odyssey” for patients. To advance genomic
diagnoses in a setting of limited genomic resources, we developed DECIPHERD, an undiagnosed diseases program in Chile.
DECIPHERD was implemented in two phases: training and local development. The training phase relied on international
collaboration with Baylor College of Medicine, and the local development was structured as a hybrid model, where clinical and
bioinformatics analysis were performed in-house and sequencing outsourced abroad, due to lack of high-throughput equipment in
Chile. We describe the implementation process and findings of the first 103 patients. They had heterogeneous phenotypes,
including congenital anomalies, intellectual disabilities and/or immune system dysfunction. Patients underwent clinical exome or
research exome sequencing, as solo cases or with parents using a trio design. We identified pathogenic, likely pathogenic or
variants of unknown significance in genes related to the patients” phenotypes in 47 (45.6%) of them. Half were de novo informative
variants, and half of the identified variants have not been previously reported in public databases. DECIPHERD ended the diagnostic
odyssey for many participants. This hybrid strategy may be useful for settings of similarly limited genomic resources and lead to
discoveries in understudied populations.
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INTRODUCTION
Rare diseases (RD) affect all populations worldwide. Although each
disease is individually rare, their cumulative prevalence is
estimated at approximately 5% of the population [1]. With a
global population of nearly 8 billion people in 2023, this figure
suggests that around 400 million people may suffer from an RD,
and 330 million of them could live in low-and-middle-income
countries (LMIC) (estimated from [2]). Given the rarity of each
condition, affected individuals, families and health systems face
many challenges in access and quality of care. The prolonged
“diagnostic odyssey” or “medical pilgrimage” is among these
challenges, which can last decades [3].

The majority of RDs have a genetic etiology. Exome and
genome sequencing (ES and GS, respectively) have revolutionized

diagnosis and discovery of RDs in the past 15 years in an
unprecedented way [4], particularly for persons with rare
undiagnosed disorders (RUD). The early use of ES and GS has
been shown to be cost-effective compared with stepwise testing,
and has clinical utility in terms of changes in clinical management
and reproductive decisions [5-10]. Nevertheless, these powerful
diagnostic tools are not available globally. Only 31 countries have
ES as a clinical diagnostic service listed in the Genetic Testing
Registry [11], and most of them are in high- or high-middle-
income countries, according to World Bank classification, except
for India and Bangladesh, which have large pépulations sizes
and thus likely high testing volumes [12]. The lack of availability
and coverage of complex laboratory genomic services increases
the already substantial healthcare gaps for persons with RD.
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Barriers to implementation of ES and GS in LMICs include lack of
adequately trained and certified personnel, especially in
laboratory genetics and genomics and in bioinformatics; higher
costs of equipment and reagents compared with the global
North, lack of coverage and reimbursement of testing, and
insufficient regulatory, legal and ethics frameworks [13, 14]. As a
result, there is limited availability of genomic testing for persons
with RDs, and therefore, prolonged, and unsolved diagnostic
odysseys. In some countries, patients and clinicians opt to
outsource testing, but this usually requires substantial personal
out-of-pocket payments, which also limits access to only those
who can afford these payments [15, 16].

Although Chile is a high-income country according to World
Bank standards [12], it can be considered as an “emerging nation”
in terms of genomic medicine implementation [17]. For example,
to date, there are no high-throughput sequencers in clinical
laboratories to provide ES or GS for diagnosis of RD in a cost- and
time-efficient manner, and there are no training or certified
programs in clinical laboratory genetics and genomics or
in bioinformatics.

It remains unknown if and how countries with limited genomic
resources can develop RD diagnostic resources. To overcome this
gap, we implemented a program for RD in Chile, called DEcoding
Complex Inherited PHenotypes of Rare Diseases (DECIPHERD),
with a specific focus on patients with RUD. The strategy was
implemented in two phases: first, a training phase, which relied on
international collaboration, followed by a second, local develop-
ment phase. This second phase used a hybrid strategy, with
clinical evaluation and variant data analysis interpretation
performed locally, but ES outsourced abroad. We report on the
process of implementation, and the results of the first 103
analyzed probands.

METHODS

Implementation of the DECIPHERD sequencing and analysis pipeline
consisted of two phases: a training phase and a local development phase.
During the training phase, samples from probands and their parents were
submitted to Baylor College of Medicine (BCM) for trio ES. The resulting
exome data was analyzed by members of the DECIPHERD team who had
the opportunity to train at BCM. In addition, a workshop on variant
interpretation, led by collaborators from the US, was hosted at Universidad
del Desarrollo (UDD). In parallel, probands underwent clinical exome
sequencing (CES) and analysis at UDD. Comparisons of the overall
diagnostic yield of both strategies and of the concordance of results for
a subset of probands that were analyzed under both strategies were
performed to decide the best design for the local development phase.

Participants

Probands with RUD, of any age or sex, and residing in Chile, were
candidates to participate. The inclusion criteria were: [1] the presence of
2 or more major congenital anomalies, or one major and several minor
anomalies, [2] neurological abnormalities such as global developmental
delay or intellectual disability with one major or multiple minor
congenital anomalies, or [3] significant dysfunction of the immune
system, for which a genetic etiology was suspected. Probands were
referred to the DECIPHERD study by their treating physicians if a
cause was not identified despite prior evaluations at their local health
centers (e.g., karyotype, FMR1, microarray, metabolic or gene panel
testing, among others). Demographic information was obtained from
interviews with probands and/or parents or guardians. Candidate
participants were presented by their treating physicians at a weekly
screening meeting led by the core DECIPHERD team, which includes
clinicians, laboratory geneticists and bioinformaticians. Clinical history
was presented using a structured form, and the probands’ clinical
features were described using Human Phenotype Ontology (HPO) terms
[18]. After a multidisciplinary discussion, probands that fulfilled the
inclusion criteria were invited to participate. Parent participation for trio
analysis was preferred when possible. Written informed consent was
obtained from the participants and/or their guardians.
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Samples and DNA extraction

Blood samples were obtained in EDTA tubes from probands and their
parents when available. Genomic DNA was extracted using the DNeasy
Blood and Tissue Kit (Qiagen, Hilden, Germany).

Exome sequencing and bioinformatics pipelines

Training phase. For trio exome sequencing at BCM (BCM-ES-trio), exome
enrichment libraries were obtained using the NimbleGen VCRome 2.1 kit
(Roche, Switzerland) according to the manufacturer’s protocol. These
samples were subsequently sequenced using lllumina HiSeq 2500
equipment (lllumina, CA, USA). All data was aligned to GRCh37. Data
processing and variant annotation was performed using the Variant
Analyzer bioinformatic pipeline developed at BCM (https://github.com/
BCM-Lupskilab/VariantAnalyzer). Variants with less than 3 reads were
excluded, as well as synonymous, deep intronic and intergenic variants,
and 3’ and 5’ UTR regions. Annotated variants were evaluated using both
recessive, dominant, and X-linked models. For the recessive model,
variants with minor allele frequency (MAF) greater than 0.005 within the
Baylor-Hopkins Center for Mendelian Genomics (CMG), ESP 5400, 1000
Genomes, gnomAD v.3 and ExXAC databases were excluded, as well as in
our internal database control population database (unpublished). Also,
potential recessive variants were excluded if they were present in the EXAC
database with a homozygous or hemizygous count of 10 or greater. For
autosomal dominant model analyses, variants were excluded if their MAF
were greater than 0.001 in these databases, and if they were present in the
gnomAD V3 and our database with an allele count greater than 5. Rare
variants were analyzed manually considering specific variant characteristics
including type of variant and the combined annotation dependent
depletion (CADD) score (). Different publicly available resources were used
to evaluate the association of a patient’s phenotype with his/her detected
variant allele such as OMIM (https://www.omim.org), gnomAD (https://
gnomad.broadinstitute.org), UCsC Genome browser (https://
genome.ucsc.edu), PubMed (https://pubmed.ncbi.nlm.nih.gov/) among
others.

A subset of candidate variants was orthogonally confirmed by Sanger
sequencing at UDD. Regions containing the genetic variants were
amplified by PCR with custom-design primers using the ApE software
[19] (ApE-A plasmid Editor (utah.edu) and synthetized by Macrogen™
(Korea)). The resulting ~300 bp amplicons were sequenced bidirectionally
using BigDye™ Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems,
Foster City, CA, US) and the SeqStudio™ Genetic Analyzer (Thermo Fischer
Scientific, Waltham, MA, US).

Local development phase. In parallel, and due to the lack of available
high-throughput sequencing equipment in clinical laboratories in Chile, we
initially performed clinical exome sequencing (CES) in probands only at
UDD (UDD-CES-Solo), using the SOPHiIA Clinical Exome Solution V1
(SOPHIA Genetics, Lausanne, Switzerland). This method captures exons
from 4964 genes known to cause Mendelian disorders. Sequencing was
carried out in an lllumina MiSeq sequencer. Results were analyzed using
the SOPHIA DDM™ software with the same filters described above and
compared with those obtained in the training phase. A subset of candidate
variants was confirmed by Sanger sequencing in the proband and parents
if available as described above.

Subsequently, we opted for a hybrid model, where ES was performed
abroad, and the analysis of the results was performed at UDD by laboratory
scientists of the DECIPHERD core team (DECIPHERD-ES). Sequencing was
outsourced to Novogene (Beijing, China) using SOPHiA Exome Solution_V1
capture (SOPHIA Genetics, Lausanne, Switzerland), that captures the exons
of approximately 19,680 protein-coding genes. The resulting annotated
variants were evaluated by the core DECIPHERD team using the SOPHiA
DDM™ platform. This platform provides information on population
frequencies of the databases mentioned above, but it also includes those
obtained from the SOPHIA users” community and our local cohort. All the
annotated variants were reviewed stepwise according to their inheritance
model, starting by autosomal recessive (AR, considering homozygous and
compound heterozygous variants), followed by autosomal dominant (AD)
and X-linked (XL) models, as well as de novo occurrences, using the same
frequency filters described for the training phase, and with the additional
filter of excluding variants present in two or more unrelated participants
from our cohort. The process also allows the detection of copy-number
variants (CNVs). HPO terms were used to create virtual gene panels to
initially narrow down the search for candidate variants within genes
already associated to each patient’s phenotype, subsequently the exomes
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were also analyzed in a phenotypically unbiased manner. Rare variants
were analyzed manually considering variant characteristics including type
of mutation and combined annotation dependent depletion (CADD) score.
The same databases described above were used to obtain additional
variant information. We then prioritized the filtered variants based on their
ACMG interpretation provided by the SOPHIiA platform and further
assessed their interpretation with additional freely available resources,
including ClinVar (www.ncbi.nlm.nih.gov/clinvar), Varsome
(www.varsome.com) and Franklin (https://franklin.genoox.com). Candidate
variants were interpreted as either pathogenic (P), likely pathogenic (LP),
variant of unknown significance (VUS), likely benign (LB) or benign (B). In
case of discrepancies among these resources, the interpretation provided
by ClinVar, if available, was selected; if a variant was not included in
ClinVar, the most common interpretation among the other resources was
chosen.

Clinical interpretation

Results were considered “informative” when a P, LP variant or VUS was
identified in a gene consistent with the proband’s phenotype. Informative
cases were then labeled as “solved” for P/LP variants and “suggestive”
when a VUS was identified. Recessive conditions in which only one
informative variant was identified were considered “partially informative”,
given that we could not define if this represented carrier status only, a
novel potentially dominant form of the disease, as has been previously
described for other disorders [20] or a compound heterozygote for a non-
coding variant undetected by this method. Results were considered
“uninformative” when there were no variants identified that could explain
the patient’s phenotype. Results were returned to families and referring
clinicians in a genetic counseling session and with a written report.

Statistical analysis

All data were stored in REDCap [21]. Descriptive analysis included
frequencies, means and ranges. To identify variables associated with the
likelihood of obtaining an informative result, first, we built bivariate logistic
regression models for each of the following variables: sex, age (in years,
and categorized in groups representing childhood (0-12 years), adoles-
cence (12-18 years) and adulthood (18-52 years)), type of care (public or
private), number of systems affected (based on the grouping of individual
HPO terms into “systems” according to their hierarchy in the HPO’s terms
tree), and whether the patient had congenital anomalies, neurological or
immune compromise (represented as binary variables each). Then, we built
a multivariate regression model including all variables mentioned before.
The analyses were performed in RStudio v.2023.06.0 + 421 with R v.4.2.2,
using the glm function and the binomial family modifier.

RESULTS

Demographic and clinical characterization of patients
Between June 2019 and December 2022, 133 probands were
screened for the study and 103 of them consented to participate.
Non-participants included probands who did not fulfill inclusion
criteria (n = 21) or declined to participate (n =9).

To characterize the probands’ phenotypes, we collected
information from clinical records and in-person evaluations,
describing clinical manifestations using HPO terms. Demographic
characteristics are summarized in Table 1. The most frequent
clinical inclusion criteria were congenital anomalies, with or
without neurological abnormalities, present in 75% of probands
(Supplementary Table 1). When grouped by systems, the overall
cohort had involvement of 21 different organ systems. The
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majority of probands had neurologic manifestations, followed by
craniofacial, musculoskeletal and growth manifestations (Fig. 1a).
All probands had manifestations in at least two major systems,
with a median of six and a range of two to eleven compromised
systems (Fig. 1b). These results show that probands had
heterogeneous and complex clinical manifestations.

Comparison of findings in the training and initial
development phase

During the training and the initial development phases, 13 trios
had BCM-ES and 16 probands had UDD-CES, with an overlap of 6
probands. An informative finding was identified in 7 BCM-ES-trio
analysis (53.8%) and 4 UDD-CES-solo analysis (25%). Three of the
six overlapping probands had informative findings identified by
both strategies. In addition, one UDD-CES-solo uninformative case
had an informative result by BCM-ES-trio, resulting from a gene
that was not included in the CES panel. The higher yield of trio ES
compared with CES led to the decision to continue with ES in the
local development phase.

Exome analysis

After the learning phase, 74 additional probands were included in
the local development phase (DECIPHERD-ES) using the hybrid
model. From this point onward, findings are presented in
aggregated form including both the training and local develop-
ment phases. Ten probands with uninformative results on UDD-
CES subsequently had DECIPHERD-ES. Therefore, we performed
113 total analyses in the 103 probands, of which 97 were ES. Of
those undergoing ES, seventy-one (69%) participated as trios with
both parents, 7 (6.7%) as duos (proband with mother, 3.8%) and
19 were solo cases (19.6%), for a total of 246 participants.

Forty-seven probands (45.6%) had informative results, that is a
P/LP variant or a VUS in genes known to cause conditions
consistent with their clinical phenotypes. The different strategies
had different yields of informative results. CES provided informa-
tive results for 4 of 16 probands (25%), ES-solo for 9 of 19 (47.5%),
ES duo in 2 of 7 (28.6%) and ES-trio in 32 of 71 families (45.0%).
The results of these strategies are summarized in Table 2.

Thirty-one of these 47 probands with informative results were
considered “solved” cases, i.e. a molecular diagnosis concluded
with the identification of P/LP variants (30% of all probands and
66% of those with informative results), of which 23 had an AD
condition, 4 AR and 4 XL. In contrast, 13 cases had VUS and were
considered as “suggestive results” (12.6% of all probands and
27.6% of those with informative results, respectively), of which 6
corresponded to AD conditions, 3 AR and 4XL. Finally, three cases
were considered “partially informative” (2.9% and 6.4%, respec-
tively) since they had a single variant identified in a gene
associated with a recessive condition and a phenotype consistent
with this AR disease. Clinical and molecular findings of the
patients with informative results can be found in Table 3.

Four patients with suggestive results warrant further description
since they illustrate interesting findings. Patient ID#64 had
diagnosis of renal and pancreatic cysts at age 2 years, with
recurrent infections and was found to have two VUS in PKD1,
inherited in trans from healthy parents. This is generally
considered an AD disease; however, cases have been described

Table 1. Demographic characterization of probands.

Age (yrs) at recruitment
Sex N (%) Median (IQR) [range]
Male 49 (47.6) 8 (11) [0-52]
Female 54 (52.4) 9 (14) [0-44]
Total 103 (100) 8 (13) [0-52]

European Journal of Human Genetics

Public health care Health care provider located in Santiago

N (%) N (%)

39 (79.6) 43 (48.9)
35 (64.8) 45 (52.1)
74 (71.8) 88 (85.4)

SPRINGER NATURE
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with biallelic hypomorphic mutations in this gene, postulated to
be an AR form of disease [22]. Another patient (ID#91) with severe
ID and born to consanguineous parents had a homozygous P/LP
variant in SETD5, known to cause dominant ID, but with
incomplete penetrance and variable expressivity [23, 24]. In this
case, one parent was described as having mild ID, and we propose
the existence of a potentially more severe recessive phenotype for
this condition. Finally, two patients (ID#106 and #125) had VUS in
two different genes each, with each variant potentially associated
with different components of their phenotype, suggesting that
these situations may constitute dual genetic diagnoses.

This heterogenous cohort allowed the identification of novel
variants potentially associated with disease. We found 55 distinct
informative variants in the 47 probands (considering homozy-
gotes as having one same variant). Fifty variants were SNVs and 5
were CNVs. Among informative variants, 25 (45.4%) were
confirmed de novo, and 26 (47.2%) were inherited, underscoring
the utility of performing trio ES. Parental samples were unavailable
for 4 probands, and thus the inheritance of their variants could not
be determined. Twenty-six informative variants (47.3%) were listed
in ClinVar as of June 30, 2023. Interestingly, the other twenty-nine
informative variants (52.7%) were not listed in ClinVar, of which
sixteen were predicted as P/LP and twelve as VUS according to
ACMG criteria. In summary, more than half of informative variants
had not been reported in public databases at the time of this
writing.

Finally, to assess for factors associated with higher likelihood of
informative findings, we performed bivariate and multivariate
analysis of probands” demographics and clinical phenotypes using
logistic regression. In the bivariate analyses, the presence of
neurologic abnormalities, immune dysfunction, and being in the
12-18 years of age group were associated with significant
diagnostic yield. In the multivariate analysis, only being in the
12-18 vyears of age group was positively associated with
significant diagnostic yield (Table 4).

DISCUSSION

This is the first reported experience of a local implementation
program for the genetic evaluation of patients with RUD in Chile
using exome sequencing. The process allowed us to establish a
trained team for clinical assessment and exome analysis through a
rigorous pipeline that enabled the diagnosis in nearly half of the
study participants. It also permitted tens of patients with severe

SPRINGER NATURE

Table 2. Detection rate by familial and sequencing strategies.
Strategy Number of Number of Probands with
analyses informative informative

variants findings, N (%)

CES 16 4 4 (25.0)

ES 97 51* 43 (44.3)

ES-Solo 19 9 9 (47.3)

ES-Duo 7 2 2 (28.6)

ES-Trio 71 40 32 (45.0)

Total 1132 55 47 (45.6)

*Ten uninformative CES were resequenced as ES-Solo, for a total of 113
analyses in the 103 patients.

*Eight probands had two distinct variants each: three in two different
genes/regions, and five as compound heterozygotes.

previously undiagnosed disorders to receive information on the
cause of their condition.

The process of implementation highlights the relevance of
international collaboration to obtain critical knowledge and
training when these resources are unavailable locally. To
circumvent the lack of genomic capabilities at scale in Chile, our
strategy relied on outsourcing the sequencing component, while
leveraging and developing capacities in the clinical evaluation and
bioinformatics analysis that can be performed in-house. Albeit the
use of a commercially available interpretation platform increases
the costs compared to the use of freely available software, we
opted for the former for data security reasons, consistency in the
analyses, and to build this project with standards that could be
transferred to a clinical laboratory. The hybrid strategy used in
DECIPHERD can serve as an intermediate step in establishing
autonomous local genomic services for undiagnosed diseases and
other genetic conditions in settings of similar limited resources.

As result of the study, we were able to identify a molecular
etiology for almost half of the participants across a wide range of
clinical phenotypes. This is similar to published data from large
studies in European and North American populations [10, 25] and
higher than studies in Argentina and Brazil, reporting detection
rates of 30-40% [26, 27]. Our approach also identified patients in
special situations, such as known dominant conditions presenting
in probably recessive forms, and also potential dual diagnosis.

European Journal of Human Genetics
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Table 4. Logistic regression analysis. Identification of variables associated with obtaining an informative result.

Bivariate analysis Multivariate analysis
Variable OR [95%Cl] p OR [95%Cl] p
Sex = Male 0.59 [0.27. 1.29] 0.18 0.78 [0.32. 1.88] 0.58
Age (yrs) 0.99 [0.96. 1.03] 0.76 0.93 [0.85. 1.03] 0.15
12-18 3.53 [1.01. 12.38] 0.05* 12.64 [2.05. 78.04] 0.01*
18-52 1.03 [0.37. 2.87] 0.96 3.87 [0.42. 35.3] 0.23
Private health care 1.41 [0.59. 3.33] 0.44 1.13 [0.42. 3.06] 0.80
Neurological compromise 273 [1.11. 6.74] 0.03* 233 [0.82. 6.58] 0.11
Immune compromise 0.21 [0.07. 0.69] 0.01* 0.25 [0.06. 1.04] 0.06
Congenital anomalies 3.19 [0.82. 12.36] 0.09 1.95 [0.31. 12.3] 0.48
Number of systems 1.11 [0.91. 1.35] 0.30 1.19 [0.94. 1.49] 0.14

compromised
*p <= 0.05.

addition, we plan to analyze secondary findings among the
families that consented to receive them, which may lead to
additional clinically relevant findings. It would be ideal to also
implement other strategies such as genome and/or transcriptome
sequencing to further increase diagnostic yield for patients with
non-informative or partially informative findings [35-371.

Nevertheless, local implementation of a sequencing pipeline is
still hindered by prohibitive costs. If prices drop to cost-efficient
levels for LMIC countries, it may be feasible to implement NGS at
scale in our country. Sample volume is a pricing factor, particularly
in a small country, and therefore collaboration between different
areas and centers that use NGS can also facilitate the development
of local sequencing centers. Formal and more extensive training of
clinical, laboratory and bioinformatics workforce is also crucial,
along with certification and accreditation. Performing testing in
the country is key for patient access, as the Chilean health system
does not provide financial coverage for testing performed abroad.

Another crucial element to consider for decision-makers is the
impact of reaching a diagnosis. In parallel to the diagnostic pipeline
described in this article, our team is collecting quantitative and
qualitative information on the effects of achieving a genetic
diagnosis for patients, caregivers, healthcare teams and the
healthcare system to contribute with locally pertinent data and
insights that can guide the elaboration of national policies.

Our work highlights the feasibility of establishing a program for
rare and undiagnosed diseases in a country with limited genomic
resources. This is aligned with the World Health Organizations call
to advance genomic medicine worldwide [14], and the United
Nations Sustainable Development Goals to “leave no one behind”
[38]. We expect this work may be useful for other countries in
similar situations to develop their own RUD programs.
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