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Polygenic scores (PGSs) provide an individual level estimate of genetic risk for any given disease. Since most PGSs have been
derived from genome wide association studies (GWASs) conducted in populations of White European ancestry, their validity in
other ancestry groups remains unconfirmed. This is especially relevant for cardiometabolic diseases which are known to
disproportionately affect people of non-European ancestry. Thus, we aimed to evaluate the performance of PGSs for glycaemic
traits (glycated haemoglobin, and type 1 and type 2 diabetes mellitus), cardiometabolic risk factors (body mass index, hypertension,
high- and low-density lipoproteins, and total cholesterol and triglycerides) and cardiovascular diseases (including stroke and
coronary artery disease) in people of White European, South Asian, and African Caribbean ethnicity in the UK Biobank. Whilst PGSs
incorporated some GWAS data from multi-ethnic populations, the vast majority originated from White Europeans. For most
outcomes, PGSs derived mostly from European populations had an overall better performance in White Europeans compared to
South Asians and African Caribbeans. Thus, multi-ancestry GWAS data are needed to derive ancestry stratified PGSs to tackle health
inequalities.

European Journal of Human Genetics; https://doi.org/10.1038/s41431-023-01517-3

INTRODUCTION
A polygenic score (PGS) provides a personalised estimate of an
individual’s genetic liability to a disease. These are calculated as
weighted sums of single nucleotide polymorphisms (SNPs) [1].
Because most existing PGSs have been derived from genome wide
association studies (GWASs) conducted in populations of European
ancestry [2, 3], their validity in other ancestry groups remains
unconfirmed. Therefore, although PGSs are an exciting prospect for
precision medicine, they have the potential to perpetuate or widen
existing health inequalities if they lead to invalid or misleading
inference of disease risk in non-European populations.
In genetic studies, genetic ancestry is commonly used as a

proxy for the social construct of ethnicity (and vice versa).
However, ethnicity is a complex concept which includes genetic
ancestry and a wide range of social constructs (e.g., cultural
practices, health beliefs, language, religion, and self-identification)
amongst others [4]. In general, genetic ancestry is thought to
better reflect genetic relatedness than ethnicity, due to the fact
that ethnicity is a broader social concept which incorporates a
wide variety of environmental measures such as socioeconomic
status and lifestyle [5]. However, there is considerable overlap
between genetic ancestry and self-reported ethnicity, although
ancestry does not capture the entirety of an individual’s ethnic
identity [6]. Thus, self-reported ethnicity is important when
examining health disparities related to the wider socio-cultural
and environmental determinants of health in addition to
biological and genetic factors [5].

PGSs derived in European ancestry populations generally
transfer less well to African [7] or South Asian [8] populations.
However, studies reporting the transferability to Hispanics have
reported conflicting results [9, 10]. Even then, within ancestry
heterogeneity can contribute to different predictive powers in
ethnic sub-groups. For example, amongst Hispanics, the PGSs can
have different performances based on ancestry clusters [11]. Thus,
the transethnic transferability of PGSs remains a matter of debate.
Worldwide, there are 500–700 million individuals with diabetes

mellitus (DM), 90% of whom have type 2 DM (T2DM) [12]. The
prevalence of T2DM differs by age (more common in older
people), sex (more common in men) and ethnicity. In the United
Kingdom, South Asians are more likely to suffer from diabetes [13],
followed by those from an African Caribbean background [14],
both of whom have 2–3-fold higher risk of developing T2DM
compared to White groups with onset almost a decade earlier [15].
In addition, South Asians and African Caribbeans are more likely to
have higher serum glycated haemoblobin A1c (HbA1c) levels even
in the absence of diabetes [16] and poorer glycaemic control in
established diabetes [17].
In addition to ethnic differences in diabetes risk, cardiovascular

diseases (CVDs) also vary across ethnicities. Compared to White
Europeans, South Asians are more likely to develop CVD (i.e.,
coronary artery disease [CAD] and stroke), whilst those from an
African Caribbean background are more likely to suffer from
stroke [18]. Cardiovascular risk factors generally map to these
ethnic differences in CVD outcomes. African Caribbeans generally
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have healthier lipid profiles (e.g., higher high-density lipoproteins
[HDL] and lower total triglycerides [TTG] [19]) compared to White
Europeans and South Asians, in whom lipoprotein profiles are
most adverse [20]. In contrast, hypertension is more frequent in
African Caribbeans than White Europeans [21]. The picture is more
complex for South Asians, who have an equivalent or lower blood
pressure (BP) than Europeans at younger ages [22], but subse-
quently experience a steeper BP trajectory resulting in higher later
life BP [23].
Whether PGSs derived mostly from White ancestry GWAS data

can capture differences by self-reported ethnicity in cardiometa-
bolic traits remains unclear. Using data from the UK Biobank
(UKB), this study aimed to explore the prognostic value of
transethnic transferability for a wide range of cardiometabolic
PGSs and their respective observed outcomes. Our focus was on
participants of South Asian and African Caribbean ethnicity in
relation to White Europeans as these are the largest ethnic
minority groups in the UK and are therefore well represented
in UKB.

METHODS
Study population
The UKB is a large UK based prospective cohort study with >500,000
participants recruited between 2006 and 2010 when study participants
were aged 40–69 years old, and features demographic, genetic, health
outcomes and imaging data for its participants [24]. We used the self-
reported ethnicity variable which was defined according to the 2001 UK
Census guidelines. The breakdown of self-reported ethnicity in UKB is
94.4% White Europeans, 0.2% South Asians, 0.2% African Caribbeans, and
5.2% other/unknown. Ancestry was previously derived in the UK Biobank
using principal component analysis (PCA) and clustering, and it shows a
good agreement with the self-reported ethnicity [25] we are using in
this study.

Polygenic scores
We used the standard and enhanced PGSs derived by Thompson et al., for
which methodology has been previously described in detail [26]. Standard
UKB PGSs contain only external GWAS data, whilst the enhanced UKB PGSs
contain in addition UKB GWAS data. In December 2022, we selected
the available standard and enhanced cardiometabolic UKB PGSs namely:
(1) type 1 DM (T1DM), (2) T2DM, (3) HbA1c, (4) body mass index (BMI),
(4) hypertension, (5) CAD, (6) ischaemic stroke, (7) CVD, (8) HDL, (9) low-
density lipoproteins (LDL), (10) total cholesterol, and (11) TTG. For total
cholesterol and triglycerides, only an enhanced PGSs was available.

To derive the standard PGSs, Thompson et al. [26] conducted a
literature review to identify GWAS summary statistics from external studies.
These included: Atherosclerosis Risk in Communities (ARIC); Discovery,
Biology and Risk of Inherited Variants in Breast Cancer (DRIVE); Electronic
Medical Records and Genomics (eMERGE); BioMe BioBank; Jackson Heart
Study (JHS); Multi-Ethnic Cohort (MEC); Multi-Ethnic Study of Athero-
sclerosis (MESA); Omics in Lations (OLA); and GWAS for Breast Cancer in
the African Diaspora (ROOT study). To derive the enhanced PGSs,
Thompson et al. [26] used a custom Axiom genotyping array (able to
assay 825,927 genetic variants) followed by genome-wide imputation.
Then, UKB GWAS summary statistics for each trait were obtained using
logistic regression for binary outcomes, and linear regression for
continuous outcomes, adjusting for age, sex, genotyping chip, and
ancestry principal components (PCs). GWAS data were then combined
using a Bayesian fixed-effects inverse variance meta-analysis model. UKB
and external GWAS data were meta-analysed to yield the enhanced PGSs,
whilst external GWAS data without UKB data were combined to obtain the
standard PGSs. Both the standard and enhanced PGSs were derived in 70%
of the dataset and tested in the remaining 30% to avoid overfitting.
Genetic ancestry classification was done using the same methodology
which showed a good overlap between self-reported ethnicity and genetic
ancestry [25]. The proportion of the genotypes associated with White
Europeans, South Asians and African Caribbeans ancestry was determined
using a subset of common SNPs from the 1000 Genomes reference
dataset, and genetic PCA was conducted to derive the centroid
coordinates for ancestry groups, and to further define the ancestry
categories [25]. The PGSs were then centred by subtracting out the PGS

value predicted from a linear regression of the PGS against the first 4 PCs
fitted in the 1000 Genomes Project individuals [27]. Lastly, the centred PGS
was divided by the standard deviation (SD) in the corresponding ancestry
group. The focus of our work are the enhanced PGSs as these have been
shown by Thompson et al. [26] to have a higher predictive performance.

Cardiometabolic outcomes
All outcomes were evaluated using information captured at the baseline
assessment between 2006 and 2010 in the 22 recruitment centres across
England, Scotland, and Wales. These included the presence of T1DM
(yes/no), T2DM (yes/no), HbA1c (mmol/mol), BMI (kg/m2), hypertension
(yes/no), CAD (yes/no), stroke (yes/no), CVD (yes/no), HDL (mmol/l), LDL
(mmol/l), total cholesterol (mmol/l) and TTG (mmol/l). T1DM and T2DM
were defined using an algorithm which was validated against primary care
records, taking into account the self-report, doctor diagnosis and the use
of diabetes medications [28]. BMI (kg/m2) was calculated as the ratio of
weight to height2. The presence of hypertension at baseline was defined as
either: (1) self-report of anti-hypertensive medication use, (2) systolic
BP > 140mmHg or (3) diastolic BP > 80mmHg. The presence of CAD,
stroke and CVD (i.e., CAD + stroke) were based on the baseline self-report,
nursing interview and linked inpatient hospital data as previously
described [29]. We did not use incident data as there are known healthcare
access disparities among ethnic groups in the UK which could introduce
bias [30]. HbA1c, HDL, LDL, total cholesterol and TTG were quantified from
the baseline blood samples [25].

Covariates
Sex was self-reported as male or female, and age (years) was recorded at
the time of recruitment. Area based Townsend deprivation scores were
used to capture socio-economic position (SEP) [31]. The primary care
survey provided data on the prescribed medications of each study
participant.

Statistical analysis
All analyses were performed in R 4.2.1 [32]. Data distributions were
assessed using histograms. Continuous variables were expressed as
mean ± 1 SD or median (interquartile range) as appropriate; categorical
variables were expressed as counts and percentages.
Participants were categorised based on self-reported ethnicity as White

European, South Asian, and African Caribbean. Individuals of mixed, other,
and unknown ethnicity were not included due to small sample sizes. All
analyses were conducted within each ethnic group. We used the PGSs as
the indipendent variables to test their association with their correspond-
ing cardiometabolic outcomes. For binary outcomes, generalised linear
models (glms) with binominal distribution (i.e., logistic regression) were
employed. The continuous outcomes were either slightly or heavily
skewed. For example, BMI had a skewness greater than 1, while HbA1c and
TTG a skewness exceeding 2. As the gamma distribution can flexibly
accommodate positively skewed data due to its shape and scale
parameters, we used glms with gamma distribution and identity link for
our continuous outcomes.
Two regression models were compared. Model 1 was unadjusted to

obtain raw estimates. For all outcomes, model 2 was adjusted for age, sex,
and SEP in order to obtain more accurate and precise regression estimates.
As adjustment for genetic PCs was previously used to control for ancestry
during the PGS derivation process, further adjustment for PCs was not
pursued. Since this study did not attempt to explore mechanistic pathways
downstream of the genotype but upstream of the phenotypes, further
models with adjustment for mediators were not pursued. Model
assumptions were verified with regression diagnostics and found to be
satisfied. Results were then corrected for multiple testing using a false
discovery rate of 0.05 [33].
Using a 30% testing dataset, the classification performance (i.e.,

predicting the binary outcome) of both logistic regression models were
evaluated using the receiver operating characteristic (ROC) curve. The area
under the curve (AUC) and its associated 95% confidence interval (CI) was
derived for each ethnicity for each binary outcome. The ROC AUCs were
compared between ethnicities using DeLong’s test. For continuous
outcomes, we compared the effect sizes derived from the glms which
capture the increase in outcome per unit increase in the PGSs. Since the
PGSs underwent a PC-based ancestry centring and had a normal
distribution with a similar SD of approximatively 1 (Table 1), the effect
sizes was not further standardised.
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Sensitivity analyses
As a sensitivity analysis, model 2 was additionally adjusted for diabetes
medications when HbA1c was the outcome and for lipid-lowering drugs
when exploring HDL, LDL, total cholesterol and TTG as outcomes. PGSs are
upstream of the cardiometabolic outcomes which are upstream of the
medications (i.e., a causal chain). In instances where the medications can
then affect back the cardiometabolic outcome (e.g., diabetes medications
lowering HbA1c), adjusting for them allows the estimation of the direct
association between the PGS and the cardiometabolic outcome. This
adjustment esentially controls for unmeasured confounders downstream
of the medication (e.g., access to healthcare, healthcare seeking behaviour
etc.).
In addition, we also calculated the area under the precision-recall curve

(PR-AUC) as the ROC AUC can be misleading when the outcomes are rare.

RESULTS
In this study we included 472,036 participants their character-
istics and standard PGSs stratified by ethnicity are presented in
Table 1, while their enhanced PGSs are presented in Supplemen-
tary Table S1. On average, both South Asians (53.4 years) and
African Caribbeans (51.9 years) were younger than White
Europeans (56.8 years) at the time of outcome assessment. Men
comprised 45.5% of White, 54.5% of South Asians and 42.3% of
African Caribbeans. There were 45.7% South Asians, 70.5% African
Caribbeans, and 23.2% White Europeans in the lowest quartile of
the Townsend deprivation index. South Asians had the highest
prevalence of T2DM (16.7%), CVD (10.1%), and CAD (7.4%), whilst
African Caribbeans had the highest average BMI (29.5) and the

Table 1. Participant characteristics per ethnic group.

White European [1] South Asian [2] African Caribbean [3] [1] vs
[2]

[1] vs
[3]

[2] vs
[3]

n Count (%) or
Mean ± sd

n Count (%) or
Mean ± sd

n Count (%) or
Mean ± sd

p-
value*

p-
value**

p-
value***

Polygenic scores

T1DM 457611 0.05 ± 1.13 7644 −0.10 ± 1.03 7621 −0.01 ± 1.11 <0.0001 <0.0001 <0.0001

T2DM 457611 −0.15 ± 1.00 7644 0.04 ± 1.02 7621 0.04 ± 1.13 <0.0001 <0.0001 0.588

HbA1c 457611 0.09 ± 1.07 7644 0.06 ± 1.02 7621 0.00 ± 1.10 0.009 <0.0001 0.001

BMI 457611 −0.21 ± 1.02 7644 0.04 ± 1.03 7621 −0.03 ± 1.06 <0.0001 <0.0001 <0.0001

Hypertension 457611 −0.04 ± 0.99 7644 −0.16 ± 1.03 7621 −0.19 ± 1.06 <0.0001 <0.0001 0.167

CVD 457611 −0.11 ± 1.01 7644 0.11 ± 1.05 7621 −0.13 ± 1.14 <0.0001 0.112 <0.0001

CAD 457611 −0.17 ± 0.99 7644 0.06 ± 1.07 7621 −0.19 ± 1.15 <0.0001 0.146 <0.0001

Stroke 457611 −0.02 ± 0.97 7644 −0.02 ± 1.02 7621 −0.22 ± 1.10 0.650 <0.0001 <0.0001

HDL 457611 0.01 ± 1.06 7644 0.10 ± 1.02 7621 −0.01 ± 1.04 <0.0001 0.092 <0.0001

LDL 457611 −0.07 ± 1.05 7644 0.11 ± 1.02 7621 −0.04 ± 1.13 <0.0001 0.0002 <0.0001

Outcomes

T1DM, yes (%) 472036 1697 (0.36%) 8052 35 (0.43%) 8048 26 (0.32%) 0.307 0.654 0.306

T2DM, yes (%) 472036 20494 (4.34%) 8052 1346 (16.72%) 8048 850 (10.56%) <0.0001 <0.0001 <0.0001

HbA1c, mmol/mol 441777 35.99 ± 6.45 7300 40.83 ± 10.57 6268 39.43 ± 10.10 <0.0001 <0.0001 <0.0001

BMI, kg/m2 469759 27.40 ± 4.78 7814 27.29 ± 4.47 7897 29.53 ± 5.38 0.027 <0.0001 <0.0001

Hypertension, yes (%) 472036 305,714
(64.76%)

8052 5493 (68.22%) 7048 5824 (72.59%) <0.0001 <0.0001 <0.0001

CVD, yes (%) 471959 32,539 (6.89%) 8051 851 (10.12%) 8047 431 (5.36%) <0.0001 <0.0001 <0.0001

CAD, yes (%) 472036 21,278 (4.51%) 8052 599 (7.44%) 8048 260 (3.23%) <0.0001 <0.0001 <0.0001

Stroke, yes (%) 471217 7259 (1.54%) 7908 132 (1.67%) 7968 126 (1.58%) 0.382 0.804 0.708

HDL, mmol/l 404554 1.41 ± 0.52 6748 1.20 ± 0.41 6745 1.39 ± 0.51 <0.0001 <0.0001 <0.0001

LDL, mmol/l 441161 3.57 ± 0.92 7397 3.33 ± 0.9 7276 3.26 ± 0.88 <0.0001 <0.0001 <0.0001

Total cholesterol,
mmol/l

441872 5.71 ± 1.18 7410 5.29 ± 1.15 7292 5.24 ± 1.13 <0.0001 <0.0001 0.005

TTG, mmol/l 441633 1.76 ± 1.04 7404 1.97 ± 1.18 7290 1.28 ± 0.75 <0.0001 <0.0001 <0.0001

Covariates

Age, years 472036 56.76 ± 8.03 8052 53.4 ± 8.45 8048 51.94 ± 7.08 <0.0001 <0.0001 <0.0001

Sex, male (%) 472036 214,955
(45.54%)

8052 4304 (53.45%) 8048 3402 (42.27%) <0.0001 <0.0001 <0.0001

SEP,
Townsend deprivation
index

472036 −1.45 ± 3.01 8043 0.24 ± 3.12 8028 2.64 ± 3.45 <0.0001 <0.0001 <0.0001

Continuous variables are presented in their corresponding units, whilst binary variables are presented as yes counts (percentages of yes counts). Of note, PGSs
are unitless. Only the standard PGSs are shown here. The enhanced PGSs are presented in Supplementary Table S1.
BMI body mass index, CAD coronary artery disease, CVD cardiovascular disease, HbA1c glycated haemoglobin A1c, HDL high-density lipoproteins, LDL low-
density lipoproteins, PGS polygenic score, SEP socio-economic position, T1DM type 1 diabetes mellitus, T2DM type 2 diabetes mellitus, TTG total triglycerides.
All p-values were derived using t-test for continuous variables and Chi-squared test for categorical ones. Significant p-values are highlighted in bold.
*White Europeans were compared with South Asians.
**White Europeans were compared with African Caribbeans.
***South Asians were compared with African Caribbeans.
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highest prevalence of hypertension (72.6%). Despite the PC-based
ancestry centring, the PGSs experienced small residual deviations
from absolute zero in South Asians and African Caribbeans
(Table 1). Model 1 and model 2 results for the standard and
enhanced PGSs are presented in Table 2. Results from model 2 for
the enhanced PGSs are presented below.

Type 1 diabetes
The association between the enhanced PGSs and T1DM was
strongest for White Europeans (odds ratio [OR] 3.09 95% CI [2.72,
3.40]) followed by South Asians (OR 1.52 95% CI [1.11, 2.07]) and
African Caribbeans (OR 1.40 95% CI [0.99, 1.95]) (Fig. 1A). The PGS’
predictive performance was highest in White Europeans (AUC 0.84
95% CI [0.80, 0.89]) followed by South Asians AUC 0.63 95% CI
[0.49, 0.77] and African Caribbeans (AUC 0.50 95% CI [0.32,0.68])
(Table 3).

Type 2 diabetes
According to the OR, the performance was highest in White
Europeans (OR 2.48 95% CI [2.39, 2.58]) followed by South Asians
(OR 2.05 95% CI [1.91, 2.20]) and African Caribbeans (OR 1.51 95%
CI 1.51 [1.30, 1.48]) (Fig. 1B). According to the AUC, the enhanced
PGS’ predictive performance was higher in White Europeans (AUC
0.80 95% CI [0.79, 0.82]) compared to South Asians (AUC 0.76 95%
CI [0.73, 0.78]) and African Caribbeans (AUC 0.73 95% CI [0.69,
0.76]) (Table 3).

HbA1c
The regression coefficient (β) was higher in White Europeans and
South Asians compared to African Caribbeans. One unit (or 1 SD)
increase in the enhanced PGS was associated with a 1.69 mmol/
mol 95% CI (1.65, 1.73) higher HbA1c in White Europeans, 1.79
95% CI (1.57, 2.00) in South Asians and 1.03 (0.81, 1.26) in African
Caribbeans after adjusting for sex, age, SEP (Table 2). The
difference between White Europeans and South Asians was not
statistically significant (p= 0.370). Results are visually depicted in
Fig. 1C.

BMI
A unit increase in the enhanced PGS resulted in a 1.71 kg/m2 95%
CI (1.68, 1.74) increase in BMI in White Europeans, 1.31 95% CI
(1.22, 1.40) in South Asians and 0.90 95% CI (0.80, 1.00) in African
Caribbeans (Table 2 and Fig. 1D).

Hypertension
There was no difference in performance by ethnicity according to
the ROC curve analysis (Table 3). The ORs were similar across all
ethnicities using both standard (≈1.50) and enhanced PGSs
(≈1.70). (Table 2 and Fig. 2C).

CVD and CAD
For CVD, the performance of the enhanced PGS was higher in
White Europeans (AUC 0.77 95% CI [0.76, 0.78]) and South Asians
(AUC 0.74 95% CI [0.70, 0.77]) vs African Caribbeans (AUC 0.66 95%
CI [0.61, 0.72]) all p < 0.025 (Table 3). Similarly, the ORs were higher
in White Europeans (OR 1.61 95% CI [1.56, 1.66]) and South Asians
(OR 1.58 95% CI [1.45, 1.71]) compared to African Caribbeans (OR
1.20 95% CI [1.09, 1.32]) (Fig. 2A).
For CAD, the results were similar to those reported above for

CVD, with a higher predictive performance according to the ROC
curve analysis (Table 3) and higher ORs (Table 2) in White
Europeans and South Asians compared to African Caribbeans.

Stroke
The performance of the enhanced PGS according to the ROC
curve analysis (AUC ≈ 0.70) and the ORs (1.20–1.40) were similar
across all ethnicities (Fig. 2D, Table 3).
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HDL and LDL
One SD increase in the enhanced HDL PGS resulted in a
0.135mmol/l 95% CI (0.133,0.137) greater HDL in White
Europeans, 0.107 95% CI (0.101, 0.113) in South Asians and
0.089 95% CI (0.082, 0.097) in African Caribbeans (Table 2 and
Fig. 3A, B) after adjusting for sex, age, SEP. A unit increase in the
enhanced LDL PGS was associated with a higher LDL in White
Europeans (0.267 mmol/l 95% CI [0.261, 0.272]) followed by
African Caribbeans (0.216 95% CI [0.199, 0.233]) and South Asians
(0.169 95% CI [0.149, 0.188]).

Total cholesterol and triglycerides
A unit (or 1 SD) increase in the enhanced PGS resulted in a greater
total cholesterol in White Europeans (0.278 mmol/l 95% CI
[0.269,0.286]) compared to African Carribeans (0.202 95% CI
[0.179, 0.226]) and South Aasians (0.183 95% CI [0.157, 0.208])
(Fig. 3C). On the other hand, a unit (or 1 SD) increase in the TTG
enhanced PGS was associated with a higher TTG in South Asians
(0.278mmol/l 95% CI [0.257, 0.299]) compared to White Europeans
(0.228 95% CI [0.222, 0.234]) and African Caribbeans (0.086 95% CI
[0.071, 0.101]) (Fig. 3D).

Sensitivity analyses
The regression results stratified per ethnicity for HbA1c, HDL, LDL,
total cholesterol, and triglycerides with further adjustments for
diabetes medications or lipid-lowering drugs as appropriate are
presented in Supplementary Table S2. In general, the findings
were replicated, but the effect sizes were slightly smaller for
HbA1c and slightly larger for the lipid outcomes.
The PR-AUC results stratified by ethnicity are presented in

Supplementary Table S3. The PR-AUC was larger in White
Europeans followed by South Asians and African Caribbeans for
T1DM, CVD and CAD. However, the estimates were similar for
hypertension and stroke. The PR-AUC was greater in South Asians
compared to White Europeans for T2DM.

DISCUSSION
In this study we evaluated the performance of standard and
enhanced UKB cardiometabolic PGSs derived mostly in White
European populations in association with their respective
observed phenotype by ethnicity. Whilst the UKB PGSs included
some data from multi-ethnic GWAS studies, the performance of
both the standard and enhanced PGSs was better in White
Europeans compared to South Asians and African Caribbeans for
most cardiometabolic outcomes. This can be explained by the
predominance of White European GWAS data when deriving
the PGSs.

Factors driving poorer PGS performance in ethnic diverse
populations
According to the National Human Genome Research Institute and
European Bioinformatics Institute GWAS catalogue almost 80% of
the GWAS studies were performed in White Europeans which
represent roughly 10% of the global population [34]. In contrast,
25% of the global population is of South Asian and 15% of African
Caribbean ancestry. Thus, GWAS data is scarce in non-White
ancestries. This has multiple downstream implications and might
partly explain the worse performance of the PGSs in multi-ethnic
populations [35]. Firstly, linkage disequilibrium (LD) varies across
ancestries which may drive differences in effect size estimates in
GWASs [36]. Secondly, imputation reference panels which are
widely used to address bias in GWASs are less efficient in non-
White ancestries due to data scarcity. Thirdly, within-ethnicity
ancestry subcategories in non-White population are less stu-
died. This is important because within-ethnicity heterogeneity
leading to differential predictive power of PGSs in the same
ethnicity has been reported [11]. Fourthly, the normal reference
ranges for quantitative biomarkers may vary between ethnicities
[37]. Without ethnicity specific cut-offs, there is an inherent bias in
any GWAS which categorises/binarizes quantitative traits. Lastly,
studies may be reporting common benign variants as pathologic in

Fig. 1 Violin plots highlighting the effect sizes per standard deviation increase in the enhanced PGSs for BMI and diabetes-related traits
stratified by ethnicity. Our traits included: (A) T1DM, (B) T2DM, (C) HbA1c, and (D) BMI. For binary outcomes, logistic regressions were used
to test for the associations between the PGSs as the independent variables and their corresponding cardiometabolic outcomes as the
dependent variables. Effect sizes are presented in the form of ORs. For continuous outcomes, glms with gamma distribution were used
instead and effect sizes are presented in the form of β regression coefficients. Models were adjusted for age, sex and SEP. In each violin plot,
the middle dot represents the effect size, and the adjacent ones the lower and upper limits of the 95% CI. The violin shape reflects the
wideness of the 95% CI. Abbreviations: BMI body mass index, CI confidence interval, glm generalised linear models, HbA1c glycated
haemoglobinA1c, PGS polygenic score, OR odds ratio, SEP socio-economic position, T1DM type 1 diabetes mellitus, T2DM type 2 diabetes
mellitus.
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other ethnicities just because they are rare in White Europeans [2].
Thus, large ethnic diverse datasets and improved treatment of LD
and variant frequencies are increasingly needed to create
equitable PGSs before widespread clinical use [35].

Ethnic inclusivity for equitable implementation of
polygenic scores
In CVD research, the vast majority of cohort studies enroled mostly
people of White European ancestry. There are only a few studies
which include genetic data in ethnic minorities. These either focus
on a single ethnic group (e.g., East London Genes & Health [ELGH],
China Kadoorie Biobank [CKB], Mexico City Prospective Study
[MCPS], New Delhi Birth Cohort Study, OLA etc.) or multiple ethnic
groups (e.g., Age, Gene/Environment Susceptibility-Reykjavik
Study [AGES-Reykjavik], ARIC, Born in Bradford (BiB), Cardiovas-
cular Health Study [CHS], Dallas Heart Study [DHS], Framingham
Heart Study [FHS] OMNI cohorts, JHS, MEC, MESA, Rotterdam
Study [RS], Southall and Brent Revisited [SABRE] etc.). Importantly,
there is a tendency to aggregate individual cohorts into consortia
(e.g., genetic data from AGES, ARIC, CHS, FHS and RS cohorts are
available through the Cohorts for Heart and Aging Research in
Genomic Epidemiology [CHARGE] consortium). Despite these
collections, the percentage of non-White European ancestry
participants in GWASs has not increased in recent years [34]. This
suggests that the reduced performance of PGSs in ethnic
minorities is unlikely to improve in the near future.
In developed nations, the low participation of ethnic minorities

in biomedical research is multi-factorial but mainly related to
reduced trust given past research misconduct and feelings of
racial discrimination [38]. However, movements such as the All of
Us Research Program from National Institute of Health are working
towards having a culturally aware approach to engage under-
represented ethnic minorities in research [39].

Ancestry inclusivity for equitable implementation of
polygenic scores
Race and ethnicity are socio-cultural constructs, whilst ancestry
refers to the genetic origin of a population. Engaging under-
represented ethnic and ancestry minorities in genomics research

should be a global research priority. Indeed, there are movements
aiming to address these disparities such as the Human Heredity
and Health in Africa initiative [40]. However, lack of funding
remains the main limitation of such international movements [41].

Polygenic scores and health inequalities during translation to
practice
The advent of genetic data in large cohort datasets such as the UK
Biobank has led to the discovery of multiple SNPs which are
associated with a variety of cardiometabolic diseases using
GWASs. Whilst the added value of PGSs on top of already
validated clinical tools is yet to be fully elucidated, current studies
suggest that PGSs could: (1) increase disease prediction in early
life, (2) help guide population-wide screening and preventative
targeted interventions (e.g., lipid lowering drugs in those with a
high PGS for total cholesterol and LDL), (3) help promote
favourable health behaviours in those with an enhanced risk,
(4) improve diagnostic accuracy (e.g., differentiating T1DM vs
T2DM in overweight antibody-negative young individuals), and
(5) predicting response to treatments [27]. Given the worse
performance of PGSs in ethnic minorities, they may miss out on
benefiting from improved health outcomes. The deployment of
PGSs would benefit the population group which is already
privileged in terms of health outcomes further deepening existing
healthcare inequalities. Thus, large-scale multi-ancestry GWAS
data are urgently needed to generate ethnicity stratified PGSs to
tackle health inequalities.

Limitations
Limitations of the UK Biobank PGSs have been previously
discussed [26]. With regards to PGS evaluation, the main limitation
of our study relates to the lack of widely accepted performance
metrics [42]. Whilst phenotypic variance explained (R2) and
association p-values have been previously proposed [43], we used
effect-size metrics for the outcome as these are widely used for
established traditional risk factors. However, these do not
accurately capture disease prevalence in the general population.
In addition, the use of the self-reported ethnicity is not in line

with the latest recommendations on the use and reporting of race

Fig. 2 Violin plots highlighting the effect sizes per standard deviation increase in the enhanced PGSs for vascular traits stratified by
ethnicity. Our vascular traits included: (A) CAD, (B) CVD, (C) stroke, and (D) hypertension. Logistic regressions were used to test for the
associations between the PGSs as the independent variables and their corresponding cardiometabolic outcomes as the dependent variables.
Models were adjusted for age, sex and SEP. In each violin plot, the middle dot represents the odds ratio, and the adjacent ones the lower and
upper limits of the 95% CI. The violin shape reflects the wideness of the 95% CI. Abbreviations: CAD coronary artery disease, CI confidence
interval, CVD cardiovascular disease, PGS polygenic score, OR odds ratio, SEP socio-economic position.
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and ancestry in genetic research, which instead recommends the
incorporation of ancestry informative markers for a more precise
characterisation of an individual’s identity [5, 44]. Importantly,
whilst there is a good overlap between genetic ancestry and self-
reported ethnicity, these are not identical in the UK Biobank [25].
Nonetheless, self-reported ethnicity is also able to capture social
constructs (e.g., health beliefs) which could drive the observed
differences in PGSs’ performance. In addition, detailed ethnic
groupings (defined according to the 16 categories of the 2001
census) had to be collapsed into the 5 high level categories of the
census to increase the statistical power of the analyses conducted
in multi-ethnic populations.
As underlying differences in allele frequencies and LD likely

make a major contribution to the ancestry performance differ-
ences in non-ancestry matched PGSs, the scores could be
improved through the use of the appropriate ancestral reference
LD. However, we did not attempt to improve the PGSs in this
study as our aim was solely to evaluate the ones derived by
Thompson et al. [26]. While our findings that PGSs perform better
in White Europeans may not be unsurprising, there is a need to
provide empirical evidence, as without this, the proposed PGSs
will be used without consideration of the ethnic background.
While Thompson et al. [26] provided the effect sizes for the
associations between PGSs with their corresponding outcomes
stratified by ethnicity, we were able to build on this work by using
more sophisticated statistical approaches (e.g., ROC and precision
recall curves) to better evaluate the performance of the PGSs in
multi-ethnic populations. Our work is important because it
highlights that these PGSs released by UK Biobank need to be
used with consideration in multi-ethnic populations and under-
scores the need for improving them. In addition, we discuss the
factors driving poorer PGS performance in ethnically diverse
populations, and the need for ethnic inclusivity for the equitable
implementation of PGSs to reduce health inequalities as they
transition to clinical practice.
Although the ethnic minorities were 3–4 years younger at

recruitment, incident cardiometabolic diseases have a younger

age of onset (e.g., diabetes in South Asians [45] and hypertension
in those of African ancestry [46] occur ≈10-years earlier compared
to White Europeans). In addition, SABRE data showed that a lower
proportion of UK White individuals were diagnosed with diabetes
in the National Health Service compared to South Asians and
African Caribbeans when comparing the study blood test results
with the healthcare records [47]. As a higher proportion in the
ethnic minority groups should have already been diagnosed with
the cardiometabolic diseases, it would be expected that PGSs
would actually perform better in the ethnic minorities. Thus,
another important limitation is that we might actually under-
estimate the performance difference of the PGSs between White
Europeans and the multi-ethnic populations.

CONCLUSION
In general, UK Biobank standard and enhanced PGSs had markedly
better performance in White Europeans compared to South Asians
and African Caribbeans when evaluating cardiometabolic pheno-
types. More GWAS data in ethnic minorities is required to improve
the performance of the PGSs to avoid perpetuating health
inequalities especially since cardiometabolic diseases are more
prevalent in South Asians and African Caribbeans.
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