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From a network medicine perspective, a disease is the consequence of perturbations on the interactome. These perturbations tend
to appear in a specific neighbourhood on the interactome, the disease module, and modules related to phenotypically similar
diseases tend to be located in close-by regions. We present LanDis, a freely available web-based interactive tool (https://
paccanarolab.org/landis) that allows domain experts, medical doctors and the larger scientific community to graphically navigate
the interactome distances between the modules of over 44 million pairs of heritable diseases. The map-like interface provides
detailed comparisons between pairs of diseases together with supporting evidence. Every disease in LanDis is linked to relevant
entries in OMIM and UniProt, providing a starting point for in-depth analysis and an opportunity for novel insight into the aetiology
of diseases as well as differential diagnosis.

European Journal of Human Genetics (2024) 32:461–465; https://doi.org/10.1038/s41431-023-01511-9

In recent decades, our understanding of diseases and their causes
has shifted from simple relationships between genes and diseases
to more comprehensive models, which take into account the
interplay of gene products through their multiple molecular
interactions. The set of interactions between proteins can be
summarised in a network, often referred to as interactome, where
nodes represent proteins and links represent interactions between
them. Studying diseases in the context of the human interactome
has revealed that a disease’s causal genes tend to cluster in close-
by regions—the disease module—and that diseases that share
causal genes tend to exhibit phenotypical similarity [1]. The idea
that closeness on the interactome relates to phenotypical
similarity has applications in disease gene prediction and
differential diagnosis [1–4]. For instance, recent methods have
successfully exploited these concepts to prioritise candidate
disease genes according to their level of connectivity to known
disease genes [2, 3, 5–8]. Moreover, the comprehensive study of
the phenotypical similarities of diseases can help in understanding
their aetiology and reveal commonalities in their pathophysiology.
A few measures have been developed to systematically quantify

the similarity between pairs of diseases (see Supplementary
Note 1). LanDis relies on the Caniza measure, which summarises
the information about diseases that is scattered across the
biomedical literature [4]. The method is based on the idea that
a disease can be described accurately by the set of MeSH terms
used to annotate the publications relevant for that disease.
Pairwise similarities between diseases are then calculated by
exploiting the structure of the MeSH ontology. A comparison of
the different similarity measures using sets of diseases with known
disease genes, showed that the Caniza similarity outperforms all
other measures in terms of accuracy at predicting closeness of
disease modules on the interactome [4]. This is probably due to
the large volume of information, i.e., the thousands of disease-

related publications, which contribute to the measure. Also notice
that the Caniza similarity is related to the human disease network
[9] that contains a link representing a similarity between each pair
of diseases that share disease genes (the relationship between the
Caniza similarity and the human disease network is discussed in
Caniza et al. [4], see Supplementary Note 3).
While the importance of disease similarity measures for medical

research is clearly understood, until now their use in practice has
been limited. An important reason is that disease similarities are
mainly available only as matrices containing millions of numerical
values, one for each disease pairs, and this limits the scientists’
ability to use this information for reasoning and making
inferences.
In this paper, we present LanDis, a freely available web server

that provides an intuitive interface to analyse millions of similarity
relationships between heritable diseases, together with the
evidence supporting such relationships.

RESULTS
In LanDis, the similarity landscape is represented as a graph in
which nodes are diseases and links are labelled with the Caniza
similarity score between the diseases they connect. Figure 1
shows the landscape of the OMIM disease Tetralogy of Fallot, TOF
(MIM: 187500), represented by the central node in the figure. TOF
is a congenital heart defect characterised by a ventricular septal
defect, pulmonary valve stenosis, thickened right ventricle and
overriding aorta [10]. Patients with TOF develop cyanosis in
proportion to the pulmonary valve stenosis, rapid breathing to
compensate for low oxygen levels and a heart murmur. Let us
analyse each disease that we find connected to TOF in our
similarity landscape. The Conotruncal Heart Malformations CHTM
(MIM: 217095) disorder includes the TOF malformations and is
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known to be causally related to gene NKX2-5, a gene also known
to be causally related to TOF. Both Alagille Syndrome 1 ALGS1
(MIM:118450) and Right Atrial Isomerism RAI (MIM:208530) not only
share phenotypic similarities with TOF such as pulmonary stenosis
(ALGS1) and complete atrioventricular septal defects (RAI), but
also have disease genes in common with TOF, namely JAG1 and
GDF1 (ref. [11]). Congenital heart defects, Multiple Types CHTD6
(MIM: 613854) (formerly Transposition of the great arteries DTGA3)
often have ventricular septal defects and associations between
CHTD6 and the TOF-associated gene GDF1 have been reported in
the literature [12]. Aortic Arch Interruption, Facial Palsy, Retinal
Coloboma (MIM: 107550) exhibits symptomatic similarities with
TOF, such as fatigue, rapid breathing, fast heart rate, low oxygen
levels among others [13]. Beyond the symptomatic similarities,
TOF shares common physiological features with Aortic Arch
Interruption (MIM: 107550), such as ventricular septal defects.
Finally, Takayasu Arteritis (MIM: 207600) is an inflammatory disease
of the arteries, with predilection for the aorta and its branches. The
disease is characterised by lesions that can, among others, have
stenotic qualities [14].
Interestingly, the diseases in the graph without a direct

connection to TOF reflect not only their associations with their
immediate neighbours but also, to some extent, with TOF. For
example, DiGeorge syndrome DGS (MIM: 188400) not only shares a
gene with TOF (TBX1), but also the outflow tract defects present in
DGS are associated with a higher incidence of conotruncal
abnormalities [15].
LanDis is a web application in which the user can interact with

all the elements in the graph and the diseases can be repositioned
either by dragging them or through several predefined layouts
(circular, concentric, grid, breadth-first and force directed).
Seamless exploration of the disease’s similarity landscapes can

be performed through the selection of any disease in the
landscape. Every disease similarity landscape can be downloaded
in publication-quality, high-resolution PNG images for offline
analysis. Users can also select a disease and obtain a catalogue of
those diseases most similar to it in a tabular format, as well as a
detailed comparison between pairs of diseases---Fig. 2 shows the
Compare page for TOF and ALGS1. For users who wish to use the
Caniza similarity data as part of a larger pipeline, a CSV plain-text
file is available from the download section of the website. To ease
further exploration, LanDis links every MeSH term, disease and
disease gene to its corresponding entry in the OMIM, UniProt and
National Library of Medicine websites, respectively.

DISCUSSION
LanDis offers a new perspective to explore disease similarity
relationships. It is a simple and powerful tool which can be used
for differential diagnosis as diseases that present similar molecular
features will be assigned high similarity. Importantly, LanDis
provides the user with a rationale for the results by making
available the set of MeSH terms, corresponding to disease
phenotypes, used to calculate the disease similarity. In this way,
scientists can focus on the clinical features deemed more critical
while concentrating on a selected list of highly similar diseases.
Notably, LanDis is able to find similarities at the molecular level

between diseases even in the absence of any molecular
information—this is because it only needs a list of publications
associated with each disease. Supplementary Fig. 1 shows the
number of publications, MeSH terms and genes associated with
the diseases in LanDis. As is expected, a disease with many
referenced publications tends to be annotated by many MeSH
terms, but a high number of publications does not necessarily

Fig. 1 The disease similarity landscape of the congenital heart defect Tetralogy of Fallot, TOF. Each node represents a disease and links are
coloured based on the Caniza similarity between the linked diseases. The diseases in the TOF landscape are either directly associated with
heart conditions, such as the case of ALGS1 [19], CTHD6 [12] and RAI or indirectly through some common phenotypic features such as DGS.
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correspond to a high number of known genes—for example,
Huntington’s disease, that has more than 450 references and close
to a 1000 MeSH terms, is associated to a single gene. However,
since LanDis relies exclusively on publications and their

corresponding MeSH terms, the sparseness of molecular informa-
tion does not prevent the similarity scores from being calculated.
In fact, LanDis attempts to encapsulate all available information
about diseases—for example, the references of type 2 Diabetes

Fig. 2 Detailed comparison of TOF and ALGS1. In the histogram, each bar represents the percentage of disease pairs with similarity score in
the corresponding range. The red circle indicates the range of the similarity of the TOF–AGS1 pair. The bottom of the figure shows the MeSH
annotations grouped by ontology—these are accessible by expanding the collapsed sections. MeSH terms that are common to both diseases
are indicated in red. Links to the relevant MeSH term pages and OMIM pages are also available. The known disease genes are linked to their
UniProt page.
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(NIDDM) include information about several clinical trials and multi-
year studies on the effects of glucose on insulin levels.
LanDis aims at becoming a support tool for bioinformaticians as

well as medical practitioners. It is freely available through its
website, no registration or installation is needed and our servers
store no information about the users.

ONLINE METHODS
Disease similarities and datasets
LanDis mines OMIM to extract 139,549 PubMed references. For
each publication, LanDis queries the Medline API obtaining a total
of 17,110 MeSH terms. A few disease entries in OMIM with no
references or MeSH annotations are excluded from LanDis, for a
working total of 9735 diseases. This amounts to over 44.7 million
similarities, one per disease pair.
To produce the pairwise similarities, LanDis relies on the

structure of the MeSH ontologies. The similarity between a pair of
diseases is given by the Resnik similarity of the sets of MeSH terms
annotating the diseases [16]. The Resnik similarity score of two
sets of MeSH terms is given by the information content of their
lowest common ancestor, which is defined as the negative
logarithm of the probability of finding it among the annotations of
the OMIM diseases [16–18].
MeSH terms are organised into 16 ontologies and a given

disease can be annotated with terms from more than one
ontology. This means that for every disease up to 16 similarities
can be calculated. Following Caniza et al. [4], LanDis exploits the
fact that these ontologies are interconnected to combine them
and produce a single score.

Implementation details
LanDis is implemented using Python and the Django framework,
following a strict Model-View-Controller architecture. The data
persistence is provided by a single-file SQLite database, which
holds the similarity data and all additional information required to
provide LanDis functionalities. Indices where defined to improve
access time to the SQL database. The user interface was designed
using HTML 5 and the JQuery JavaScript library. Additionally, two
well-known JavaScript libraries, D3.js and Cytoscape.js, are
included. D3.js provides the tools for dynamic visualisations of
the similarity data and Cytoscape.js provides the engine for LanDis
disease landscape explorer. This allows for a flexible interface that
fits most resolutions for desktops, laptops and most mobile
devices.
There are no special requirements for a user’s computer, since

all user-side JavaScript code was carefully developed to reduce its
footprint. Warnings are displayed for larger more resource-
consuming plots, allowing the user to choose whether to continue
with the operation.
The source code is freely available from GitHub at https://

github.com/paccanarolab/landis and is released under the GPLv3
license. We have tested LanDis on all major browsers and
operating systems (mobile and desktop), and it performs best
on Google Chrome. A comprehensive user manual is included in
Supplementary Note 2.

DATA AVAILABILITY
The disease similarity between all diseases calculated for this study is available to
download from our website: https://paccanarolab.org/static_content/
disease_similarity/combined_similarity_triplet_2023.zip. The OMIM to MeSH map-
ping is also available: https://paccanarolab.org/static_content/disease_similarity/
mim2mesh_2023.tsv. The data that support the findings of this study are available
from OMIM but restrictions apply to the re-distribution of these data, which were
used under license for the current study, and so are not publicly available.
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