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A recent report described a nonsense variant simultaneously creating a donor splice site, resulting in a truncated but functional protein. To
explore the generalizability of this unique mechanism, we annotated >115,000 nonsense variants using SpliceAI. Between 0.61% (donor
gain delta score >0.8, for high precision) and 2.57% (>0.2, for high sensitivity) of nonsense variants were predicted to create new donor
splice sites at or upstream of the stop codon. These variants were less likely than other nonsense variants in the same genes to be
classified as pathogenic/likely pathogenic in ClinVar (p< 0.001). Up to 1 in 175 nonsense variants were predicted to result in small in-frame
deletions and loss-of-function evasion through this “manufactured splice rescue” mechanism. We urge caution when interpreting
nonsense variants where manufactured splice rescue is a strong possibility and correlation with phenotype is challenging, as will often be
the case with secondary findings and newborn genomic screening programs.
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INTRODUCTION
Stop-gain (nonsense) variants are typically assumed to result in loss-
of-function, and assigned “very strong” evidence in favour of
pathogenicity [1, 2]. A recent report described a nonsense variant in
BUD13 [NM_032725.4:c.688C>T; p.(Arg230*)] that simultaneously
activated a new cryptic donor splice site in the same canonical
isoform [3]. Surprisingly, the alternative splice product resulted in a
truncated but functional protein product, and converted a loss-of-
function into a hypomorphic allele [3]. Intrafamilial phenotypic
severity of the associated progressive multisystem disease was
correlated with the expression level of the truncated protein [3]. This
molecular mechanism, which we will term “manufactured splice
rescue”, is distinct from nonsense-associated altered splicing (NAS)
[4–6], and is not acknowledged in variant interpretation guidelines
[1, 2, 7]. The nucleotide triplets TAA and TGA are both stop codons
and highly conserved components of canonical splice sites (+2 to +4
positions; Fig. 1), meaning that these codons may be susceptible to
cryptic splicing effects. The prevalence of nonsense variants
potentially triggering manufactured splice rescue is unknown. We
describe the predicted splicing effects of >115,000 single nucleotide
nonsense variants, finding that ~1 in 40 variants (2.57%) potentially
create new donor splice sites and that ~1 in 175 variants might result
in small in-frame deletions rather than a definite loss-of-function.

METHODS
To investigate the generalizability of this “manufactured splice rescue”
phenomenon, we used advanced in silico methods and large datasets. We
extracted single nucleotide nonsense variants from three variant
databases: gnomAD (v3.1.2 and v2.1.1) [8], ClinVar (download date: August

29, 2022) [9], and MSSNG, the largest genome sequencing database for
autism with deep phenotyping (latest release: October 16, 2019) [10]. We
restricted to canonical transcripts of protein-coding genes, and excluded
nonsense variants in the last exon, as these would already be treated
cautiously in their interpretation [1, 2]. The remaining 115,171 unique
variants (gnomAD: n= 84,891; ClinVar: n= 33,517; MSSNG: n= 5904) were
then annotated with SpliceAI using Ensembl Variant Effect Predictor and/or
a custom script developed at The Centre for Applied Genomics (TCAG)
[11, 12]. We used author-recommended cutoffs for SpliceAI donor gain
(DG) delta scores: ≥0.2 (high recall), ≥0.5, and ≥0.8 (high precision) [11].
Recognizing that predicted splicing changes downstream to the variant
stop codon would not prevent nonsense mediated decay (NMD), we
considered only those variants with DG scores meeting pre-set cutoffs that
also had (strand-corrected) pre-mRNA positions/delta positions [11] <3 as
potentially resulting in manufactured splice rescue. We used Alamut Visual
Plus (v1.7, © 2022 SOPHiA) to inspect the predicted splicing impact of a
subset of variants using additional in silico tools [13]. Whether a partial
exon deletion resulting from mis-splicing would be in-frame or out-of-
frame was based on the difference between the DG position and the exon
end position (determined using ExonCalculator; github.com/haqueb2/
ExonCalculator). We considered in-frame deletions of less than 10% of the
coding transcript to be those potentially resulting in loss-of-function
evasion [7]. Protein domains were annotated using InterPro domains [14]
with ANNOVAR. Statistical analyses, including Chi-squared, Mann–Whitney
U, and Wilcoxon Rank-Sum tests, were performed using R statistical
software, version 4.1.0 (R Foundation for Statistical Computing) with two-
tailed statistical significance set at p < 0.05.

RESULTS
Across the 115,171 unique variants, 2.57% had DG scores ≥0.2 at
DPs <3 and 0.61% had DG scores ≥0.8 at DPs <3 (Fig. 2A). Findings
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were similar across the three datasets (Fig. 2A). As expected
(Fig. 1), nonsense variants with DG scores ≥0.2 at DPs <3 were
significantly more likely to be TAA or TGA stop codons (63.1%)
than the remaining nonsense variants in the overall dataset
(56.9%; chi-square = 59.5, p < 0.00001). The proportion of
nonsense variants that were TAA or TGA stop codons increased
to 72.1% when restricting to the subset meeting the high
precision threshold of DG scores ≥0.8. Also as expected (Fig. 1),
the predicted new donor splice sites clustered at the -2 pre-mRNA
position (Supplemental Fig. 1).
We then investigated whether this molecular mechanism could

explain some instances of apparent incomplete penetrance and
highly variable expression. Restricting to the ClinVar dataset,
nonsense variants potentially triggering a manufactured splice
rescue were significantly less likely than the remaining nonsense
variants in the same genes to have a likely pathogenic or
pathogenic (LP/P) classification (Fig. 2B). There were also differences
in the confidence level (star rating) of those LP/P classifications
(Fig. 2C), including a lower mean star rating in nonsense variants
potentially triggering a manufactured splice rescue compared with
the remaining nonsense variants in the same genes (SpliceAI ≥ 0.2:
1.10 vs. 1.34, respectively, W= 4944247, p < 0.00001; SpliceAI ≥ 0.8:
1.11 vs. 1.36, W= 584088, p < 0.0001).
Considering the subset of nonsense variants that met our

SpliceAI cut-offs of DG delta score ≥0.2 at DPs <3 (n= 2863), and
assuming partial exon deletion as a result of using the newly
created donor splice site (Fig. 1), we predicted that 662 nonsense
variants (23.1% of 2863, or ~1 in 175 of all 115,171 nonsense
variants) would result in in-frame deletions accounting for <10%
of the coding transcript (Fig. 3). There was a non-significant trend
towards nonsense variants predicted to result in in-frame
deletions being less likely than nonsense variants predicted to
result in out-of-frame deletions to be classified as LP/P variants in

ClinVar (87.6% vs. 90.7%, p= 0.78). A proportion of the variants
also impacted protein domains (Fig. 3), however whether small in-
frame deletions in these domains would disrupt overall protein
function could not be determined.
For example, a nonsense variant in TSC2 (NM_000548.5:

c.4081C > T) was reported in ClinVar (SCV000819981.3) as a variant
of uncertain significance after it was identified in an individual
without features of tuberous sclerosis complex. This variant’s
SpliceAI DG score is 0.80, and additional in silico tools also predict
the creation of a donor splice site 2 bp upstream to the variant
position in the pre-mRNA (Supplemental Fig. 2). In silico analysis of
the variant suggests the outcome may be an in-frame deletion
[GRCh38(Chr16):g.2084302_2084950del; p.(Glu1360_Ser1498de-
linsAsp)] that removes <10% of the total protein length and does
not impact key functional protein domains.

DISCUSSION
Secondary sequence properties can alter the predicted impacts of
variants [15]. However, consideration of “manufactured splice
rescue” (in contrast to other mechanisms, like “naturally occurring
candidate rescue transcripts” [7]) is not yet codified in variant
classification criteria for nonsense variants [1, 2, 7]. We found only
rare instances of it being acknowledged by clinical genetic testing
laboratories during variant review (e.g., ClinVar Accession:
SCV002216056.2). Inspired by a recent case report [3], we found
evidence that this molecular mechanism could apply to a small
but meaningful proportion of all nonsense variants.
Our preliminary study has several limitations. In silico prediction

scores are imperfect [11, 16]. We did not confirm the splicing
effect of specific nonsense variants in individuals by RNA
sequencing [3, 13, 17] or other functional assays [18]. The creation
of a splice site upstream of the nonsense variant might still result

Fig. 1 Diagram of proposed mechanism by which a nonsense variant could result in aberrant splicing and thus a potentially functional
protein product. A Grossly simplified depiction of the “normal” splicing of a 4-exon protein coding gene. B Example of a sequence variant
that could simultaneously result in a stop-gain and in activation of a cryptic 5’ (donor) splice site. If use of the latter results in a small in-frame
deletion, there may be a truncated but functional protein product. In the example shown, the pre-mRNA position of the new splice site would
be 2 nucleotides upstream of the variant (i.e., delta position=−2). Created with BioRender.com.
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in a loss-of-function (e.g., from an indel that results in a frameshift).
The predicted impact of an in-frame deletion within a protein
domain on protein function is best determined on a gene-by-gene
basis through manual curation of the literature and/or experi-
mental (in vivo or ex vivo) approaches, and was beyond the scope

of this report. Conversely, nonsense variants may be rescued by
different mechanisms unrelated to manufactured splice rescue
[6, 7, 15, 19, 20]. Lastly, while we explored three different datasets
(ClinVar, gnomAD, and MSSNG) to offset the ascertainment biases
inherent in each and noted similar expected rates of

Fig. 2 A consistent proportion of nonsense variants across large-scale databases may create new donor splice sites. A Stacked bar chart
with percentage of nonsense variants predicted to create donor gain sites using SpliceAI. Nonsense variants from three variant databases
(gnomAD [8], ClinVar [9], MSSNG [10]) were annotated with DG SpliceAI scores and categorized into three score categories: [0.8–1], [0.5–0.8),
and [0.2–0.5) (see Methods for additional details). B Bar chart including percentages of likely pathogenic/pathogenic (LP/P) nonsense variants
in ClinVar with SpliceAI scores ≥0.2 or ≥0.8, compared to all other variants in the same genes. C Stacked bar chart with percentages of ClinVar
“star ratings” for LP/P variants with SpliceAI scores ≥0.2 or ≥0.8, compared to all other variants in the same genes. Wilcoxon Rank-Sum test was
used to evaluate statistical differences between the two groups. **p < 0.01, ***p < 0.001, ****p < 0.0001. Created with GraphPad Prism.
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manufactured splice rescue, none provides an unbiased sampling
of germline human nonsense variants. The true prevalence in the
genome of this phenomenon of manufactured splice rescue
remains unknown.
In summary, we have assessed an underappreciated mechanism

whereby unchallenged assumptions regarding variant impact
could result in inaccurate variant interpretation. There is growing
awareness that in silico tools like SpliceAI are invaluable for
identifying deleterious cryptic splice variants within classes of
variation often presumed to be benign (e.g., synonymous variants,
deep intronic variants) [16], but the inverse scenario is rarely
considered. We recommend against initially applying PVS1-level
evidence to novel nonsense variants where manufactured splice
rescue is a strong possibility and correlation with phenotype is
challenging, as will often be the case with secondary findings and
in the anticipated future wave of newborn genomic screening
programs.
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