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A linear weighted combination of polygenic scores for a broad
range of traits improves prediction of coronary heart disease
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Polygenic scores (PGS) for coronary heart disease (CHD) are constructed using GWAS summary statistics for CHD. However,
pleiotropy is pervasive in biology and disease-associated variants often share etiologic pathways with multiple traits. Therefore,
incorporating GWAS summary statistics of additional traits could improve the performance of PGS for CHD. Using lasso regression
models, we developed two multi-PGS for CHD: 1) multiPGSCHD, utilizing GWAS summary statistics for CHD, its risk factors, and other
ASCVD as training data and the UK Biobank for tuning, and 2) extendedPGSCHD, using existing PGS for a broader range of traits in
the PGS Catalog as training data and the Atherosclerosis Risk in Communities Study (ARIC) cohort for tuning. We evaluated the
performance of multiPGSCHD and extendedPGSCHD in the Mayo Clinic Biobank, an independent cohort of 43,578 adults of European
ancestry which included 4,479 CHD cases and 39,099 controls. In the Mayo Clinic Biobank, a 1 SD increase in multiPGSCHD and
extendedPGSCHD was associated with a 1.66-fold (95% CI: 1.60–1.71) and 1.70-fold (95% CI: 1.64–1.76) increased odds of CHD,
respectively, in models that included age, sex, and 10 PCs, whereas an already published PGS for CHD (CHD_PRSCS) increased the
odds by 1.50 (95% CI: 1.45–1.56). In the highest deciles of extendedPGSCHD, multiPGSCHD, and CHD_PRSCS, 18.4%, 17.5%, and 16.3%
of patients had CHD, respectively.
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INTRODUCTION
Polygenic scores (PGS) for coronary heart disease (CHD) show
great promise for improving the prediction of CHD risk [1, 2], but
there is room for improvement [3–5]. Pleiotropy—when a genetic
variant associates with multiple phenotypes—is a common
phenomenon in biology and variants identified in GWAS are
often associated with more than one disease/trait [6]. Incorporat-
ing information from traits that are genetically correlated with
CHD, such as peripheral artery disease [7], or risk factors like type 2
diabetes [8], has the potential to increase the performance of PGS
for CHD [9]. Additionally, biomarkers, such as lipid levels, could
have high power to detect the shared genomic components that
drive CHD risk due to their quantitative nature [10, 11].
Many methods have been proposed to improve PGS perfor-

mance by incorporating information from multiple traits. These
include 1) meta-analyzing GWAS summary statistics for different
traits [12], 2) combining summary statistics using genetic
correlations [13], and 3) making use of genomic structural
equation models [14]. Methods that additionally use individual-
level data for the development of multi-PGS in large cohorts may
further boost performance, but such genotype data are not readily
available and require significant computational resources [15]. An
alternative approach is to linearly combine multiple single-trait
PGS into a multi-PGS using penalized regression models, thereby
selecting only the traits that contribute to better predictions
[16–18]. This approach is flexible as it allows traits to be genetically
correlated.

Given the complexmultifactorial etiology of CHD, we hypothesized
that a PGS incorporating multiple PGS for diverse CHD-associated
traits would associate more strongly with CHD than a CHD-specific
PGS. We aimed to determine whether a linear weighted sum of PGS
for multiple traits could improve the prediction of CHD using two
related approaches: 1) We developed 16 PGS for CHD, its risk factors,
and other ASCVD from summary statistics and combined them into a
multi-PGSCHD using the UK Biobank cohort; 2) We used 3,170 existing
PGS from the PGS Catalog and tuned an extended-PGSCHD using the
Atherosclerosis Risk in Communities Study (ARIC) cohort. We then
evaluated the performance of these twomulti-PGS in an independent
cohort, theMayo Clinic Biobank, a community-based cohort of 43,578
individuals with available EHR data.

MATERIAL AND METHODS
Datasets
The UK Biobank is a prospective cohort study that was established in 2006
to recruit 500,000 volunteers from across the United Kingdom. The
generation of genetic and phenotypic data in the UK Biobank has been
described before [19]. We used the imputed dataset generated by the
Wellcome Trust Centre for Human Genetics. Our study sample included
339,393 unrelated UK Biobank participants, of whom 320,803 were of
European (EUR) ancestry, 7726 of African (AFR) ancestry, 2674 of East Asian
(EAS) ancestry, and 8290 of South Asian (SAS) ancestry. This research was
conducted using the UK Biobank application ID 79990. ARIC is an ongoing
prospective community cohort study of cardiovascular risk factors that
includes 15,792 participants [20]. We imputed the ARIC genotype data
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using the HRC panel [21]. In the Mayo Clinic Biobank, genotyping of 1.4
million variants was done by Regeneron Genetics using the Twist Diversity
SNP panel. Imputation was performed using the TOPMed Imputation
Server [22], and 59,627,971 autosomal variants were imputed with R2 > 0.3.
We excluded variants with MAF < 1% in all cohorts. We excluded variants

with imputation information < 0.3 in the UK Biobank, and variants with call
rate < 0.99 and HWE p-value < 10−6 in ARIC and Mayo Clinic Biobank
cohorts. We estimated the ancestry of UK Biobank and ARIC participants
with ADMIXTURE [23]. In the Mayo Clinic Biobank, ancestry was
determined by following methods described previously [24]. Briefly,
samples were projected onto the PC-space of the HapMap3 reference
panel using common high-quality variants common to both datasets. A
kernel density estimator trained on the first four HapMap3 PCs was used to
assign ancestry groups. Patients were assigned to ancestry groups if they
had a minimum likelihood of 0.3 of belonging to a given ancestry group.
We restricted the analyses in the Mayo Clinic Biobank to second-degree
unrelated patients. In the UK Biobank, we restricted the analyses to
participants with no genetic kinship to other participants (data-field
22021). In the Mayo Clinic Biobank, we defined CHD status using
International Classification of Diseases (ICD) codes and Current Procedural
Terminology (CPT) codes (Supplementary Material).

Summary statistics
We downloaded GWAS summary statistics for various traits from FinnGen
V7 [25], MVP [26, 27], GLGC [11], and CARDIoGRAMplusC4D [28]
(Supplementary Table 1). We used the largest multi-ancestry GWAS
summary statistics when available. We did not use GWAS summary
statistics from multi-ancestry meta-analyses that included the UK Biobank
as one of the cohorts. We calculated the total effective sample size for each
GWAS using the formula 4pð1� pÞN; where N is the total number of cases
and controls and p is the proportion of cases. We calculated the effective
sample size of each SNV using 4=ð2f ð1� f ÞSE2Þ; where f is the MAF and SE
is the standard error from the GWAS summary statistics, and bounded it
between 0.5 and 1.1 of the total effective sample size of the GWAS [29]. For
each atherosclerotic cardiovascular disease (ASCVD: abdominal aortic
aneurysm, CHD, ischemic stroke, and peripheral artery disease), we meta-
analyzed GWAS summary statistics from different sources with METAL [30],
using the inverse-variance method and genomic control.
We combined the ASCVD using MTAG [12], a method that utilizes genetic

correlation to combine GWAS summary statistics. We used the default
parameter settings and the European LD reference panel provided by the
developers. We derived Z-scores and the effective sample size from GWAS
summary statistics and used these as input. For each input trait, MTAG
outputs trait-specific summary statistics. We used CHD-specific output
statistics in our analyses. By combining summary statistics with MTAG, we

observed a 19% increase in effective sample size for the CHD summary
statistics, compared to 57–69% increase in effective sample size for the
output for the other ASCVD, as outputted by MTAG (Supplementary Table 2).

PGS calculation and statistical analyses
To develop genome-wide PGS from GWAS summary statistics, we used
PRS-CS [31] with the European LD reference provided by the authors. For
each trait, we used the estimated total effective sample size as the input
parameter for N. The hyperparameter phi was estimated by the program
(PRS-CS-auto). We ran PRS-CS with 1000 iterations for the MCMC Gibbs
sampler and 500 burn-in iterations.
All PGS were computed using the Polygenic Score Catalog Calculator,

pgsc_calc, developed by the PGS Catalog team [32], using default
parameters, removing strand-ambiguous, multiallelic, and duplicated
variants before the calculation of PGS. When utilizing existing PGS from
the PGS Catalog, we downloaded harmonized weight files. We down-
loaded metadata files from the PGS Catalog server on 2022/11/30. We
excluded all PGS from the analyses that used data from ARIC or Mayo Clinic
samples as GWAS data or for the construction of PGS.
We trained the multi-PGS models using lasso regression as implemented

in glmnet [33] with 10-fold cross-validation and binomial deviance as the loss
metric. We used “lambda.min” as the optimal lambda. In the UK Biobank, we
included 15 PGS as covariates in the lasso model, whereas in ARIC we
included 3170 PGS. We included age, sex, and genetic principal components
(PCs) as unpenalized covariates in the models, with 20 PCs included for the
UK Biobank and 10 for ARIC. When combining PGS into a multi-PGS, we
required variants to be present in the tuning cohort. We allowed different
PGS to have different variants and set the weights of absent variants to zero.
We summed the weights of the variants using as weights the coefficients
from the lasso regressions divided by the standard deviations of the PGS in
the tuning cohort. Subsequently, we used these combined weights to
calculate the multi-PGS for the Mayo Clinic Biobank and the non-European
ancestries in the UK Biobank. In all logistic regression models, we included
age, sex, and the genetic PCs as covariates (10 for ARIC, 20 for the UK Biobank
and the Mayo Clinic Biobank). We used Nagelkerke’s pseudo R2 for our
logistic regression models. We used the boot R package to bootstrap 95%
confidence intervals for R2, using 1000 replicates and the “perc”method. We
computed AUCs using the pROC R package.

RESULTS
Generation of multiPGSCHD in the UK Biobank
We provide an overview of our study in Fig. 1. We obtained GWAS
summary statistics for CHD and 14 other diseases/risk factors/

Fig. 1 Study flowchart describing the development and evaluation of multiPGSCHD and extendedPGSCHD.
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biomarkers relevant to CHD and generated PGS weights from
each GWAS using PRS-CS. The diseases were ASCVD subtypes of
abdominal aortic aneurysm (AAA), ischemic stroke (IS) and
peripheral artery disease (PAD), related phenotypes of atrial
fibrillation, calcific aortic valve stenosis, and heart failure, and,
finally, risk factors for CHD: type 2 diabetes (T2D), hypertension,
lipids, and BMI. In addition, we combined ASCVD (CHD, AAA, IS,
and PAD) summary statistics with MTAG [12] and generated PGS
weights with PRS-CS. We then calculated 16 PGS for UK Biobank
[19] participants of European ancestry (N= 320,803).
Using 20,565 prevalent and incident CHD cases and 300,238

controls in the UK Biobank, we tested the association of each PGS
with CHD status in regression models that also included base
covariates (age, sex, and 20 PCs) (Fig. 2A). A 1 SD increase in CHD
PGS, hereafter called PGSCHD, was associated with a 1.82-fold
increase in the odds of CHD. The MTAG-combined PGS had a
slightly higher OR, 1.85. Among other traits, the PGS for PAD
(OR= 1.28), hypertension (OR= 1.27), and non-HDL-C (OR= 1.27)
had the largest odds ratios (Supplementary Table 3).
Next, we trained a lasso regression model of CHD including 15

PGS and base covariates (excluding the MTAG-combined PGS).
The lasso model had an area under the curve (AUC) of 0.788 (95%
CI: 0.786–0.791) and R2= 0.179, when evaluated on the same
training set. PGSCHD contributed most to the model, followed by
the PGS for non-HDL-C, hypertension, and PAD (Fig. 2B, Supple-
mentary Table 4). The lasso model improved the prediction of
CHD compared to a model including only base covariates, which

had an AUC of 0.747 (95% CI: 0.745–0.750) and R2= 0.124, and
modestly compared to a model containing PGSCHD, which had an
AUC of 0.783 (95% CI: 0.781–0.786) and R2= 0.171. We also trained
a second lasso regression model including the MTAG-combined
PGS in place of the PGS for CHD, AAA, IS, and PAD. However, this
model did not improve the AUC and R2 of the first lasso model
and therefore we did not use it in any subsequent analyses.
Finally, using coefficients from the first lasso model, we combined
12 different PGS into a multi-PGS which we will hereafter call
multiPGSCHD (Methods).

Evaluation of multiPGSCHD in non-European participants in
the UK Biobank
We calculated PGSCHD and multiPGSCHD for UK Biobank partici-
pants of non-European ancestry: 7726 of African ancestry (AFR),
2574 of East Asian ancestry (EAS), and 8290 of South Asian
ancestry (SAS). In total, there were 249 AFR, 75 EAS, and 938 SAS
CHD cases. For each ancestry group, we included PGSCHD and
multiPGSCHD in two different logistic regression models of CHD,
along with base covariates. Although models including PGSCHD
and multiPGSCHD had slightly higher point estimates for AUC and
R2 in all ancestries compared to a model containing only base
covariates, most of the confidence intervals largely overlapped,
especially in the AFR subgroup (Fig. 3, Supplementary Table 5). In
the SAS subgroup, the model containing PGSCHD performed
significantly better than the base model (P= 8 × 10−51, likelihood
ratio test) with an AUC of 0.792 (95% CI: 0.778–0.807) compared to

Fig. 2 Associations between PGS and CHD in UK Biobank participants of European ancestry. A Odds ratios per 1 SD increase in PGS from
logistic regression models with CHD as the dependent variable. ASCVD atherosclerotic cardiovascular diseases, CHD coronary heart
disease, PAD peripheral artery disease, AAA abdominal aortic aneurysm, CAVS calcific aortic valve stenosis. B Non-zero coefficients from the
lasso regression model.

Fig. 3 Performance of PGSCHD and multiPGSCHD in UK Biobank participants of non-European ancestry. 95% confidence intervals were
generated with 1000 bootstrap replicates. A Area under the curve (AUC). B Nagelkerke R2.
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0.759 (95% CI: 0.745–0.774), and R2 of 0.216 (95% CI: 0.199–0.244)
compared to 0.168 (95% CI: 0.150–0.194). A 1 SD increase in
PGSCHD was associated with a 1.78-fold increase in CHD risk in the
SAS subgroup (95% CI: 1.64–1.92). However, multiPGSCHD per-
formed similarly to PGSCHD in the SAS subgroup (OR= 1.86, 95%
CI: 1.72–2.01; AUC= 0.796, 95% CI: 0.781–0.810; R2= 0.221, 95%
CI: 0.202–0.249).

Utilizing the PGS Catalog to generate extendedPGSCHD
We next investigated if combining a larger number of PGS for
various traits could improve CHD prediction performance
compared to multiPGSCHD. To this end, we utilized the Polygenic
Score Catalog (PGS Catalog) [32], which contained 3245 PGS for
570 traits (as of 2022/11/30) that were developed using various
methods and populations (Supplementary Table 6). However,
many of these PGS were trained on UK Biobank participants and
required other cohorts for tuning a multi-PGS. Therefore, we
calculated all 3245 PGS Catalog scores for 8191 participants of
European ancestry in the Atherosclerosis Risk in Communities
(ARIC) Study, which included 1968 prevalent and incident CHD
cases. To minimize sample overlap, we discarded all PGS that
included ARIC participants in the training or development step.
This resulted in a set of 3170 PGS.
To assess the associations between CHD and the 3170 PGS, we

regressed each PGS on CHD status. In total, 556 PGS were
associated with CHD (5% false discovery rate, Supplementary
Table 7). The PGS that associated most strongly with CHD were
PGS for coronary artery disease, cardiovascular disease, coronary
atherosclerosis, ischemic stroke, hypertension, and type 2
diabetes.
Using the 3,170 PGS as covariates, we trained a lasso regression

model of CHD in ARIC. The final model included 115 PGS for 75
different traits and had an AUC of 0.774 (95% CI: 0.762–0.786) and
R2= 0.252 when evaluated on the same training data (Supple-
mentary Table 8). A base model including only age, sex, and 10
PCs had an AUC of 0.688 (95% CI: 0.675–0.701) and R2= 0.116, and

a model that additionally included a published PGS for CHD
(CHD_PRSCS, PGS ID: PGS001780) [2] had an AUC of 0.733 (95% CI:
0.720–0.746) and R2= 0.190. The PGS that contributed most to the
lasso model were PGS for CHD, atrial fibrillation, and coronary
atherosclerosis. The lasso model included multiple PGS for 18
different traits, including CHD, T2D, and cerebral grey matter
volume as well as various PGS for traits and biomarkers that we
had not included in the UK Biobank lasso model, such as cystatin
C, lipoprotein (a), HbA1c, multiple sclerosis, and brain and eye
measurements. Finally, using non-zero coefficients from the ARIC
lasso model, we combined 115 PGS into an extended multi-PGS
which we hereafter call extendedPGSCHD.

Evaluation in the Mayo Clinic Biobank
We calculated both multiPGSCHD and extendedPGSCHD in 43,578
adults of European ancestry in the Mayo Clinic Biobank, of whom
4,479 had CHD and 39,099 were controls. In logistic regression
models of CHD including age, sex, and 10 PCs, an increase of 1 SD
in multiPGSCHD was associated with a 1.66-fold (95% CI: 1.60–1.71)
increased odds of CHD, and an increase of 1 SD in exten-
dedPGSCHD was associated with a 1.70-fold (95% CI: 1.64–1.76)
increased odds (Table 1, Fig. 4A). The 95% CIs from these models
largely overlapped, suggesting that the PGS performed similarly.
To compare with multi-PGSCHD and extended-PGSCHD, we
computed CHD_PRSCS (PGS001780) in the Mayo Clinic Biobank,
since CHD_PRSCS had the strongest association with CHD among
all PGS in ARIC and the largest coefficient in the ARIC lasso model.
CHD_PRSCS had a lower odds ratio of 1.50 in the Mayo Clinic
Biobank, with a 95% CI ranging from 1.45 to 1.56, non-overlapping
with both CIs from our multi-PGS models. Adding CHD_PRSCS to a
model including base covariates increased AUC by 0.015 and R2 by
0.025, while adding multiPGSCHD increased AUC by 0.023 and R2

by 0.038, and adding extendedPGSCHD increased AUC by 0.025
and R2 by 0.041 (Table 1).
The overall prevalence of CHD in Mayo Clinic Biobank was

10.3%. For each PGS, we divided the Mayo Clinic Biobank patients

Table 1. Evaluation of CHD_PRSCS, multiPGSCHD, and extendedPGSCHD in the Mayo Clinic Biobank.

Model PGS OR (95% CI) R2 (95% CI) AUC (95% CI) Precision, recall

Base 0.170 (0.162–0.180) 0.767 (0.761–0.774) 0.211, 0.718

CHD_PRSCS 1.50 (1.45–1.56) 0.195 (0.186–0.206) 0.782 (0.776–0.789) 0.210, 0.747

MultiPGSCHD 1.66 (1.60–1.71) 0.208 (0.198–0.218) 0.790 (0.783–0.796) 0.231, 0.715

ExtendedPGSCHD 1.70 (1.64–1.76) 0.211 (0.202–0.222) 0.792 (0.785–0.798) 0.214, 0.764

The base model included age, sex, and 10 PCs and the other models additionally included a PGS.

Fig. 4 Evaluation of PGSCHD, multiPGSCHD, and extendedPGSCHD in the Mayo Clinic Biobank. A Odds ratios per 1 SD increase in PGS from
logistic regression models with CHD as the dependent variable. B CHD prevalence binned for each decile in PGS.
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into 10 groups based on their PGS decile and analyzed the CHD
prevalence within these groups (Fig. 4B). The lowest decile of
extendedPGSCHD had a CHD prevalence of 4.9%, while the
prevalence was 5.2% for the lowest decile of multiPGSCHD, and
5.9% for the lowest decile of CHD_PRSCS. In the highest decile of
extendedPGSCHD, 18.4% of patients had CHD, while 17.5% in the
highest decile of multiPGSCHD, and 16.3% in the highest decile of
CHD_PRSCS. These results suggest that extendedPGSCHD may be
more effective at classifying low- and high-risk patients compared
to the other two PGS.

DISCUSSION
In this study, we developed two multi-polygenic scores (multi-
PGS) for coronary heart disease (CHD) by weighting and linearly
combining PGS for CHD and various other traits. We found that
using multiple PGS for other cardiovascular diseases (such as
peripheral artery disease), risk factors (such as type 2 diabetes and
hypertension), and biomarkers (such as non-HDL-C and HDL-C
levels) modestly improved the prediction of CHD. We also
demonstrated that incorporating hundreds of PGS for a broad
range of traits further enhanced the predictive performance. In an
independent cohort, the Mayo Clinic Biobank, both multiPGSCHD
and extendedPGSCHD improved the performance of CHD_PRSCS, a
published PGS for CHD. In models that included age, sex, and
genetic principal components, adding multiPGSCHD and exten-
dedPGS increased the R2 by 0.038 and 0.041, respectively, whereas
adding CHD_PRSCS increased the R2 by 0.025. There was a
significant improvement in the ORs per SD from CHD_PRSCS
(OR= 1.50) to multiPGSCHD (OR= 1.66) and extendedPGSCHD
(OR= 1.70), but the difference in ORs between multiPGSCHD and
extendedPGSCHD was not statistically significant.
Previous studies have shown that combining multiple PGS can

improve risk prediction of various diseases, particularly psychia-
tric disorders [16]. The authors of a study on the Danish iPSYCH
cohort combined 937 PGS to improve the prediction of multiple
psychiatric traits [17] and found that using a large library of PGS
increased the prediction accuracy for all traits tested. Our
approach to the construction of extendedPGSCHD shares
similarities with this strategy, although we permitted the
incorporation of multiple PGS for each trait. The authors also
observed that combining the traits using genetic correlation did
not perform better than including them separately in lasso
models. In another study, a multi-PGS prediction method that
incorporated blood and urine biomarker data of UK Biobank
participants was applied to various traits and showed increased
prediction accuracy on average [34]. However, the approach
provided only minimal incremental accuracy for myocardial
infarction.
The development of extendedPGSCHD was computationally

demanding due to the need to calculate and tune thousands of
PGS although it consistently outperformed both PGSCHD and
multiPGSCHD both in terms of point estimates and CHD prevalence
in the highest PGS decile. The improvements could be due to
various reasons. First, including PGS developed on various
ancestries and using various methods may increase performance
compared to restricting to European samples and PRS-CS. Second,
since genetic susceptibility variants for complex diseases such as
CHD are likely to be pleiotropic, the additional traits included in
extendedPGSCHD possibly contributed to better performance.
Finally, the extendedPGSCHD included many more variants (7 M)
than PGSCHD and multiPGSCHD (1.1 M), which were both developed
using the HapMap3 variants provided by PRS-CS. However, we
note that the authors of a recent study found minor improve-
ments in the predictive performance of PGS for diverse
quantitative traits, except for height, when extending this set of
HapMap3 variants to encompass 9.6 million variants [35]. This
approach will likely become more effective as more PGS are

developed using larger GWAS and made available in repositories
such as the PGS Catalog. Using well-documented databases of
PGS also allows for other approaches that we did not pursue in
our analyses: the selection and combination of PGS based on
various criteria, for example, ancestry proportions or the method
used to develop the PGS. The Polygenic Score Catalog Calculator
can facilitate such large-scale PGS analyses and ensure quality
control.
Our study had several strengths. We developed two different

multi-PGS in two distinct cohorts, the UK Biobank and ARIC, and
evaluated them in an independent cohort, the Mayo Clinic
Biobank. Our approach using the UK Biobank benefitted from the
large sample size of the biobank but included fewer PGS. The
multi-PGS tuned in the UK Biobank, multiPGSCHD, consisted of PGS
developed with the same 1.1 M variants used in PRS-CS, which
allowed us to quantify how pleiotropic effects improved the
performance of multiPGSCHD compared to PGSCHD. Our approach
using all 3170 PGS from the PGS Catalog did not require any pre-
selection of PGS. These PGS were developed in diverse popula-
tions with various methods, including clumping and thresholding,
Bayesian methods that model linkage disequilibrium, and
regularized regression models.
Our study had some limitations. First, we developed both the

multiPGSCHD and extendedPGSCHD for people of European
ancestry, although we did test multiPGSCHD in people of other
ancestries within the UK Biobank. We saw an increase in
performance when adding PGSCHD to a base model in the people
of South Asian ancestry but did not observe significant improve-
ment when using multiPGSCHD in any of the non-European
ancestries. This could partly be explained by the fact that most
samples in the GWAS used to develop the PGS were of European
ancestry. Further research is needed to develop multi-PGS to
predict CHD in people of non-European ancestry. Second, we
calculated our PGS in the UK Biobank using a single method, PRS-
CS-auto, which can estimate its hyperparameters from the input
data, which may not yield optimal performance compared to
using an independent tuning cohort.
In summary, a weighted combination of PGS for various

diseases, risk factors, and biomarkers improved the prediction of
CHD. We found that using both a multi-PGS that incorporated
PGS for CHD-related traits and an extended multi-PGS that
additionally incorporated seemingly unrelated traits improved
the prediction of CHD in an independent cohort of individuals of
European ancestry, compared to using a single PGS for CHD. As
more PGS are developed using larger GWAS and made available
in repositories like the PGS Catalog, this approach will likely
become more effective, with implications for use in the clinical
setting.

DATA AVAILABILITY
Access to the UK Biobank is available through application: https://
www.ukbiobank.ac.uk/enable-your-research/apply-for-access. ARIC is available on
dbGap under phs000280.v8.p2. To apply for access to the Mayo Clinic Biobank,
contact biobank@mayo.edu. A Mayo Clinic researcher must be included as a
collaborator on all projects, due to the specifics of the informed consent language.
The PGS Catalog is available at https://www.pgscatalog.org.
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