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Genome-wide association studies (GWAS) have identified thousands of genetic variants associated with human traits or diseases in
the past decade. Nevertheless, much of the heritability of many traits is still unaccounted for. Commonly used single-trait analysis
methods are conservative, while multi-trait methods improve statistical power by integrating association evidence across multiple
traits. In contrast to individual-level data, GWAS summary statistics are usually publicly available, and thus methods using only
summary statistics have greater usage. Although many methods have been developed for joint analysis of multiple traits using
summary statistics, there are many issues, including inconsistent performance, computational inefficiency, and numerical problems
when considering lots of traits. To address these challenges, we propose a multi-trait adaptive Fisher method for summary statistics
(MTAFS), a computationally efficient method with robust power performance. We applied MTAFS to two sets of brain imaging
derived phenotypes (IDPs) from the UK Biobank, including a set of 58 Volumetric IDPs and a set of 212 Area IDPs. Through
annotation analysis, the underlying genes of the SNPs identified by MTAFS were found to exhibit higher expression and are
significantly enriched in brain-related tissues. Together with results from a simulation study, MTAFS shows its advantage over
existing multi-trait methods, with robust performance across a range of underlying settings. It controls type 1 error well and can
efficiently handle a large number of traits.

European Journal of Human Genetics; https://doi.org/10.1038/s41431-023-01389-7

INTRODUCTION
Genome-wide association studies (GWAS) have identified thou-
sands of genetic variants associated with complex diseases [1]. In
single-trait analysis, it is typical to test the association between a
single trait and a single variant one at a time. However, a common
phenomenon is pleiotropy, in which a genetic variant is associated
with multiple traits [2]. As such, conducting single-trait analyses
may lose statistical power when genetic variants are associated
with multiple traits. Therefore, there is an increasing need for
methods that analyze multiple traits jointly.
Although there are numerous existing multi-trait methods,

many require individual-level genotype data such as MultiPhen
[3]. Due to privacy concern and data logistics, individual-level
genotype data require permissions for access, limiting the
applicability of methods relying on such data. In contrast, GWAS
summary statistics are publicly available for most published
studies. There are a number of multi-trait methods applicable to
summary statistics. We categorize them into two groups: non-
adaptive [4–10] or adaptive methods [11–17]. The latter evaluate
evidence adaptively and are particularly suited for heterogeneous
situations where not all traits are associated, nor in the same
directions or with the same effect size. Among the methods in
these two categories, frequently compared or computationally
efficient ones are: Cauchy [9], HOM [6], metaMANOVA [7], SSU [4],
SUM [5], aMAT [17], metaUSAT [14], and MTAR [16].

Increased availability of GWAS summary statistics in recent
years further points to the need for considering many traits
simultaneously without accessing raw data. For example, in recent
years, the UK Biobank has made thousands of functional and
structural brain imaging phenotypes available, thus, a joint
analysis of a large number of such traits may help better
understand the biological mechanism of complex brain functions
and diseases [18, 19]. However, many previous methods using
summary statistics have only explored settings with a small
number of traits [6, 14, 16], rendering their performance for
analyzing a large number of traits unknown. Our preliminary
simulation study indicates that methods such as SSU and aMAT
are sensitive to signal sparsity and trait correlation structures,
whereas metaUSAT and SSU may not control type 1 error well.
Computational issues also exist in some methods: aSPU is
extremely time-consuming when the significance level is small
due to its use of permutations; metaUSAT is also time-consuming,
and it may return invalid values when the number of traits is large
(e.g., over 200).
In this paper, we propose a Multi-Trait Adaptive Fisher method

for Summary statistics (MTAFS, workflow in Supplementary Fig. S1),
a computationally efficient and statistically powerful method for
joint analysis of hundreds of phenotypes. We evaluated the
proposed method in simulation studies and compared it with
existing methods. We also applied MTAFS to brain imaging data
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from the UK Biobank involving volume and area and identified
genetic loci associated with brain functions.

MATERIALS AND METHODS
Setup
Let Z ¼ z1; � � � ; zTð Þ0 1 ´ Tð Þ be the GWAS summary statistics, the z scores,
across T traits for a given SNP. Our goal is to test whether the SNP is
associated with at least one of the T traits. Under the null hypothesis of no
association between the SNP and any of the traits, we assume
Z � N 0;Rð Þ. Here, R is referred to as the trait covariance matrix, which
can be estimated by the sample covariance of Z based on the independent
and identically distributed assumption across SNPs [6, 13]. Linkage
disequilibrium score regression is another option, which may be
potentially suited when there are sample overlaps across studies [8, 16].
The estimated covariance matrix is denoted as R̂. We used sample
covariance matrix estimates in the simulation studies and the real data
applications.
First, we use eigen-decomposition to decorrelate the z scores. Let

R̂ ¼ QΛQ0 , where the columns of Q are eigenvectors in decreasing order of
their corresponding eigenvalues given in the corresponding diagonal
elements of Λ. We denote the proportion of variance explained by the first
two eigenvalues as v0%. Then let v1%, v2%, and v3% be the three
percentages evenly distributed between v0% and 100%, with q1, q2, and q3
denoting the corresponding number of eigenvalues achieving the percent
of variance explained for the first time.
For each of the 5 levels of percentage of variance explained, we use the

corresponding E eigenvalues, E 2 2; q1; q2; q3; Tf g, along with their
eigenvectors to construct the transformed z score vector UE :
UE 0 ¼ Z0QEΛ

�1
2

E , where QE T ´ Eð Þ consists of the first E columns of Q and
ΛE E ´ Eð Þ is a submatrix of Λ containing only the first E eigenvalues. As a
result, UE is a column vector of length E, and UE � N 0; Ið Þ under the null
hypothesis.

Adaptive method
Unlike the traditional Fisher’s method which directly combines the
(-log)-transformed p-values, the adaptive Fisher’s method considers
ordered p-values and combines them adaptively [20]. The method we
are proposing here also considered ordered p-values, but they are
combined adaptively using a different strategy for computational
efficiency. Specifically, based on an UE , we obtain a vector of
independent (two-sided) p-values, denoted as pE ¼ p1; � � � ; pEð Þ, such
that pE ¼ 2 1� Φ UEj jð Þ½ �, where Φ(·) is the cumulative distribution of
standard normal distribution, and is a component-wise operation. We
calculate the sum of the ordered negative log p-values and let
sk ¼

Pk
j¼1½� logp jð Þ

� ��, where p jð Þ is the jth smallest p-value and
k 2 1; � � � ; Ef g. We can rewrite sk as a weighted sum of independent χ2

variables [21], for which Davies method (R package CompQuadForm) or
the saddlepoint approximation method (R package Survey) can
efficiently approximate its p-value [22], denoted as psk . We define the
test statistic of our adaptive method for level E as follows:

AF Eð Þ ¼ Cauchy psk ; k ¼ 1; ¼ ; Eð Þ ¼
XE

k¼1

ωktan 0:5� pskð Þπf g;

where ωk ¼ 1
E for all k’s. This way of combining the evidence from p-values

follows the Cauchy’s method in the literature [9], and the p-value of the
test statistic can be calculated analytically:

pAF Eð Þ ¼ 0:5� arctan AF Eð Þð Þ
π

: (1)

We note that Cauchy’s method is similar to the minP method because
only a few of the smallest p-values would typically dominate the overall
significance [9]. Nevertheless, since the p-values are calculated analytically,
Cauchy’s method is much more computationally efficient than minP.

MTAFS
From the literature [23] and our own preliminary study (Figs. S2–S4), it is
shown that using either the first few or all eigenvectors would lead to
unstable power. Therefore, we propose MTAFS, which integrates evidence
from five levels of variance explained for robustness. Specifically, MTAFS
constructs a test statistic combining pAF Eð Þ; E 2 2; q1; q2; q3; Tf g� �

obtained from Eq. (1). We define the test statistics of MTAFS as

TMTAFS ¼ Cauchy pAF Eð Þ; E 2 2; q1; q2; q3; Tf g� �

¼ P

E2 2;q1;q2;q3;Tf g
ωE tan 0:5� pAF Eð Þ

� �
π

� �
;

where ωE ¼ 1
5 for all E’s, and the corresponding p-value is

pMTAFS ¼ 0:5� arctan TMTAFSð Þ
π

:

We have implemented MTAFS in an R package available at (http://
www.github.com/Qiaolan/MTAFS). By vectorizing the main R function,
MTAFS can simultaneously analyze a large number of SNPs, thereby
increasing its computational efficiency.

RESULTS
Simulation setup
We simulated z scores from N μ;Rð Þ following previous studies
[9, 16, 17]. Various scenarios were constructed by setting different
correlation structures, association models and strengths, and
levels of signal sparsity. For R, we considered two realistic
covariance matrices estimated from real data and two commonly
used structures. Specifically, we used the UK Biobank brain image-
derived phenotypes (IDPs): the set of 58 volumetric IDPs, with the
resulting estimated covariance matrix referred to as UKCOR1
(Fig. S5); and the T1 FAST region of interests containing 139 IDPs,
with its estimated covariance matrix denoted as UKCOR2 (Fig. S6).
We also examined two commonly-used correlation structures,
compound symmetry (CS) and first-order autocorrelation structure
(AR), each with two levels of correlation—weak (0.3) or strong
(0.7). This leads to a total of 6 covariance matrices (Table S1). For
the analysis, we re-estimated the covariance matrix instead of
using the one for simulating the data.
We considered two association models. In model 1 [16, 17],

denoted as M1, we generated μ ¼ PJ
j¼1 cλjuj , with c denoting the

effect size, λj and uj the jth eigenvalue and eigenvector of R,
respectively, and J the top J eigenvectors. We simulated different
level of sparsity by varying J (Table S1). In the second association
model (M2), we generated scenarios by directly setting some
elements of μ to be nonzero, with fewer non-zeros denoting
greater sparsity. We note that when c = 0 in M1 or all elements of
μ are 0 in M2, we are in fact investigating the type 1 error.
Finally, we considered three levels of sparsity, high, intermedi-

ate, and low. For the highly sparse scenarios, in M1, only the top
2% or 5% of the eigenvectors had nonzero effect sizes, depending
on the correlation structures; in M2, either 2%, 4%, or 5% of the
traits had nonzero effect sizes, also depending on the correlation
structures. The proportion of nonzero effect sizes was 20% in both
models for the intermediate level of sparsity. The low sparsity
scenarios had the proportion equal to 50% in both models. The
specific eigenvectors (for M1) or the specific traits (for M2) that
corresponds to a nonzero effect size are given in Table S1. We
included aMAT, Cauchy, HOM, metaMANOVA, metaUSAT, MTAR,
SSU, and SUM for comparison following the literature
[9, 14, 16, 17].

Type 1 errors
We first evaluated the type 1 error of MTAFS and the comparison
methods at various significance levels, from 1 ´ 10�4 to 5 ´ 10�8,
for UKCOR1, UKCOR2, CS(0.7), and AR(0.3) with 50 traits. Type 1
errors were evaluated with 109 replications. Each covariance
matrix was estimated using the sample covariance. Table 1 shows
the results for UKCOR1. At a lower significance level, Cauchy and
MTAFS—which used Cauchy’s method to combine p-values—are
slightly above the upper bound. However, as the significance level
becomes more stringent, the type 1 error for both MTAFS and
Cauchy are within the bounds, consistent with a previous study
[9]. Similar behaviors are observed for metaMANOVA, aMAT, and
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MTAR. On the other hand, metaUSAT and SSU remain greatly
outside the upper bound at each significance level considered,
indicating that these two methods have consistently inflated type
1 error rates. We evaluated the type 1 error with UKCOR2 and
observed similar trends (Table S2). For AR(0.3) and CS(0.7), type 1
error rates are better controlled by all methods except SSU for
AR(0.3) (Tables S3, S4).

Power comparisons
For power comparisons, we simulated 1000 z scores and set the
significance level at 5 ´ 10�8. First, we evaluated the power with
UKCOR1 model M1 (Fig. 1). When only the top two eigenvectors
were informative (high sparsity), SUM and SSU were the most
powerful methods, followed by metaUSAT and MTAFS. As more
eigenvectors become informative (intermediate and low sparsity),
the power of SUM decreased, while SSU, metaUSAT, and MTAFS
continue to perform well, and aMAT also joined this group for the
less sparse scenarios. Considering the type 1 error inflation of SSU
and metaUSAT, receiver operating characteristic (ROC) curves
(with a particular effect size for each of the three sparsity settings)
restricted to a small type 1 error range were used to measure the
performance for a fairer comparison of power. Due to the inflated
type 1 error of SSU and metaUSAT, they in fact have smaller power
compared to SUM and MTAFS when the empirical type 1 errors
are the same at a very small level, especially with the less sparse
scenarios. We note that HOM had no power at all three sparsity
levels, an observation consistent with previous studies [17].
For M2 with UKCOR1, MTAFS was seen to be the most powerful

methods at all three sparsity levels (Fig. 2). It is interesting to see
that, other than MTAFS, the other methods have unstable
performance, depending on the sparsity levels. For example,
Cauchy was competitive in the high sparsity setting, but its power
dropped down to zero at intermediate and low sparsity levels.
Comparing across models M1 and M2, we see that SSU was
among the most powerful for M1, but its power dropped down to
zero for M2. Whereas MTAFS performs well consistently across the
association models, effect sizes, and sparsity levels.
Next, we compare the results when using the covariance matrix

UKCOR2 (Figs. S7, S8). For both M1 and M2, the results were
similar to those for UKCOR1. Considering all the results together,
the main observation for UKCOR1 remains qualitatively the same
for the UKCOR2 covariance matrix: the performance of the other
methods is unstable, whereas MTAFS is extremely consistent
across all settings and was always among the top performers.

For the CS covariance matrix with model M2 (Figs. S9, S10),
MTAFS remains among the group of most powerful methods. This
is also true for M2 with the AR structure (Figs. S11, S12), except
that in the high sparsity setting, Cauchy outperformed all other
methods by a large margin.
Considering all results from the simulation study with different

association models, effect sizes, sparsity levels, and covariance
structures, it is clear that MTAFS is the most robust method.
Although metaUSAT is also among the leaders in all settings in
terms of power (Table 2 contains power results with one effect
size for each setting, with all results provided in Tables S5–S10,
Figs. 2 and 3, S7–S12), we would argue that MTAFS is preferred
since its type 1 error is well controlled while metaUSAT has been
seen to have severely inflated type 1 error in some settings.
Further, MTAFS was the best in six of the 28 settings in Table 2
(tied for the most among all methods), and was within 5% of the
best in 13 of the settings and within 10% of the best in all but
4 settings; even in the worst case, MTAFS was only 28% below the
best performer. This robust performance characteristic of MTAFS
was unmatched by any of the other methods: for metaMANOVA,
metaUSAT, and MTAR, their power can be more than 88, 59, and
81% below the best performer; whereas the rest of the methods
may have 0 power in some settings.

Real data application
Data and pre-processing. Brain functions and the underlying
mechanisms are still largely unknown, despite considerable effort
and investigation of connections between brain function and
genetics using imaging data [24, 25]. It has been found that
regional brain morphology, such as surface area and thickness of
the cerebral cortex, and volume of subcortical structures, has a
complex genetic architecture, where many SNPs, some having
small effect sizes, may be associated with sets of regional brain
features [10]. Thus, conventional single-trait analysis may have
little power for detecting genetic variants due to its ignorance of
underlying correlation structures. In contrast, some recent studies
applied multi-trait methods to the UK Biobank [26] brain imaging
data and achieved success [10]. For example, a study applied
aMAT to 58 volumetric IDPs and identified SNPs failed to be
detected by single-trait analyses [17].
UK Biobank study with 500,000 volunteers [26]. Participants

were 40–69 years old at recruitment, with one aim being to
acquire as rich data as possible before disease onset. Elliott et al.
[19] investigated the genetic architecture of brain structure and

Table 1. Type 1 error with corvariance matrix UKCOR1a.

Significance levels

1 × 10−4 1 × 10−5 1 × 10−6 1 × 10−7 5 × 10−8

Lower bound 9.94 × 10−5 9.80 × 10−6 9.37 × 10−7 8.00 × 10−8 3.59 × 10−8

Upper bound 1.01 × 10−4 1.02 × 10−5 1.06 × 10−6 1.20 × 10−7 6.41 × 10−8

metaMANOVA 1.03 × 10−4 1.04 × 10−5 1.04 × 10−6 1.06 × 10−7 5.10 × 10−8

metaUSAT 1.72 × 10−4 1.97 × 10−5 2.14 × 10−6 2.28 × 10−7 1.27 × 10−7

SUM 1.00 × 10−4 1.01 × 10−5 1.00 × 10−6 1.03 × 10−7 5.50 × 10−8

SSU 1.90 × 10−4 2.82 × 10−5 4.20 × 10−6 6.19 × 10−7 3.57 × 10−7

HOM 1.01 × 10−4 1.01 × 10−5 1.01 × 10−6 9.70 × 10−8 4.80 × 10−8

Cauchy 1.04 × 10−4 1.03 × 10−5 1.07 × 10−6 1.15 × 10−7 5.90 × 10−8

aMAT 1.00 × 10−4 1.10 × 10−5 1.22 × 10−6 1.30 × 10−7 5.70 × 10−8

MTAR 1.03 × 10−4 1.04 × 10−5 1.06 × 10−6 1.05 × 10−7 5.50 × 10−8

MTAFS 1.06 × 10−4 1.05 × 10−5 1.07 × 10−6 1.12 × 10−7 5.40 × 10−8

aThe values in the table are empirical type 1 errors calculated by using 109 replications. Lower bound and upper bound correspond to the acceptance bounds
of α± 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α 1� αð Þ=109p

, where α is the significance level. The values outside the bounds are in bold. UKCOR1 is the estimated covariance matrix based on the
58 Volumetric image-derived phenotypes of the UK Biobank data.
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Fig. 1 Power comparison and ROC curves of UKCOR1 and M1. Comparison of methods for model M1 using the UKCOR1 covariance matrix in
terms of power over a range of effect sizes (a–c) and partial ROC curves comparing power versus type 1 error (d–f) for a particular effect size.
The power results (a–c) are plotted at significance level of 5 ´ 10�8 , while the ROC curves (d–f) are shown for the range of type 1 error rate
from 5 ´ 10�8 to 1 ´ 10�5. a, d High sparsity, with only top 2 eigenvectors informative; b, e Intermediate sparsity, with top 11 eigenvectors
informative; c, f Low sparsity, with top 25 eigenvectors informative. MTAR only returns the number of significant SNPs given a significance
level, thus excluded in the ROC plots. The effect size was set to be 1.2 for the high, and 1.0 for the intermediate and low sparsity settings.
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Fig. 2 Power comparison and ROC curves of UKCOR1 and M2. Comparison of methods for model M2 using the UKCOR1 covariance matrix in
terms of power over a range of effect sizes (a–c) and partial ROC curves comparing power versus type 1 error (d–f) for a particular effect size.
The power results (a–c) are plotted at significance level of 5 ´ 10�8 , while the ROC curves (d–f) are shown for the range of type 1 error rate
from 5 ´ 10�8 to 1 ´ 10�5. a, d High sparsity, with 3 nonzero components of µ; b, e Intermediate sparsity, 13 nonzero components of µ; c, f Low
sparsity, with 30 nonzero components of µ. MTAR only returns the number of significant SNPs given a significance level, thus excluded in the
ROC plots. The effect size was set to be 5.0 for the high, 0.1 for the intermediate, and 0.55 for the low sparsity settings.
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function by conducting GWAS of 3,144 functional and structural
brain imaging phenotypes from the UK Biobank (http://
big.stats.ox.ac.uk/), which cover the entire brain and include
multimodal information on grey matter volume, area, and
thickness. In particular, the 58 Volumetric IDPs and the 212 Area
IDPs are both related to grey matter, with a sample size of 8428
individuals. Imputation of genotypes and quality controls for
genotyping data are described in the literature [18, 19]. We carried
out two multi-trait analyses, one with a moderate number of the
58 Volumetric IDPs, and the other with a large number of the 212
Area IDPs of grey matter (Fig. S13). Note that we only used the
summary statistics not the raw genotypes nor the IDPs in our
analysis.
The summary statistics included the z scores calculated by Wald

test from measuring the associations between each of the
11,734,353 SNPs and each of the 58 or 212 IDPs [19]. We focused
on common variants and filtered out SNPs with MAF < 0.05,
leading to 4,590,290 SNPs remaining. The covariance matrix for
each of the two sets of IDPs was estimated based on the z scores
for SNPs with MAF > 0.05, following the literature [6, 13]. MTAFS

and a subset of the competing methods that performed reason-
ably well in the simulation study were applied to identify
significant SNPs that are associated with at least one IDP in each
of the two sets of traits. Note that the methods excluded had
almost no power in some settings or have inflated type I errors in
most settings. For convenience of reference, hereafter, competing
methods refer to metaMANOVA, aMAT, and MTAR, unless
specified otherwise. We used a genome-wide significance thresh-
old of 5 ´ 10�8 for each of the multi-trait analysis methods. The
SNPs identified were summarized into significant loci using LD-
pruning [27]. The genes corresponding to the significant SNPs
were identified using NCBI dbSNP [28]. To investigate gene
annotations, we used Functional Mapping and Annotation (FUMA)
[29] to show tissue specific expression patterns of genes identified
by MTAFS and other methods.

Results of 58 Volumetric IDPs. MTAFS identified 2,157 SNPs with
p-values less than 5 ´ 10�8 (Figs. 3a, S13a), leading to 36 LD-
pruned significant loci (Table 3). aMAT identified 44 significant
loci, while the rest of the competing methods identified the same

Fig. 3 Analysis results of the 58 Volumetric IDPs. a Manhattan plot of the SNPs identified by MTAFS. For -log10 p-values > 30, they are
censored at 10�30 for a better visualization. For b, c, we use the GTEx data over 54 tissue types. b Tissue expression analysis for genes
identified by MTAFS. Red bars denote differential expression with the Bonferroni corrected p-values less than 0.05. Blue bars denote no
differential expression. Top panel: up-regulation; middle panel: down-regulation; bottom panel: two-sided results. c The expression heatmap
of all genes identified by MTAFS. Each row denotes a gene and each column denotes a tissue.

Table 3. The number of significant SNPs identified at 5 ´ 10�8 significance levela.

MTAFS metaMANOVA aMAT MTAR Single-trait

58 Volumetric IDPs 36 36 44 36 15

212 Area IDPs 35 17 35 26 7
aThe resulting SNPs were LD (linkage disequilibrium) pruned using PLINK following Schulz et al. (2017).
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number of loci as MTAFS (Table 3, Fig. S14). We also carried out
single-trait analysis as a comparison and corrected for multiple
comparison based on the effective number of phenotypes [30], a
method less conservative than Bonferroni. All LD-pruned loci
identified by the single-trait analysis were also identified by
MTAFS and the comparison methods.
We first investigated several genes containing significant SNPs

stacked as “towers” in the Manhattan plot (Fig. 3a). Gene SLC39A8,
living in the chromosome 4 tower, has been found in the literature
to possess important functions in the brain. In particular, an
investigation studying the association between common variants
and cerebellar volume states that SLC39A8 is associated with a
wide-range of traits including inferior posterior and flocculonod-
ular lobule, striatum and putamen volumes, schizophrenia,
neurodevelopmental outcomes and intelligence test performance,
and numerous other factors [31]. Genes FAM3C and WNT16,
located in the right (much taller) tower in chromosome 7, are both
reported to be associated with brain volume by a study using the
UK Biobank data [32]. PAPPA, located in chromosome 9, is
associated with the volume of brainstem and brain region
according to multiple studies [32, 33].
MTAFS uniquely identified two genes, BAIAP2L2 and TPX2,

located in the chromosome 22 tower and the chromosome 20
tower, respectively. There are also a tower in chromosome 22 and
another in chromosome 20 in the aMAT Manhattan plot—no
towers in these two chromosomes from the other methods
(Figs. S15–S17)—but they contain neither of these two genes. A
recent study investigating brain white matter reported an
association between BAIAP2L and white matter microstructure
[34]. Gene TPX2 has also been reported to be associated with brain
volume and sulcal depth [34, 35].
To further investigate the biological mechanism, we used FUMA

to annotate the genes identified in terms of biological context.
Figure 3c shows the gene expression heatmap of significant genes
found by MTAFS. The expression value depends on the genotype-
tissue expression (GTEx) project [36] including 54 human tissues.
Although there are no major clusters, there is a small cluster in the
upper right consisting of two genes that are more highly
expressed in brain related tissues. In FUMA, we also tested if the
gene set was significantly enriched in tissues. Figure 3b shows that
the genes were not significantly enriched in brain-related tissues.
The competing methods have similar findings (Figs. S15–S17).

Results of 212 Area IDPs. This analysis considered a much larger
set of traits. MTAFS identified 1,170 SNPs with p-values less than
5 ´ 10�8 (Fig. S19a, b). Both MTAFS and aMAT identified
35 significant loci after LD pruning, while the rest of the
competing methods identified fewer (Table 3, Fig. S18). Single-
trait analysis only identified 7 loci and all were identified by the
multi-trait methods.
Similarly, we started with genes located in the “towers” of the

Manhattan plot (Fig. S19a). The strongest signals from the tall
tower in chromosome 15 correspond to gene THBS1, which was
reported to be associated with cortical surface area [37]. DAAM1,
located in chromosome 14, has been shown to affect brain
volumes [38]. Several studies have found that ZIC4 of chromosome
3 is associated with brain-related traits such as parietal lobe
volume and total cortical area [32, 34, 38]. The rest of the towers
contain genes RPL21P24, STRN, C16orf95, NSF, and NFIX, which
have been reported to be associated with brain volume and
cortical area by many studies [10, 32].
The expression heatmap (Fig. S19c) shows a cluster of three

genes (top-left corner) that has much higher expression levels in
two brain-related tissues: cerebellar hemisphere and cerebellum.
There is also a broader cluster (also in the top left) containing
genes that have relatively higher expression in the remaining
brain tissues compared to the other tissues. Figure S19b shows
that the gene set consisting of genes identified by MTAFS are

significantly enriched in brain hypothalamus with up-regulation.
The results of the competing methods are in the supplementary
materials (Figs. S20–S22).

DISCUSSION
GWAS have successfully identified a large number of genetic
variants associated with traits or diseases. In contrast to individual-
level data, GWAS summary statistics are usually publicly available
and have more potentials for achieving greater statistical power
through combining a large amount of information. Our method
utilizes z scores which are usually available in GWAS summary
statistics along with their p-values. In rare cases where only
p-values are available, we can transform the p-values to z scores
by using the normality assumption. Although methods are
available for joint analyses of a large number of traits from deep
phenotyping data, inconsistent performance, computational
inefficiency, and numerical issues when a large number of traits
is considered are issues that are yet to be resolved. Our proposed
MTAFS is an attempt in this direction.
Our simulation study shows that MTAFS can control type 1 error

well with stringent significance levels, including the genome-wide
significance level at 5 ´ 10�8, and has consistent performance
under a variety of settings, underscoring its robustness. Although
it is a common practice to directly simulate summary statistics for
evaluating multi-trait methods [16, 17], we nevertheless also carry
out a brief simulation study to further gauge the type I error rate
when genotypes rather than summary statistics are generated.
Since our real data analysis considers only variants with MAF >
0.05, here we considered genotypes whose MAFs are randomly
distributed between 0.05 and 0.5. Our results indicate that the
type I error is also well controlled for, albeit a bit more
conservative when the significance level is set to be stringent
(Table S11, next to last column in the segment on Type I Error). As
mentioned above, for the two real data examples, we restricted
our analyses to variants with MAF greater than 0.05 and we
calculated the genomic inflation factor (GIF) to further validate our
findings. For the Volumetric (first analysis) and the Area (second
analysis) data, the GIF lambda value was 1.05 for both analyses,
indicating little evidence of any potential inflation of type I error.
Like all the other methods, the performance of MTAFS is

dependent on a number of underlying factors that are explored in
the simulation studies. Nevertheless, although MTAFS is not always
the best, it keeps up with the top performers in all combinations of
four underlying correlation structures, two association models, and
three sparsity levels. Further, it is the only method, among the nine
studied, that has this property. For example, SSU and SUM
performed reasonably well under UKCOR1 model M1 but had
absolutely no power under M2. On the other hand, metaMANOVA is
among the top performers for the high sparsity setting under
UKCOR1 model M2, but much less power under UKCOR2 model M2,
and there is a big discrepancy in its relative power for the high
sparsity and low sparsity settings in UKCOR1 M1 but not so much in
M2. In contrast, although MTAFS was seen to be a clear winner in
only a few scenarios, its power is always up there with the top group
regardless in all 28 combinations considered. For a real data analysis,
since the underlying correlation structure, the model, and the
sparsity level are all unknown, yet existing methods are seen to be
rather sensitive to these primary factors, we believe that a method
like MTAFS, which is robust to these unknown underlying features,
would be desirable.
In general, MTAFS exhibits desirable properties, and have

several advantages over existing methods. First, MTAFS controls
type 1 error well. Second, MTAFS has robust performance given
various covariance matrices, underlying association models, and
different levels of signal sparsity. Third, MTAFS is an efficient
method in practice. Although it is not as computationally efficient
as some existing methods (Table S12), it is much faster than
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methods using permutation tests like minP and aSPU. Parallel
computing can greatly reduce its computational time, making it
acceptable in practice. As a demonstration, we analyzed the Area
IDP data for 4,590,290 SNPs and 212 traits, and MTAFS finished the
analysis in less than one hour by using 100 cores of 4GB memory.
The advantages notwithstanding, there are limitations in the

proposed method. First, because we transform raw z score vectors
by eigen decomposition, it is difficult to interpret the association
between one SNP and one single trait. Second, our choice of the
levels of variance explained and the number of levels are both ad
hoc. Third, althoughMTAFS can analyze rare variants as long as their
GWAS summary statistics are available, we are concerned about the
statistical power of single rare variants analysis methods as well as
the normality assumption. Indeed, both rare variants and non-
normality of the trait distribution can affect the power and the type I
error of MTAFS, as we demonstrated type I error inflation in two bins
with MAF < 0.05 or in the use of a t-distribution for generating the
trait values (Table S11). Therefore, we suggest that MTAFS be only
used for studying common variants – multiple traits associations.
Further, the normality of the trait distribution and the summary
statistics should be carefully checked before applying the method. If
normality is questionable, then an appropriate transformation, such
as an inverse-normal quantile transformation, may be first applied
before running MTAFS.
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