Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Skewed X-chromosome inactivation in unsolved neurodevelopmental disease cases can guide re-evaluation For X-linked genes

Abstract

Despite major advances in genome technology and analysis, >50% of patients with a neurodevelopmental disorder (NDD) remain undiagnosed after extensive evaluation. A point in case is our clinically heterogeneous cohort of NDD patients that remained undiagnosed after FRAXA testing, chromosomal microarray analysis and trio exome sequencing (ES). In this study, we explored the frequency of non-random X chromosome inactivation (XCI) in the mothers of male patients and affected females, the rationale being that skewed XCI might be masking previously discarded genetic variants found on the X chromosome. A multiplex fluorescent PCR-based assay was used to analyse the pattern of XCI after digestion with HhaI methylation-sensitive restriction enzyme. In families with skewed XCI, we re-evaluated trio-based ES and identified pathogenic variants and a deletion on the X chromosome. Linkage analysis and RT-PCR were used to further study the inactive X chromosome allele, and Xdrop long-DNA technology was used to define chromosome deletion boundaries. We found skewed XCI (>90%) in 16/186 (8.6%) mothers of NDD males and in 12/90 (13.3%) NDD females, far beyond the expected rate of XCI in the normal population (3.6%, OR = 4.10; OR = 2.51). By re-analyzing ES and clinical data, we solved 7/28 cases (25%) with skewed XCI, identifying variants in KDM5C, PDZD4, PHF6, TAF1, OTUD5 and ZMYM3, and a deletion in ATRX. We conclude that XCI profiling is a simple assay that targets a subgroup of patients that can benefit from re-evaluation of X-linked variants, thus improving the diagnostic yield in NDD patients and identifying new X-linked disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pedigree and variant analysis in the three families with XCI-skewed female cases.
Fig. 2: Pedigrees and variants analysis in the three families with XCI skewed mothers of affected males.

Similar content being viewed by others

Data availability

All variants have been deposited into ClinVar: SCV002583290, SCV002583291, SCV002583292, SCV002583293, SCV002583294, SCV002583295, SCV002583296, SCV002583297, SCV002583298, SCV002583299, SCV002583300, SCV002583301.

References

  1. Miles JH. Autism spectrum disorders-a genetics review. Genet Med. 2011;13:278–94.

    Article  PubMed  Google Scholar 

  2. Betancur C. Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res. 2011;1380:42–77.

    Article  CAS  PubMed  Google Scholar 

  3. Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An JY, et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 2020;180:568–84.e23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hartley T, Lemire G, Kernohan KD, Howley HE, Adams DR, Boycott KM. New diagnostic approaches for undiagnosed rare genetic diseases. Annu Rev Genomics Hum Genet. 2020;21:351–72.

    Article  CAS  PubMed  Google Scholar 

  5. Boycott KM, Hartley T, Biesecker LG, Gibbs RA, Innes AM, Riess O, et al. A diagnosis for all rare genetic diseases: the horizon and the next frontiers. Cell 2019;177:32–7.

    Article  CAS  PubMed  Google Scholar 

  6. Basel-Salmon L, Orenstein N, Markus-Bustani K, Ruhrman-Shahar N, Kilim Y, Magal N, et al. Improved diagnostics by exome sequencing following raw data reevaluation by clinical geneticists involved in the medical care of the individuals tested. Genet Med. 2019;21:1443–51.

    Article  PubMed  Google Scholar 

  7. Martin HC, Gardner EJ, Samocha KE, Kaplanis J, Akawi N, Sifrim A, et al. The contribution of X-linked coding variation to severe developmental disorders. Nat Commun. 2021;12:627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gjaltema RAF, Schwämmle T, Kautz P, Robson M, Schöpflin R, Ravid Lustig L, et al. Distal and proximal cis-regulatory elements sense X chromosome dosage and developmental state at the Xist locus. Mol Cell. 2022;82:190–208.e17.

    Article  CAS  PubMed  Google Scholar 

  9. Harper PS. Mary Lyon and the hypothesis of random X chromosome inactivation. Hum Genet. 2011;130:169–74.

    Article  CAS  PubMed  Google Scholar 

  10. Fieremans N, Van Esch H, Holvoet M, Van Goethem G, Devriendt K, Rosello M, et al. Identification of intellectual disability genes in female patients with a skewed X-inactivation pattern. Hum Mutat. 2016;37:804–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Giorgio E, Brussino A, Biamino E, Belligni EF, Bruselles A, Ciolfi A, et al. Exome sequencing in children of women with skewed X-inactivation identifies atypical cases and complex phenotypes. Eur J Paediatr Neurol. 2017;21:475–84.

    Article  PubMed  Google Scholar 

  12. Plenge RM, Stevenson RA, Lubs HA, Schwartz CE, Willard HF. Skewed X-chromosome inactivation is a common feature of X-linked mental retardation disorders. Am J Hum Genet. 2002;71:168–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li D, Strong A, Shen KM, Cassiman D, Van Dyck M, Linhares ND, et al. De novo loss-of-function variants in X-linked MED12 are associated with Hardikar syndrome in females. Genet Med. 2021;23:637–44.

    Article  CAS  PubMed  Google Scholar 

  14. Amos-Landgraf JM, Cottle A, Plenge RM, Friez M, Schwartz CE, Longshore J, et al. X chromosome-inactivation patterns of 1,005 phenotypically unaffected females. Am J Hum Genet. 2006;79:493–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blondal T, Gamba C, Møller Jagd L, Su L, Demirov D, Guo S, et al. Verification of CRISPR editing and finding transgenic inserts by Xdrop indirect sequence capture followed by short- and long-read sequencing. Methods. 2021;191:68–77.

    Article  CAS  PubMed  Google Scholar 

  16. Allen RC, Zoghbi HY, Moseley AB, Rosenblatt HM, Belmont JW. Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. Am J Hum Genet. 1992;51:1229–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Di Gregorio E, Bianchi FT, Schiavi A, Chiotto AM, Rolando M, Verdun di Cantogno L, et al. A de novo X;8 translocation creates a PTK2-THOC2 gene fusion with THOC2 expression knockdown in a patient with psychomotor retardation and congenital cerebellar hypoplasia. J Med Genet. 2013;50:543–51.

    Article  PubMed  Google Scholar 

  18. Migeon BR. X-linked diseases: susceptible females. Genet Med. 2020;22:1156–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Plenge RM, Hendrich BD, Schwartz C, Arena JF, Naumova A, Sapienza C, et al. A promoter mutation in the XIST gene in two unrelated families with skewed X-chromosome inactivation. Nat Genet. 1997;17:353–6.

    Article  CAS  PubMed  Google Scholar 

  20. O’Rawe JA, Wu Y, Dörfel MJ, Rope AF, Au PY, Parboosingh JS, et al. TAF1 variants are associated with dysmorphic features, intellectual disability, and neurological manifestations. Am J Hum Genet. 2015;97:922–32.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wiel L, Baakman C, Gilissen D, Veltman JA, Vriend G, Gilissen C. MetaDome: pathogenicity analysis of genetic variants through aggregation of homologous human protein domains. Hum Mutat. 2019;40:1030–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Quinodoz M, Peter VG, Cisarova K, Royer-Bertrand B, Stenson PD, Cooper DN, et al. Analysis of missense variants in the human genome reveals widespread gene-specific clustering and improves prediction of pathogenicity. Am J Hum Genet. 2022;109:457–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ittisoponpisan S, Islam SA, Khanna T, Alhuzimi E, David A, Sternberg MJE. Can predicted protein 3D structures provide reliable insights into whether missense variants are disease associated? J Mol Biol. 2019;431:2197–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zweier C, Kraus C, Brueton L, Cole T, Degenhardt F, Engels H, et al. A new face of Borjeson-Forssman-Lehmann syndrome? De novo mutations in PHF6 in seven females with a distinct phenotype. J Med Genet. 2013;50:838–47.

    Article  CAS  PubMed  Google Scholar 

  26. Gerber CB, Fliedner A, Bartsch O, Berland S, Dewenter M, Haug M, et al. Further characterization of Borjeson-Forssman-Lehmann syndrome in females due to de novo variants in PHF6. Clin Genet. 2022;102:182–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brookes E, Laurent B, Õunap K, Carroll R, Moeschler JB, Field M, et al. Mutations in the intellectual disability gene KDM5C reduce protein stability and demethylase activity. Hum Mol Genet. 2015;24:2861–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Carmignac V, Nambot S, Lehalle D, Callier P, Moortgat S, Benoit V, et al. Further delineation of the female phenotype with KDM5C disease causing variants: 19 new individuals and review of the literature. Clin Genet. 2020;98:43–55.

    Article  CAS  PubMed  Google Scholar 

  29. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grosso V, Marcolungo L, Maestri S, Alfano M, Lavezzari D, Iadarola B, et al. Characterization of. Front Genet. 2021;12:743230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Madsen EB, Höijer I, Kvist T, Ameur A, Mikkelsen MJ. Xdrop: Targeted sequencing of long DNA molecules from low input samples using droplet sorting. Hum Mutat. 2020;41:1671–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Beck DB, Basar MA, Asmar AJ, Thompson JJ, Oda H, Uehara DT, et al. Linkage-specific deubiquitylation by OTUD5 defines an embryonic pathway intolerant to genomic variation. Sci Adv. 2021;7:eabe2116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hiatt SM, Trajkova S, Sebastiano MR, Partridge EC, Abidi FE, Anderson A, et al. Deleterious, protein-altering variants in the transcriptional coregulator ZMYM3 in 27 individuals with a neurodevelopmental delay phenotype. Am J Hum Genet. 2023;110:215–27.

  34. Philips AK, Sirén A, Avela K, Somer M, Peippo M, Ahvenainen M, et al. X-exome sequencing in Finnish families with intellectual disability-four novel mutations and two novel syndromic phenotypes. Orphanet J Rare Dis. 2014;9:49.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Leitão E, Schröder C, Parenti I, Dalle C, Rastetter A, Kühnel T, et al. Systematic analysis and prediction of genes associated with monogenic disorders on human chromosome X. Nat Commun. 2022;13:6570.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cheng H, Capponi S, Wakeling E, Marchi E, Li Q, Zhao M, et al. Missense variants in TAF1 and developmental phenotypes: challenges of determining pathogenicity. Hum Mutat. 2020;41:1075.

  37. Wieczorek D, Bögershausen N, Beleggia F, Steiner-Haldenstätt S, Pohl E, Li Y, et al. A comprehensive molecular study on Coffin-Siris and Nicolaides-Baraitser syndromes identifies a broad molecular and clinical spectrum converging on altered chromatin remodeling. Hum Mol Genet. 2013;22:5121–35.

    Article  CAS  PubMed  Google Scholar 

  38. Tukiainen T, Villani AC, Yen A, Rivas MA, Marshall JL, Satija R, et al. Landscape of X chromosome inactivation across human tissues. Nature 2017;550:244–8.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Franco B, Ballabio A. X-inactivation and human disease: X-linked dominant male-lethal disorders. Curr Opin Genet Dev. 2006;16:254–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the patients and their families for their participation in this study. We acknowledge Samplix for the technical support.

Funding

This research received funding from the Italian Ministry for Education, University and Research (Ministero dell’Istruzione, dell’Università e della Ricerca - MIUR) PRIN2020 code 20203P8C3X to AB, “Associazione E.E. Rulfo per la genetica Medica” to AB, Fondazione Cassa di Risparmio di Torino to AB, and Fondazione Bambino Gesù (Vite Coraggiose) to MT. Sample collection was supported by the NIMH (U01MH111661 to JDB).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: CG, ST, AB; Data curation: CG, ST, AB, ES, FP, DC, AM, TF, GM, BP, GBF; Formal analysis: CG, ST, LP, SC, VP, SC, AR, AB, PD, AB, TP, MT; Investigation: CG, ST, LP, SC, VP, SC, LB, AF, PS, SDR, JB; Methodology: CG, PS, LB, AF, MR, MD, Visualization: Writing-original draft: CG, ST, AB; Writing-review & editing: EF, CG, ST, AB, ES, FP, DC, AM, TF, GM, BP, GBF, MR, MD.

Corresponding author

Correspondence to Alfredo Brusco.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics declaration

All individuals and families from the different institutions agreed to participate in this study and signed appropriate consent forms. The Ethics Committee of Città della Salute e della Scienza University Hospital (n. 0060884) and University of Skopje (n. 03–6116/7) approved this study. Written informed consent for publication of clinical detail and patient photographs has been obtained from the parents or legal guardian.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giovenino, C., Trajkova, S., Pavinato, L. et al. Skewed X-chromosome inactivation in unsolved neurodevelopmental disease cases can guide re-evaluation For X-linked genes. Eur J Hum Genet 31, 1228–1236 (2023). https://doi.org/10.1038/s41431-023-01324-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41431-023-01324-w

This article is cited by

Search

Quick links