Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A biallelic variant of DCAF13 implicated in a neuromuscular disorder in humans

Abstract

Neuromuscular disorders encompass a broad range of phenotypes and genetic causes. We investigated a consanguineous family in which multiple patients had a neuromuscular disorder characterized by a waddling gait, limb deformities, muscular weakness and facial palsy. Exome sequencing was completed on the DNA of three of the four patients. We identified a novel missense variant in DCAF13, ENST00000612750.5, NM_015420.7, c.907 G > A;p.(Asp303Asn), ENST00000616836.4, NM_015420.6, c.1363 G > A:p.(Asp455Asn) (rs1209794872) segregating with this phenotype; being homozygous in all four affected patients and heterozygous in the unaffected individuals. The variant was extremely rare in the public databases (gnomAD allele frequency 0.000007081); was absent from the DNA of 300 ethnically matched controls and affected an amino acid which has been conserved across 1–2 billion years of evolution in eukaryotes. DCAF13 contains three WD40 domains and is hypothesized to have roles in both rRNA processing and in ubiquitination of proteins. Analysis of DCAF13 with the p.(Asp455Asn) variant predicted that the amino acid change is deleterious and affects a β-hairpin turn, within a WD40 domain of the protein which may decrease protein stability. Previously, a heterozygous variant of DCAF13 NM_015420.6, c.20 G > C:p.(Trp7Ser) with or without a heterozygous missense variant in CCN3, was suggested to cause inherited cortical myoclonic tremor with epilepsy. In addition, a heterozygous DCAF13 variant has been associated with autism spectrum disorder. Our study indicates a potential role of biallelic DCAF13 variants in neuromuscular disorders. Screening of additional patients with similar phenotype may broaden the allelic and phenotypic spectrum due to DCAF13 variants.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pedigree RDHR-03, phenotype, sequence traces, and depiction of DCAF13 with the encoded protein.
Fig. 2: Conservation of DCAF13 Asp303 in a sampling of eukaryote species.

Data availability

Data supporting manuscript findings is available from corresponding author on reasonable request.

References

  1. Trojsi F, Monsurro MR, Tedeschi G. Exposure to environmental toxicants and pathogenesis of amyotrophic lateral sclerosis: state of the art and research perspectives. Int J Mol Sci. 2013;14:15286–311.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Laing NG. Genetics of neuromuscular disorders. Crit Rev Clin Lab Sci. 2012;49:33–48.

    Article  CAS  PubMed  Google Scholar 

  3. Emery AE. Population frequencies of inherited neuromuscular diseases-a world survey. Neuromuscul Disord. 1991;1:19–29.

    Article  CAS  PubMed  Google Scholar 

  4. Deenen JC, Horlings CG, Verschuuren JJ, Verbeek AL, van Engelen BG. The epidemiology of neuromuscular disorders: a comprehensive overview of the literature. J Neuromuscul Dis. 2015;2:73–85.

    Article  PubMed  Google Scholar 

  5. Chae JH, Vasta V, Cho A, Lim BC, Zhang Q, Eun SH, et al. Utility of next generation sequencing in genetic diagnosis of early onset neuromuscular disorders. J Med Genet. 2015;52:208–16.

    Article  CAS  PubMed  Google Scholar 

  6. Mary P, Servais L, Vialle R. Neuromuscular diseases: diagnosis and management. Orthop Traumatol Surg Res. 2018;104:S89–S95.

    Article  CAS  PubMed  Google Scholar 

  7. Nelson CE, Robinson-Hamm JN, Gersbach CA. Genome engineering: a new approach to gene therapy for neuromuscular disorders. Nat Rev Neurol. 2017;13:647–61.

    Article  CAS  PubMed  Google Scholar 

  8. Scoto M, Finkel R, Mercuri E, Muntoni F. Genetic therapies for inherited neuromuscular disorders. Lancet Child Adolesc Health. 2018;2:600–9.

    Article  PubMed  Google Scholar 

  9. Ye S, Dhillon S, Ke X, Collins AR, Day IN. An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res. 2001;29:E88–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carr IM, Bhaskar S, O’Sullivan J, Aldahmesh MA, Shamseldin HE, Markham AF, et al. Autozygosity mapping with exome sequence data. Hum Mutat. 2013;34:50–6.

    Article  CAS  PubMed  Google Scholar 

  11. Kumar S, Dudley JT, Filipski A, Liu L. Phylomedicine: an evolutionary telescope to explore and diagnose the universe of disease mutations. Trends Genet. 2011;27:377–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012;28:1647–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 2010;5:725–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pol-Fachin L, Fernandes CL, Verli H. GROMOS96 43a1 performance on the characterization of glycoprotein conformational ensembles through molecular dynamics simulations. Carbohydr Res. 2009;344:491–500.

    Article  CAS  PubMed  Google Scholar 

  17. van Gunsteren WF, Billeter S, Eising A, Hünenberger P, Krüger P, Mark A, et al. Biomolecular simulation: the GROMOS96 manual and user guide. Vdf Hochschulverlag AG der ETH Zürich, Zürich. 1996;86:1–1044.

    Google Scholar 

  18. Betts HC, Puttick MN, Clark JW, Williams TA, Donoghue PCJ, Pisani D. Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat Ecol Evol. 2018;2:1556–62.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Strassert JFH, Irisarri I, Williams TA, Burki F. A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nat Commun. 2021;12:1879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jin J, Arias EE, Chen J, Harper JW, Walter JC. A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol Cell. 2006;23:709–21.

    Article  CAS  PubMed  Google Scholar 

  21. Mistry BV, Alanazi M, Fitwi H, Al-Harazi O, Rajab M, Altorbag A, et al. Expression profiling of WD40 family genes including DDB1- and CUL4- associated factor (DCAF) genes in mice and human suggests important regulatory roles in testicular development and spermatogenesis. BMC Genomics. 2020;21:602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jang SM, Redon CE, Aladjem MI. Switching DCAFs: beyond substrate receptors. Bioessays. 2021;43:e2100057.

    Article  PubMed  Google Scholar 

  23. Wada K, Sato M, Araki N, Kumeta M, Hirai Y, Takeyasu K, et al. Dynamics of WD-repeat containing proteins in SSU processome components. Biochem Cell Biol. 2014;92:191–9.

    Article  CAS  PubMed  Google Scholar 

  24. Xu C, Min J. Structure and function of WD40 domain proteins. Protein Cell. 2011;2:202–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schapira M, Tyers M, Torrent M, Arrowsmith CH. WD40 repeat domain proteins: a novel target class? Nat Rev Drug Discov. 2017;16:773–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fu H, Grimsley GR, Razvi A, Scholtz JM, Pace CN. Increasing protein stability by improving beta-turns. Proteins. 2009;77:491–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marcelino AM, Gierasch LM. Roles of beta-turns in protein folding: from peptide models to protein engineering. Biopolymers. 2008;89:380–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cardinale A, Chiesa R, Sierks M. Protein misfolding and neurodegenerative diseases. Int J Cell Biol. 2014;2014:217371.

    Article  PubMed  PubMed Central  Google Scholar 

  29. McAlary L, Plotkin SS, Yerbury JJ, Cashman NR. Prion-like propagation of protein misfolding and aggregation in amyotrophic lateral sclerosis. Front Mol Neurosci. 2019;12:262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lin H, Hu N, Zhang Y, Wang Y, Macdonald RL. Whole exome sequencing reveals novel NOV and DCAF13 variants in a Chinese pedigree with familial cortical myoclonic tremor with epilepsy. Neurosci Lett. 2018;684:115–20.

    Article  CAS  PubMed  Google Scholar 

  31. Terhune EA, Wethey CI, Cuevas MT, Monley AM, Baschal EE, Bland MR, et al. Whole exome sequencing of 23 multigeneration idiopathic scoliosis families reveals enrichments in cytoskeletal variants, suggests highly polygenic disease. Genes (Basel). 2021;12:922.

    Article  CAS  PubMed  Google Scholar 

  32. Urano T, Shiraki M, Usui T, Sasaki N, Ouchi Y, Inoue S. Identification of non-synonymous polymorphisms in the WDSOF1 gene as novel susceptibility markers for low bone mineral density in Japanese postmenopausal women. Bone. 2010;47:636–42.

    Article  CAS  PubMed  Google Scholar 

  33. Bihlmeyer NA, Brody JA, Smith AV, Warren HR, Lin H, Isaacs A, et al. ExomeChip-wide analysis of 95 626 individuals identifies 10 novel loci associated with QT and JT intervals. Circ Genom Precis Med. 2018;11:e001758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jiang YH, Yuen RK, Jin X, Wang M, Chen N, Wu X, et al. Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. Am J Hum Genet. 2013;93:249–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Habib R, Noureen N, Nadeem N. Decoding common features of neurodegenerative disorders: from differentially expressed genes to pathways. Curr Genomics. 2018;19:300–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang YL, Zhao LW, Zhang J, Le R, Ji SY, Chen C, et al. DCAF13 promotes pluripotency by negatively regulating SUV39H1 stability during early embryonic development. EMBO J. 2018;37:e98981.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Liu Y, Zhao LW, Shen JL, Fan HY, Jin Y. Maternal DCAF13 regulates chromatin tightness to contribute to embryonic development. Sci Rep. 2019;9:6278.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang J, Zhang YL, Zhao LW, Guo JX, Yu JL, Ji SY, et al. Mammalian nucleolar protein DCAF13 is essential for ovarian follicle maintenance and oocyte growth by mediating rRNA processing. Cell Death Differ. 2019;26:1251–66.

    Article  CAS  PubMed  Google Scholar 

  39. Durkan A, Byrnes C, Cooper E, Hally A, Sullivan-Brown J, Sowa J. DCAF-13 is required for C. elegans growth, development, and fertility. MicroPubl Biol. 2022;23:2022.

    Google Scholar 

  40. Cao J, Hou P, Chen J, Wang P, Wang W, Liu W, et al. The overexpression and prognostic role of DCAF13 in hepatocellular carcinoma. Tumour Biol. 2017;39:1010428317705753.

    Article  PubMed  Google Scholar 

  41. Chin SF, Teschendorff AE, Marioni JC, Wang Y, Barbosa-Morais NL, Thorne NP, et al. High-resolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer. Genome Biol. 2007;8:R215.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kishino T, Lalande M, Wagstaff J. UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet. 1997;15:70–3.

    Article  CAS  PubMed  Google Scholar 

  43. Vatsa N, Jana NR. UBE3A and its link with autism. Front Mol Neurosci. 2018;11:448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ali RH, Shah K, Nasir A, Steyaert W, Coucke PJ, Ahmad W. Exome sequencing revealed a novel biallelic deletion in the DCAF17 gene underlying Woodhouse Sakati syndrome. Clin Genet. 2016;90:263–9.

    Article  CAS  PubMed  Google Scholar 

  45. Shah K, Jan A, Ahmad F, Basit S, Ramzan K, Ahmad W. Woodhouse-Sakati syndrome in a family is associated with a homozygous start loss mutation in the DCAF17 gene. Clin Exp Dermatol. 2020;45:159–64.

    Article  CAS  PubMed  Google Scholar 

  46. Klein CJ, Wu Y, Vogel P, Goebel HH, Bonnemann C, Zukosky K, et al. Ubiquitin ligase defect by DCAF8 mutation causes HMSN2 with giant axons. Neurology 2014;82:873–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Patron LA, Nagatomo K, Eves DT, Imad M, Young K, Torvund M, et al. Cul4 ubiquitin ligase cofactor DCAF12 promotes neurotransmitter release and homeostatic plasticity. J Cell Biol. 2019;218:993–1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Webster E, Cho MT, Alexander N, Desai S, Naidu S, Bekheirnia MR, et al. De novo PHIP-predicted deleterious variants are associated with developmental delay, intellectual disability, obesity, and dysmorphic features. Cold Spring Harb Mol Case Stud. 2016;2:a001172.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We express our gratitude to all members of the family RDHR-03 for participating in this study. The study was funded by the Higher Education Commission, Pakistan (award #2877).

Funding

The study was supported by grant no. 2877 awarded to SN from the Higher Education Commission, Pakistan.

Author information

Authors and Affiliations

Authors

Contributions

Research Idea and Study design: SN; Sample collection and clinical analyses: HM, HZ, KRK, HMJ, MW; Data Collection,Analysis and Interpretation: HM, HZ, CAE, GS, SN; Manuscript preparation: HM, HZ, CAE, SN; Final manuscript: All authors. Each author contributed to this work and verifies integrity of this research.

Corresponding author

Correspondence to Sadaf Naz.

Ethics declarations

Competing interests

GHS is an employee of 3billion inc, Seoul, South Korea. All authors declare no conflict of interest.

Ethical approval

This study was approved by the Institutional Review Board of School of Biological Sciences, (IRB# 00005281, FWA 00010252), University of the Punjab, Lahore, Pakistan.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzoor, H., Zahid, H., Emerling, C.A. et al. A biallelic variant of DCAF13 implicated in a neuromuscular disorder in humans. Eur J Hum Genet 31, 629–637 (2023). https://doi.org/10.1038/s41431-023-01319-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41431-023-01319-7

This article is cited by

Search

Quick links