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Neurofibromatosis type 1 (NF1; MIM#162200) represents one of the
most frequent autosomal dominant conditions with a worldwide
birth incidence of 1 in 2500. Though fully penetrant, the disease
shows an important variable expressivity among patients and over
time. NF1 frequent manifestations include pigmentary manifesta-
tions (café-au-lait spots, skinfold freckling, and Lisch nodules),
skeletal abnormalities (scoliosis and long bone dysplasia), beha-
vioral symptoms (cognitive impairment, attention-deficit/hyperac-
tivity disorder, and autism spectrum disorder), and tumors
(peripheral nerve sheath tumors, and gliomas). Other, albeit rare,
manifestations include juvenile xanthogranuloma, pheochromocy-
tomas and gastrointestinal stromal tumors.

NF1 is caused by germline heterozygous loss-of-function
variants in the NF1 gene (MIM#613113), located at 17q11.2. NF1
comprises 58 constitutive and two alternative exons and spans
over ~280 kb. The 8517-nucleotide open reading frame of the NF7
gene (NM_001042492.3) encodes a 2839-amino-acid protein,
neurofibromin, which shows tumor suppressor function by
negatively regulating the RAS-MAPK pathway. There is a very
large number of different loss-of-function NF1 pathogenic variants
which were identified; for example, more than 3700 unique NFT
variants (mostly germline variants) have been reported in the
Global Variome shared Leiden Open Variation Database. NFT
pathogenic variants are distributed through the entire coding
region and splice sites with no hotspot. A significant part of these
variations corresponds to large rearrangements [1, 2].

The identification of affected individuals has classically relied on
clinical assessment and diagnosis according to standardized NIH
criteria [3]. A recent international effort led to revise the criteria for
NF1 diagnosis with the incorporation of genetic testing into the
revised NF1 diagnostic criteria [4]. It can be expected that genetic
testing will become standard-of-care for a definite diagnosis,
which is becoming increasingly relevant with constantly improv-
ing strategies for clinical management and genetic counseling.

The advent of short-read next generation sequencing (NGS) has
greatly contributed to improving the diagnostic yield and
decreasing the time to molecular diagnosis of NF1. An NF1
pathogenic variant can be identified in more than 95% of NF1
cases [5]. Classically, molecular diagnostic strategies for NF1
include short-read NF7 targeted-NGS of DNA samples (most
extracted from leukocytes). RNA approaches are also being

developed [6]. For some cases that are negative with classical
approaches, more comprehensive methods or methods that allow
easier detection of large rearrangements can be used. Short-read
whole-genome sequencing (WGS) have proven to be useful in
overcoming diagnostic deadlocks [7]. Recent long-read
approaches may also be of interest [8]. Long-read technologies
has led to significant discoveries in individual laboratories. In
larger programs, among the noted implementations are those in
the Vertebrate Genomes Project (VGP), the Telomere-to-Telomere
Consortium (T2T), and the ongoing Human Pangenome Reference
Consortium (HPRQ).

In a recent study [9], Alesi et al. used an optical genome
mapping (OGM) technique to characterize large inversions
implicating the NF1 gene in two unrelated patients clinically
diagnosed with NF1. In one patient, two NF7 intragenic deletions
of exons 4-7 and 31-35 (double heterozygote in cis) were first
identified using a specific MLPA assay. OGM analysis then revealed
that this structural variant was actually an intragenic inversion
with co-occurring short deletions at the breakpoints. Alesi et al.
drew to our attention that one of the patients we previously
reported [10], showed a double NFT intragenic multi-exon
deletion, using a specific MLPA (multiplex ligation-dependent
probe amplification) assay. This condition was like what Alesi et al.
observed in one of the two patients they described. We used the
long-read nanopore sequencing technique (Oxford Nanopore
Technologies, ONT) to reanalyze and better characterize this
structural variant.

We performed complementary genetic analyses in the NF1
index case with a double NF7 multi-exon deletion, from the French
NF cohort [10]. The patient was enrolled in a French clinical
research program (Programme Hospitalier de Recherche Clinique)
entitled “Study of NF1 expressivity”. His full phenotypic informa-
tion was recorded by a referent medical clinician, based on a
standardized questionnaire. At the age of 21, the patient
presented with 15 café-au-lait spots, bilateral inguinal and axillary
freckling, numerous cutaneous and subcutaneous neurofibromas,
one plexiform neurofibroma, learning disabilities, pseudarthrosis,
dystrophic scoliosis, and vertebral dysplasia. He inherited the
disease from his mother for whom DNA was not available.

For initial analysis, DNA was extracted from an EDTA blood
sample, using a standard proteinase K digestion followed by
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Fig. 1 Complementary molecular analysis showing double multi-exon deletions. Visualization of the deleted regions in UCSC Genome
Browser (GRCh38/hg38) and Sanger sequencing analysis of wild-type sequence and patient’s deletions of (A) NF1 exons 32-36, and (B) NF1
exons 49-58 to the first exon of RABT1FIP4. Red dotted rectangles show duplicated motifs.

DR BN

phenol-chloroform extraction. A double multi-exon deletion SALSA MLPA kits P081/P082 NF1 (MRC Holland), as previously
was identified in the patient (exons 32-36 and 49-58 of NFT) described [1].

as a result of NF1-targeted NGS sequencing and multiplex ligation- We performed a long-read sequencing on the platform Oxford
dependent probe amplification (MLPA) analysis with the Nanopore MinlON (ONT) with a CRISPR/Cas9-targeted enrichment,
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according to the manufacturer protocols. Specific guides were
designed to target NF1 IVS 31, 36, and 48, with a 7-15 kb spacing,
using the CHOPCHOP website [11] (sequences available on
request). Analysis of the generated reads showed a 49 kb deletion
encompassing NF1 exons 32-36, and an in cis 56 kb deletion from
NFT1 intron 48 (NM_001042492.3) to the first exon of RAB11FIP4
(NM_032932.6). Breakpoint-spanning PCR and Sanger sequencing
were performed for wild-type and mutated NF1 alleles, using
specific primers (available on request). Sanger sequencing of the
two breakpoint junctions confirmed the two molecular events,
their genomic locations, and the absence of concomitant
inversion (Fig. 1). The apparently independent deletions could
be described as follows (GRCh38/hg38): NC_000017.11:9.31258
310-31307676delinsCTTTATATTAA and NC_000017.11:9.313441
92-31400545delinsGAAGGGGCCGG. No sequence similarities
could be evidenced between the regions implicated in the
double-deletion event (IVS31, 36, and 48 of NF1, and IVS1 of
RABT1FIP4). We however observe a short duplication of a few base
pairs at the junction sites (Fig. 1).

In their study, Alesi et al. [9]. resolved the molecular structure of
two NFT inversions with an OGM technology. However, the limited
resolution of this technique to detect structural variants (more
than 1 kb) makes it impossible to identify the exact breakpoints of
such events, a limitation they overcame by resorting to WGS.
Using a nanopore long-read sequencing technology, we could
achieve a sequence-level resolution for the molecular events
previously observed in our patient. Knowing the approximate
breakpoints of the deletions evidenced from NGS sequencing and
MLPA, we performed CRISPR/Cas9-targeted enrichment of the
region of interest. This approach allowed us to overcome the need
for high molecular weight DNA for high-quality long-read
sequencing. The enrichment approach also limits the need for
total sequence quantity since the sequences of interest that have
been cut by the CRISPR/Cas9 system are sequenced in a preferred
way over the rest of the genome. We then confirmed the junctions
sequences with Sanger sequencing. This sequential strategy
allowed the characterization of the double deletion event at the
molecular level (Fig. 1) and showed the absence of inversion
between these two large intragenic deletions. OGM and Nanopore
sequencing may be considered as complementary tools to finely
characterize complex molecular events that are missed or
incompletely described by conventional short-read sequencing
technologies [12]. However, application of a double approach in
routine diagnosis can still be limited by its cost.

This case report, together with the two patients reported by
Alesi et al. highlights the benefits of long-read technologies in
the characterizations of complex structural rearrangements and
repetitive elements or in the capture G + C-rich regions (mainly
found in gene regulatory regions). These accurate molecular
annotations using long-read techniques will undoubtedly lead
to a better understanding of the mechanisms at the origin of
large and complex rearrangements or regulatory sequence
alterations that are often poorly described by short-read NGS
technologies or CNV analysis techniques. In addition, accurate
typing of DNA alterations is an essential prerequisite for the
description of reliable genotype-phenotype correlations that
may improve genetic counseling and management of patients
with genetic diseases.
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