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Germline structural variants (SVs) are challenging to resolve by conventional genetic testing assays. Long-read sequencing has
improved the global characterization of SVs, but its sensitivity at cancer susceptibility loci has not been reported. Nanopore long-
read genome sequencing was performed for nineteen individuals with pathogenic copy number alterations in BRCA1, BRCA2,
CHEK2 and PALB2 identified by prior clinical testing. Fourteen variants, which spanned single exons to whole genes and included a
tandem duplication, were accurately represented. Defining the precise breakpoints of SVs in BRCA1 and CHEK2 revealed unforeseen
allelic heterogeneity and informed the mechanisms underlying the formation of recurrent deletions. Integrating read-based and
statistical phasing further helped define extended haplotypes associated with founder alleles. Long-read sequencing is a sensitive
method for characterizing private, recurrent and founder SVs underlying breast cancer susceptibility. Our findings demonstrate the
potential for nanopore sequencing as a powerful genetic testing assay in the hereditary cancer setting.
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INTRODUCTION
Breast cancer is the most common cancer in females with an
estimated 2.3 million new diagnoses worldwide in 2020 [1]. Rare
variants in genes associated with high-penetrance cancer predis-
position syndromes confer a strong genetic susceptibility in
around 5–10% of cases depending on ascertainment criteria.
BRCA1, BRCA2, and the moderate-penetrance genes CHEK2 and
PALB2 have also been associated with increased risks for male
breast cancer, a rare disease in which 18% of cases may be related
to clinically actionable germline variants [2, 3]. Identifying carriers
for moderate- to high-penetrance variants can improve clinical
outcomes by informing disease risk and prognosis, and guide
recommendations for prophylactic intervention, cancer screening
and therapy. However, many individuals who undergo genetic
testing based on a strong personal or family history of breast and
other syndrome-related cancers receive uninformative results [4].
Short-read sequencing (SRS) is the most common technology

used in clinical laboratories for genetic testing due to its high
throughput, high analytic validity, and low relative cost. Despite
these advantages, one in seven pathogenic germline variants are
challenging to detect using SRS [5]. Long-read sequencing (LRS)
has shown potential for improving rates of molecular diagnosis by
more accurately identifying structural variants (SVs) and repeat
expansions, resolving complex rearrangements, and informing
phase of candidate variants [6]. Although the clinical utility of LRS

has been described in the diagnosis of various genetic syndromes,
the sensitivity of long-read technologies for characterizing
structural variation at loci commonly tested in the clinical setting
is not well-established.
Here, we assessed the accuracy of nanopore long-read genome

sequencing (GS) for characterizing pathogenic germline SVs in
four breast cancer susceptibility genes. Expanding upon results
from clinical testing, precise breakpoints could be defined at
nucleotide resolution, revealing uncharacterized allelic hetero-
geneity at the loci of recurrent and founder variants. Our findings
may inform the future implementation of LRS as an alternative to
standard clinical assays.

MATERIALS AND METHODS
This study was approved by the University of British Columbia Clinical
Research Ethics Board (H19-01594). All participants provided written informed
consent. PCR-free genome libraries were prepared from DNA isolated from
peripheral blood lymphocytes and sequenced on the Oxford Nanopore
Technologies PromethION. Single nucleotide variant (SNV) and small insertion
and deletion (indel) calling and phasing were performed using an established
pipeline [7]. SVs were manually reviewed in IGV. SV breakpoints were defined
by local assembly-derived contigs where possible, and reported according to
HGVS sequence variant nomenclature. Haplotype inference was performed
using integrated read- and population-based phasing [8]. Please refer to
the Supplementary Materials for detailed methods.
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RESULTS
GS was performed for 19 individuals from 18 families with
pathogenic deletions and duplications in BRCA1, BRCA2, CHEK2 or
PALB2 identified by prior clinical testing (Supplementary Table S1).
Individuals were referred for index or carrier testing on the basis of
a suspected inherited predisposition to breast cancer or known
familial variant, respectively. Sequencing was performed to a
median coverage of 21.6X (13.1–36.5X), achieving a median read
N50 of 14.5 kb (6.57–23.5 kb) (Supplementary Table S2).
Variants in all 19 carriers, representing 14 distinct SVs ranging in

size from 510 bp to 108 kb, were detected by nanopore
sequencing (Table 1). While some variants were not identified
by agnostic SV calling, all known SVs were supported by at least
three reads (Supplementary Table S2). The precise breakpoints
were refined in all but one case with low coverage and low
complexity sequence at one breakpoint. Previously unknown
allelic heterogeneity was revealed at the locus of BRCA1: three
deletions spanning BRCA1 exons 1–2 were characterized by
intragenic breakpoints within 3.7 kb in intron 2 (Fig. 1). Telomeric
breakpoints in NBR2 and LOC101929767 (ΨBRCA1), a partial BRCA1
pseudogene, were associated with deletions of 6.6 kb and
36–37 kb, respectively. These findings were consistent with
previous observations of recurrent deletions between BRCA1 and
adjacent loci [9].
Among founder populations, specific genetic variants make a

considerable contribution to disease susceptibility. To explore the
potential for nanopore GS to characterize founder haplotypes, we
integrated read-based and statistical phasing using a reference
haplotype panel from 2504 individuals sequenced as part of the
1000 Genomes Project Phase 3 [8]. For genomes with at least 20X
average coverage (n= 13), read information alone allowed
phasing for 77–92% of heterozygous SNVs, and longer reads
were associated with larger haplotype blocks (Spearman correla-
tion 0.78; Supplementary Fig. S1) [7]. Long reads spanning
breakpoints of the British BRCA1 founder duplication (ins6kbEx13)
confirmed a 6126 bp tandem duplication in three unrelated
individuals (Supplementary Fig. S2) [10]. Analysis of SNVs
extending beyond the boundaries of the BRCA1 ins6kbEx13
founder variant further defined a core 1.08 Mb haplotype shared
between carriers.
Five individuals had deletions of CHEK2 exons 9–10, character-

istic of a 5395 bp deletion (del5395) estimated to account for 1%
of breast cancers in Poland [11, 12]. LRS confirmed the CHEK2
del5395 founder variant in three individuals; however, two related
individuals had a larger 6188 bp deletion (del6188) with break-
points in two Alu short interspersed nuclear elements with 71%
sequence identity (Fig. 2 and Supplementary Fig. S2). Two base
pair regions of microhomology at the breakpoints of the former
suggest the del5395 and del6188 variants originated through
distinct microhomology- and recombination-mediated mechan-
isms of formation, respectively. The CHEK2 del5395 variant was
associated with a core 1.26 Mb haplotype characterized by a rare
SNV in cis located 100 kb upstream and specific to carriers of the
del5395 founder variant (Supplementary Fig. S3). Together, these
findings suggested that the del5395 and del6188 variants were
unlikely to have arisen from the same subpopulation.

DISCUSSION
Advances in sequencing technologies have revealed a greater
spectrum of heritable variation underlying human diversity and
disease. Given the variable expressivity and genetic heterogeneity
of breast cancer predisposition syndromes, multigene panel SRS
has become widespread practice to identify families with an
increased risk for disease. However, limitations of standard clinical
assays for identifying complex genetic changes may under-
estimate the contribution of SVs to cancer susceptibility. Nanopore
GS resolved 14 distinct copy number variants in high- and Ta
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moderate-penetrance genes across 19 individuals with known
breast cancer susceptibility. Our findings reveal unexpected allelic
heterogeneity at the locus of CHEK2, and demonstrate the
potential for LRS to characterize haplotype-resolved structural
variation in personal genomes.
Characterizing the molecular heterogeneity of pathogenic

variants in cancer susceptibility genes may inform estimates of
individual cancer risk. Deletions of BRCA1 exons 1–2 account for
10–15% of pathogenic copy number variants in BRCA1 [13].
Consistent with previous reports, we identified recurrent deletions
between 6.6 and 37 kb in three individuals with variable loss of
BRCA1 exons 1–2 and the 5’ region upstream. Targeted clinical
testing could not reveal the extent of genetic loss. Among five
individuals from four families with deletions of CHEK2 exons 9–10,
two related individuals were found to carry a 6188 bp deletion
distinct from the del5395 Eastern European founder variant.
Resolving the precise breakpoints of SVs may thus inform their
molecular origins and natural history, and allow the development
of customized confirmation assays for rapid and accurate carrier
screening.
To a greater extent than deletions, the clinical interpretation of

duplications remains challenging for SRS. Importantly, determining
the location and orientation of duplications can inform the etiology
of disease [14]. Nanopore sequencing accurately mapped the
breakpoints of a tandem duplication and known founder variant,
BRCA1 ins6kbEx13, in three individuals. Despite sufficient read
coverage, this variant was not identified by available SV callers,
indicating a need for further development of SV detection methods
using long reads. LRS has also shown potential to characterize
cryptic, copy neutral and complex rearrangements whose clinical or
functional significance is uncertain [15, 16]. These variants may

remain undetected or unresolved by SRS, suggesting their
contribution to cancer susceptibility may be underappreciated.
Using read-based and reference-guided phasing, we defined

haplotypes shared between carriers of founder variants and
identified rare alleles in cis that are likely to be identical by descent
from a common ancestor. For diseases with common genetic
aetiologies, chromosome-scale haplotyping may uncover alleles
associated with causal variants in silent carriers who would
otherwise go undetected [17]. The accuracy of reference-guided
phasing depends on the composition and size of reference panels
however, and many populations remain underrepresented in
current population databases [18]. Therefore, large-scale efforts to
characterize genetic variation across subpopulations of diverse
genetic ancestries are needed.
The throughput and analytical validity of LRS have improved

rapidly in the past several years with advances in Oxford
Nanopore Technologies’ nanopore sequencing and Pacific
Biosciences single-molecule, real-time sequencing. Recent library
preparation and pore chemistries have allowed the sensitivity of
SNV and indel calling from nanopore sequencing to exceed 99%
in the coding genome [19]. The costs of nanopore GS, around
$1500–$2000 CAD per sample, limit its wider clinical application
compared to under $500 CAD for current clinical multigene
panels. However, library multiplexing and PCR-free enrichment
methods, including Cas9-mediated enrichment and computa-
tional selection by adaptive sampling, will enable cost-effective
targeted nanopore sequencing whose throughput and accuracy
could be comparable to multigene panel SRS [6, 20]. LRS thus
offers a comprehensive testing strategy that may soon be readily
adoptable in local diagnostic laboratories for routine testing of
hereditary cancer susceptibility.
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