Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

X-linked C1GALT1C1 mutation causes atypical hemolytic uremic syndrome

Abstract

Hemolytic-uremic syndrome (HUS), mostly secondary to infectious diseases, is a common cause of acute kidney injury in children. It is characterized by progressive acute kidney failure due to severe thrombotic microangiopathy, associated with nonimmune, Coombs-negative hemolytic anemia and thrombocytopenia. HUS is caused mostly by Shiga toxin-producing E. Coli, and to a lesser extent by Streptococcus pneumonia. In Streptococcus pneumonia HUS (pHUS), bacterial neuraminidase A exposes masked O-glycan sugar residues on erythrocytes, known as the T antigen, triggering a complement cascade causing thrombotic microangiopathy. Atypical HUS (aHUS) is a life-threatening genetic form of the disease, whose molecular mechanism is only partly understood. Through genetic studies, we demonstrate a novel X-linked form of aHUS that is caused by a de-novo missense mutation in C1GALT1C1:c.266ā€‰Cā€‰>ā€‰T,p.(T89I), encoding a T-synthase chaperone essential for the proper formation and incorporation of the T antigen on erythrocytes. We demonstrate the presence of exposed T antigen on the surface of mutant erythrocytes, causing aHUS in a mechanism similar to that suggested in pHUS. Our findings suggest that both aHUS caused by mutated C1GALT1C1 and pHUS are mediated by the lectin-complement-pathway, not comprehensively studied in aHUS. We thus delineate a shared molecular basis of aHUS and pHUS, highlighting possible therapeutic opportunities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pedigree and molecular genetics.
Fig. 2: Tn-antigen detection using flow cytometry.
Fig. 3: Hemagglutination of erythrocytesā€™ T-antigen.
Fig. 4: Proposed mechanism.

Similar content being viewed by others

Data availability

Data support the findings of this study, including the WES raw data, are available from the corresponding author upon request (O.S.B) upon reasonable request.

References

  1. Mele C, Remuzzi G, Noris M. Hemolytic uremic syndrome. Semin Immunopathol. 2014;36:399ā€“420.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Nester CM, Barbour T, de Cordoba SR, Dragon-Durey MA, Fremeaux-Bacchi V, Goodship THJ, et al. Atypical aHUS: State of the art. Mol Immunol. 2015;67:31ā€“42.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Yoshida Y, Kato H, Ikeda Y, Nangaku M. Pathogenesis of Atypical Hemolytic Uremic Syndrome. J Atheroscler Thromb. 2019;26:99ā€“110.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  4. Zuber J, Fakhouri F, Roumenina LT, Loirat C, FrĆ©meaux-Bacchi V. Use of eculizumab for atypical haemolytic uraemic syndrome and C3 glomerulopathies. Nat Rev Nephrol. 2012;8:11. 2012;8:643ā€“57

    ArticleĀ  Google ScholarĀ 

  5. Angioi A, Fervenza FC, Sethi S, Zhang Y, Smith RJ, Murray D, et al. Diagnosis of complement alternative pathway disorders. Kidney Int. 2016;89:278ā€“88.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Maga TK, Nishimura CJ, Weaver AE, Frees KL, Smith RJH. Mutations in alternative pathway complement proteins in American patients with atypical hemolytic uremic syndrome. Hum Mutat. 2010;31:E1445ā€“60.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Sridharan M, Go RS, Willrich MAV. Atypical hemolytic uremic syndrome: Review of clinical presentation, diagnosis and management. J Immunol Methods. 2018;461:15ā€“22.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Noris M, Remuzzi G. Atypical hemolytic-uremic syndrome. N. Engl J Med. 2009;361:1676ā€“87.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. JĆ³zsi M, Licht C, Strobel S, Zipfel SLH, Richter H, Heinen S, et al. Factor H autoantibodies in atypical hemolytic uremic syndrome correlate with CFHR1/CFHR3 deficiency. Blood 2008;111:1512ā€“4.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  10. JĆ³zsi M, Strobel S, Dahse HM, Liu WS, Hoyer PF, Oppermann M, et al. Antiā€“factor H autoantibodies block C-terminal recognition function of factor H in hemolytic uremic syndrome. Blood 2007;110:1516ā€“8.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  11. Lemaire M, FrĆ©meaux-Bacchi V, Schaefer F, Choi M, Tang WH, Quintrec MLE, et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat Genet. 2013;45:5. 2013 Mar 31;45:531ā€“6

    ArticleĀ  Google ScholarĀ 

  12. Mele C, Lemaire M, Iatropoulos P, Piras R, Bresin E, Bettoni S, et al. Characterization of a new DGKE intronic mutation in genetically unsolved cases of familial atypical hemolytic uremic syndrome. Clin J Am Soc Nephrol. 2015;10:1011ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  13. Delvaeye M, Noris M, Vriese A de, Esmon CT, Esmon NL, Ferrell G, et al. Thrombomodulin mutations in atypical hemolyticā€“uremic syndrome. N Engl J Med. 2009;361:345. Available from: https://pubmed.ncbi.nlm.nih.gov/19625716/.

  14. Dahr W, Uhlenbruck G, Bird GWG. Cryptic A-like receptor sites in human erythrocyte glycoproteins: proposed nature of Tn-antigen. Vox Sang. 1974;27:29ā€“42.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Berger EG. Tn-syndrome. Biochimica et Biophysica Acta (BBA) - Mol Basis Dis. 1999;1455:255ā€“68.

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Bolscher JGM, Brevoord J, Nazmi K, Ju T, Veerman ECI, Van Wijk JAE, et al. Solid-phase synthesis of a pentavalent GalNAc-containing glycopeptide (Tn antigen) representing the nephropathy-associated IgA hinge region. Carbohydr Res. 2010;345:1998ā€“2003.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  17. Friedenreich V. Investigations into the thomsen hemagglutination phenomena. Acta Pathologica Microbiologica Scandinavica. 1928;5:59ā€“101.

    ArticleĀ  Google ScholarĀ 

  18. Coats MT, Murphy T, Paton JC, Gray B, Briles DE. Exposure of Thomsen-Friedenreich antigen in Streptococcus pneumoniae infection is dependent on pneumococcal neuraminidase A. Micro Pathog. 2011;50:343ā€“9.

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. McGraw ME, Lendon M, Stevens RF, Postlethwaite RJ, Taylor CM. Haemolytic uraemic syndrome and the Thomsen Friedenreich antigen. Pediatr Nephrol. 1989;3:135ā€“9. Available from: https://pubmed.ncbi.nlm.nih.gov/2701864/.

  20. Burin Des Roziers N, Chadebech P, Bodivit G, Guinchard E, Bruneel A, DuprĆ© T, et al. Red blood cell Thomsen-Friedenreich antigen expression and galectin-3 plasma concentrations in Streptococcus pneumoniae-associated hemolytic uremic syndrome and hemolytic anemia. Transfusion. 2015;552:1563ā€“71. https://pubmed.ncbi.nlm.nih.gov/25556575/.

  21. Bird GWG. Anti-T in peanuts. Vox Sang. 1964;9:748ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Novogrodsky A, Lotan R, Ravid A, Sharon N. Peanut Agglutinin, a new mitogen that binds to galactosyl sites exposed after neuraminidase treatment. J Immunol. 1975;115:1243ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. GĆ³mez Delgado I, Corvillo F, Nozal P, Arjona E, Madrid Ɓ, Melgosa M, et al. Complement genetic variants and FH desialylation in S. pneumoniae-Haemolytic Uraemic Syndrome. Front Immunol. 2021;12. Available from: https://pubmed.ncbi.nlm.nih.gov/33777036/.

  24. Xia L, Ju T, Westmuckett A, An G, Ivanciu L, Mcdaniel JM, et al. Defective angiogenesis and fatal embryonic hemorrhage in mice lacking core 1-derived O-glycans. J Cell Biol. 2004;164:451ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  25. Ju T, Cummings RD. Chaperone mutation in Tn syndrome. Nature. 2005;437:7063. 2005 Oct 26;437(7063):1252ā€“1252.

    ArticleĀ  Google ScholarĀ 

  26. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754ā€“60.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Picard Tools - By Broad Institute. Available from: http://broadinstitute.github.io/picard/.

  28. Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der Auwera GA, et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv. bioRxiv; 2017;201178.

  29. Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, KƤllberg M, et al. Manta: Rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics. 2016;32:1220ā€“2. Available from: https://pubmed.ncbi.nlm.nih.gov/26647377/.

  30. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfƶldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020;581:434ā€“43.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  31. L Phan, Y Jin, H Zhang, W Qiang, E Shekhtman, D Shao, et al. Allele Frequency Aggregator. Available from: https://www.ncbi.nlm.nih.gov/snp/docs/gsr/alfa/#citing-this-project.

  32. Auton A, Abecasis GR, Altshuler DM, Durbin RM, Bentley DR, Chakravarti A, et al. A global reference for human genetic variation. Nature. Nature Publishing Group; 2015;526:68ā€“74.

  33. Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46:D1062ā€“7.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Stenson PD, Mort M, Ball EV, Shaw K, Phillips AD, Cooper DN. The Human Gene Mutation Database: Building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing, and personalized genomic medicine. Hum Genet; 2014,133:1ā€“9.

  35. Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The Genotype-Tissue Expression (GTEx) project. 45, Nature Genetics. NIH Public Access; 2013;580ā€“5.

  36. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Tissue-based map of the human proteome. Science (1979). 2015;347(6220):1260419ā€“1260419.

  37. Thul PJ, Akesson L, Wiking M, Mahdessian D, Geladaki A, Ait Blal H, et al. A subcellular map of the human proteome. Science (1979). 2017;356:eaal3321.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  38. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 2010;20:110ā€“21.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  39. Rentzsch P, Schubach M, Shendure J, Kircher M. CADD-Spliceā€”improving genome-wide variant effect prediction using deep learning-derived splice scores. Genome Med. 2021;13:31.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  40. Jeanty P, Romero R, Hobbins JC. Fetal limb volume: a new parameter to assess fetal growth and nutrition. J Ultrasound Med. 1985;4:273ā€“82. Available from: https://onlinelibrary.wiley.com/doi/full/10.7863/jum.1985.4.6.273.

  41. Holle J, Habbig S, Gratopp A, Mauritsch A, MĆ¼ller D, Thumfart J. Complement activation in children with Streptococcus pneumoniae associated hemolytic uremic syndrome. Pediatr Nephrol. 2021;36:1311ā€“5.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  42. Von Vigier RO, Seibel K, Bianchetti MG. Positive Coombs test in pneumococcus-associated hemolytic uremic syndrome. A review of the literature. Nephron 1999;82:183ā€“4.

    ArticleĀ  Google ScholarĀ 

  43. Scobell RR, Kaplan BS, Copelovitch L. New insights into the pathogenesis of Streptococcus pneumoniaeā€“associated hemolytic uremic syndrome. Pediatr Nephrol. 2020;35:1585ā€“91.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  44. Brown EJ, Joiner KA, Frank MM. Interaction of desialated guinea pig erythrocytes with the classical and alternative pathways of guinea pig complement in vivo and in vitro. J Clin Invest. 1983;71:1710ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  45. Ƈakar N, Ozcakar ZB, Ozaltin F, Koyun M, Celikel Acar B, Bahat E, et al. Atypical hemolytic uremic syndrome in children aged. Nephron 2018;139:211ā€“8.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  46. Sansbury FH, Cordell HJ, Bingham C, Bromilow G, Nicholls A, Powell R, et al. Factors determining penetrance in familial atypical haemolytic uraemic syndrome. J Med Genet. 2014;51:756ā€“64.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  47. Ricklin D, Reis ES, Mastellos DC, Gros P, Lambris JD. Complement component C3 - The ā€œSwiss Army Knifeā€ of innate immunity and host defense. Immunol Rev. 2016;274:33.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  48. Fervenza FC, Sethi S. Circulating Complement Levels and C3 Glomerulopathy. Clin J Am Soc Nephrol. 2014;9:1829ā€“31.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  49. Tomaiuolo G. Biomechanical properties of red blood cells in health and disease towards microfluidics. Biomicrofluidics. 2014. Available from: https://pubmed.ncbi.nlm.nih.gov/25332724/.

  50. Yedgar S, Koshkaryev A, Barshtein G. The red blood cell in vascular occlusion. Pathophysiol Haemost Thromb. 2002;32:263ā€“8. https://pubmed.ncbi.nlm.nih.gov/13679654/.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  51. Endo Y, Matsushita M, Fujita T. Role of ficolin in innate immunity and its molecular basis. Immunobiology 2007;212:371ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  52. States DJ, Gish W. Combined use of sequence similarity and codon bias for coding region identification. J Comput Biol. 1994;1:39ā€“50.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  53. Matsushita M, Matsushita A, Endo Y, Nakata M, Kojima N, Mizuochi T, et al. Origin of the classical complement pathway: Lamprey orthologue of mammalian C1q acts as a lectin. Proc Natl Acad Sci USA. 2004;101:10127ā€“31.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

Download references

Funding

The study was funded by the Morris Kahn Family Foundation, the Israel Science Foundation (Grant no. 2034/18) awarded to OSB, and the National Knowledge Center for Rare/Orphan Diseases of the Israel Ministry of Science, Technology and Space, at Ben-Gurion University of the Negev and Soroka Medical Center, Beer-Sheva, Israel. The work of GS is supported in part by the Israel Ministry of Aliyah and Integration.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written by NH with the assistance of RS, EK, YY and OSB. NH performed bioinformatics and WES analysis. NH and GS designed and performed experiments. Microscopy was performed with the assistance of IC. RS, MES, EK, GL, MG and AN contributed to clinical evaluation of the patient. The study was supervised by OSB.

Corresponding author

Correspondence to Ohad S. Birk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

The participants of this study provided written informed consent according to a protocol approved by the Soroka Medical Center institutional review board and by the Israel National Committee for Human Genetic Studies, in adherence with the Helsinki principles (ID5071G).

Additional information

Publisherā€™s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadar, N., Schreiber, R., Eskin-Schwartz, M. et al. X-linked C1GALT1C1 mutation causes atypical hemolytic uremic syndrome. Eur J Hum Genet 31, 1101ā€“1107 (2023). https://doi.org/10.1038/s41431-022-01278-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41431-022-01278-5

This article is cited by

Search

Quick links