BRIEF COMMUNICATION

Clinical variability in DYNC2H1-related skeletal ciliopathies includes Ellis-van Creveld syndrome

Francesca Piceci-Sparascio ${ }^{1,2}$, Lucia Micale (i) ${ }^{1}$, Barbara Torres ${ }^{1}$, Valentina Guida ${ }^{1}$, Federica Consoli ${ }^{1}$, Isabella Torrente ${ }^{1}$, Annamaria Onori ${ }^{1}$, Emanuela Frustaci ${ }^{1}$, Maria Cecilia D'Asdia ${ }^{1}$, Francesco Petrizzelli (D) 3, Laura Bernardini (iD ${ }^{1}$, Cecilia Mancini ${ }^{4}$, Fiorenza Soli ${ }^{5}$, Dario Cocciadiferro ${ }^{6}$, Daniele Guadagnolo ${ }^{2}$, Gioia Mastromoro ${ }^{2}$, Carolina Putotto (D) ${ }^{7}$, Franco Fontana ${ }^{8}$, Nicola Brunetti-Pierri (D) ${ }^{9,10}$, Antonio Novelli ${ }^{6}$, Antonio Pizzuti ${ }^{2}$, Bruno Marino ${ }^{7}$, Maria Cristina Digilio ${ }^{4}$, Tommaso Mazza ${ }^{3}$, Bruno Dallapiccola ${ }^{4}$, Victor Luis Ruiz-Perez ${ }^{11,12,13}$, Marco Tartaglia (1) ${ }^{4}$, Marco Castori ${ }^{1}$ and Alessandro De Luca (i) ${ }^{1 凶}$
© The Author(s), under exclusive licence to European Society of Human Genetics 2023

Abstract

Deleterious variants of DYNC2H1 gene are associated with a wide spectrum of skeletal ciliopathies (SC). We used targeted parallel sequencing to analyze 25 molecularly unsolved families with different SCs. Deleterious DYNC2H1 variants were found in six sporadic patients and two monozygotic (MZ) twins. Clinical diagnoses included short rib-polydactyly type 3 in two cases, and asphyxiating thoracic dystrophy (ATD) in one case. Remarkably, clinical diagnosis fitted with EvC, mixed ATD/EvC and short rib-polydactyly/EvC phenotypes in three sporadic patients and the MZ twins. EvC/EvC-like features always occurred in compound heterozygotes sharing a previously unreported splice site change (c.6140-5A>G) or compound heterozygotes for two missense variants. These results expand the DYNC2H1 mutational repertoire and its clinical spectrum, suggesting that EvC may be occasionally caused by DYNC2H1 variants presumably acting as hypomorphic alleles.

European Journal of Human Genetics (2023) 31:479-484; https://doi.org/10.1038/s41431-022-01276-7

Ciliopathies are an expanding group of clinically variable and genetically heterogeneous disorders characterized by renal, liver, central nervous system, ocular and skeletal anomalies. Those with predominant skeletal involvement are grouped as skeletal ciliopathies (SCs). SCs comprise Weyers acrofacial dysostosis (WAD, MIM\# 193530), Ellis-van Creveld syndrome (EvC, MIM\# 225500), cranioectodermal dysplasia (CED, MIM\# 218330, or Sensenbrenner syndrome), asphyxiating thoracic dystrophy (ATD, MIM\# 208500; or Jeune syndrome), short rib-polydactyly type 1 (SRP1 or Saldino-Noonan type, MIM\# 613091), type 2 (SRP2 or Majewski type, MIM\# 263520), type 3 (SRP3 or Verma-Naumoff type, MIM\# 613091), and type 4 (SRP4 or Beemer-Langer type, MIM\# 269860).

To date, at least 30 genes coding for different structural cilia proteins have been implicated in SC [1, 2]. The distinct roles that these proteins have in ciliary function likely underlie some consolidated genotype-phenotype correlations and the different molecular epidemiology among SC. Most EvC cases are due to biallelic variants in EVC and EVC2 [3-5], while a few cases are caused by recessive variants in WRD35 [6], DYNC2LI1 [7], GLI1 [8] or dominant variants in PRKACA and PRKACB [9]. Among SCassociated genes, DYNC2H1 is the most commonly involved locus
and DYNC2H1 deleterious variants have been found in a broad spectrum of skeletal ciliopathies ranging from the perinatally lethal SRP types 1, 2, and 3 to non-lethal-ATD cases [1, 2, 10, 11].

We used targeted parallel sequencing to analyze an extended panel of 110 ciliary genes in 26 subjects (7 prenatal and 19 postnatal cases) belonging to 25 families with clinically suspected EvC or another SC. The genes included in the panel are listed in Supplementary Table S1. In all cases, single nucleotide variants in EVC, EVC2, WDR35, DYNC2LI1, GLI1, PRKACA and PRKACB, and intragenic copy number variants (CNVs) in EVC and EVC2 had been previously excluded by Sanger sequencing, a restricted multigene panel assessed by parallel sequencing and multiplex ligationdependent probe amplification analysis. Clinical selection criteria and description of the methods used for the molecular analyses are reported in the Supporting Information.

Sequencing identified putative deleterious variants in DYNC2H1 (NCBI Reference Sequence: NM_001377.3) in seven index cases, including six sporadic cases and a couple of monozygotic (MZ) twins. In six patients, two variants were identified, while one sporadic case showed a homozygous variant. In patients 1, 3, 6, 7 and 8 parental genotyping confirmed the occurrence of compound heterozygosity. In case 3, the homozygous splice site

[^0]Received: 19 August 2022 Revised: 17 November 2022 Accepted: 15 December 2022
Published online: 4 January 2023
 Association for Molecular Pathology (ACMG-AMP) classification of DYNC2H1 variants identified in this study.

Patient ${ }^{\text {a }}$	Nucleotide substitution ${ }^{\text {b }}$	RNA substitution	Protein substitution	Variant type	Protein Domain	GnomAD	CADD score	$\Delta \Delta G^{\text {c }}$	ACMG-AMP criteria met	ACMG-AMP classification	Pubmed
1	c.6140-5A>G	r.6139_6140insATAG	p.Val2048ArgfsTer9	Splicing	$A A A+2$	Absent	1	NE	PS3_Strong, PM2_Moderate, PM3_Moderate	LP	Not reported
	c.9171_9174delGGAA	NE	p.(Glu3058Ter)	Frameshift	MT-binding stalk	Absent	1	NE	PVS1_VeryStrong, PM2_Moderate. PM3_Moderate	P	Not reported
2	c. $12619 \mathrm{C}>$ T	NE	p.(Arg4207Ter)	Nonsense	ATP-ase ring (Dynein heavy) C-terminal	0.000004193	56	NE	PVS1_VeryStrong, PM2_Moderate. PM3_Moderate	P	Not reported
	c.6140-5A>G	r.6139_6140insATAG	p.Val2048ArgfsTer9	Splicing	AAA +2	Absent	/	NE	PS3_Strong, PM2_Moderate, PM3_Moderate	LP	Not reported
3	$\operatorname{arr[GRCh37]}$ 11q22.1q22.3 (99715102_103351453) $\times 1$	-	-	Whole gene deletion	-	1	/	NE	NA	P	Not reported
	c.6140-5A>G	r.6139_6140insATAG	p.Val2048ArgfsTer9	Splicing	$A A A+2$	Absent	1	NE	PS3_Strong, PM2_Moderate, PM3_Moderate	LP	Not reported
4	c. $11287 \mathrm{G} \times \mathrm{A}$	NE	p.(Ala3763Thr)	Missense	$A A A+6$	0.00005360	34	-0.808502	PM1_Moderate, PM2_Moderate, PP3_Supporting	vus	Not reported
	c.3181C>G	NE	p.(Leu1061Val)	Missense	Stem Domain	0.0008700	21.5	0.419578	PM2_Moderate	vus	Not reported
5	c. $11287 \mathrm{G} \times \mathrm{A}$	NE	p.(Ala3763Thr)	Missense	$A A A+6$	0.00005360	34	-0.808502	PM1_Moderate, PM2_Moderate, PP3_Supporting	vus	Not reported
	c.3181C>G	NE	p.(Leu1061Val)	Missense	Stem Domain	0.0008700	21.5	0.419578	PM2_Moderate	vus	Not reported
6	c.9171_9174delGGAA	NE	p.(Glu3058Ter)	Frameshift	MT-binding stalk	Absent	1	NE	PVS1_VeryStrong, PM2_Moderate	LP	Not reported
	c. $11453 C>$ T	NE	p.(Thr38181le)	Missense	$A A A+6$	Absent	24.9	1.65291	PM1_Moderate, PM2_Moderate,PM3_Moderate	LP	Not reported
7	c.4699C>G	NE	p.(Leu1567Val)	Missense	Stem Domain	Absent	25.2	1.16155	PM2_Moderate, PM3_Moderate, PP5_Supporting	vus	1
	c.503-9C>G	r.503_621del	p.(Arg167GlyfsTer4)	Splicing	-	Absent	1	NE	PS3_Strong, PM2_Moderate	LP	Not reported
8	c. $1151 \mathrm{C}>$ T	NE	p.(Ala384Val)	Missense	Stem Domain	0.0000244	28.3	1.56786	PM2_Moderate, PM3_Moderate PP3_Supporting	vus	15
	c.6342_6345delTCTT	NE	p. (Phe2114LeufsTer11)	Frameshift	AAA +2	Absent	1	NE	PVS1_VeryStrong, PM2_Moderate	LP	Not reported

 (\#0000407152), patient 4 (\#0000407195), patient 5 (\#0000407195), patient 6 (\#0000407196), patient 7 (\#0000407197); patient 8 (\#0000409854).
${ }^{\mathrm{b}}$ NCBI Reference Sequence: NM_001377.3.
${ }^{\mathrm{c}} \Delta \Delta \mathrm{G}(\Delta \mathrm{Gmt}-\Delta \mathrm{Gwt})$ for DYNC2H1 mutant protein.

Fig. 1 3D structure of DYNC2H1 obtained through modeling. Functional domains were colored in violet (stem, residues 1-1650), brown (AAA +1 , residues 1651-1875), green (AAA +2 , residues 1938-2161), beige (AAA +3 , residues 2251-2505), blue (AAA +4 , residues 2617-2863), pink (stalk, residues 2881-3169), gray (AAA +5 , residues $3244-3473$) and orange (AAA +6 , residues $3690-3905$). Variants were mapped on the wild-type structure and highlighted in red.
change, c.6140-5A>G, was absent in the father, whose paternity had been confirmed by DNA fingerprinting test (PowerPlex 16 System, Promega, Madison, WI, USA). In this patient, SNP-array analysis allowed to identify a large deletion encompassing 31 genes, including the entire DYNC2H1 as well as other 21 OMIM genes (arr[GRCh37] 11q22.1q22.3 (99715102_103351453) \times 1) (Supplementary Fig. S1 and Supplementary Table S2).

The mutation spectrum included a total of 11 DYNC2H1 variants (Table 1). Among the novel variants, two were recurrent (c.6140-5A>G [patients 1, 2, and 3] and c.9171_9174delGGAA [patients 1 and 6]). Although the DYNC2H1 variants were distributed along the entire length of the gene, missense changes affected two specific regions of the protein, the Stem and AAA +6 domains (Fig. 1). We explored a possible structural and functional impact of these amino acid alterations in terms of protein stability by measuring their induced thermodynamic change [12]. Based on the difference in free energy value ($\Delta \Delta \mathrm{G}=\Delta \mathrm{Gmt}-\Delta \mathrm{Gwt}$), p.(Ala384Val), p.(Leu1567Val) and p.(Thr38181le) variants were classified as destabilizing and p.(Ala3763Thr) change as slightly stabilizing. Finally, a neutral impact was predicted for the p.(Leu1061Val) substitution. The free energy calculations results are summarized in Table 1, while protein stability study methods are described in the Supporting Information.

According to in silico splicing predictions, c.6140-5A>G and c. $503-9 \mathrm{C}>\mathrm{G}$ intronic variants were expected to affect proper transcript processing (Supporting Information). cDNA analysis confirmed that both variants affected splicing. Specifically, c.6140$5 A>G$ creates a new 3^{\prime} splice acceptor site leading to an aberrantly processed transcript, which incorporates four bases of intron 38 (r.6139_6140insATAG) (Supplementary Fig. S2). This altered processing results in a frameshift and introduces of a premature termination codon [p.(Val2048ArgfsTer9)], which is predicted to lead to nonsense-mediated mRNA decay (NMD). Similarly, cDNA analysis confirmed that also $\mathrm{c} .503-9 \mathrm{C}>\mathrm{G}$ affects splicing by causing the out-of-frame skipping of exon 4 (r.503_621del), the consequent introduction of a premature stop codon, and the translation
of a truncated protein presumably undergoing NMD (Supplementary Fig. S3).
Demographic, radiographic and clinical data of the eight patients are shown in Table 2. Selected clinical and radiological features are illustrated in Supplementary Fig. S4. Detailed clinical descriptions of each case are reported in Supporting Information. In summary, clinical features suggested the diagnosis of EvC in two cases (patients 2 and 4/5), SRP3 in two cases (patients 6 and 7), ATD in one case (patient 1) and a mixed EvC/ATD (patient 3) or EvC/SRP3 (patient 8) phenotype in two cases.
Deleterious biallelic variants in DYNC2H1 gene have been identified in patients with ATD, SRP1, SRP2, SRP3, and very recently in three individuals with EvC showing no cardiac involvement, but multiple frenula and nail hypoplasia [13]. The present results further expand $\operatorname{DYNC} 2 \mathrm{H} 1$-associated mutational repertoire and widen the clinical spectrum of the deleterious variants of this gene to include also EvC. The identification of potentially disease-causing DYNC2H1 variants in individuals with a presentation fitting with EvC rather than with ATD and short rib-polydactyly is not surprising within the spectrum of SCs. The current nosology of hereditary bone disorders maintains separate these conditions [14]. Such a distinction is supported by considering the overall severity, postnatal life expectancy and pattern of associated extra-skeletal features. However, the existence of a phenotypic continuum among them dates back to the observation of SRP3 and ATD in the same family [15]. In the present cohort, two index cases had a diagnosis of SRP3 before molecular testing, supporting the presence of a predominant pattern of anomalies associated with DYNC2H1 deleterious variants at the severe end of the spectrum. In addition, biallelic DYNC2H1 variants were found in a case of ATD with multiple oral frenula and favorable prognosis (patient 1). A sporadic case was considered affected by a mixed ATD/EvC phenotype featuring short stature of the short limb type, dysplastic nails, tetramelic postaxial polydactyly, and congenital heart and genitourinary anomalies (patient 3). Another sporadic case was clinically framed as a mixed SRP3/EvC phenotype
 thoracic dysplasia type 3 (SRP3).

$$
\begin{aligned}
& \text { short thin nails, } U \text { unilateral, TGA great vessels transposition, VC vertebral cleft. }
\end{aligned}
$$

because of a mild bone dysplasia with short ribs associated with partial feet syndactyly. Finally, two MZ twins showed full-blown characteristics of EvC including multiple oral frenula, dysplastic nails, short stature with short limbs, narrow thorax and polydactyly (patients 4 and 5). The present findings support the existence of a much wider phenotypic spectrum for biallelic DYNC2H1 variants extending to an attenuated skeletal phenotype strongly resembling EvC.

We identified 11 different DYNC2H1 variants, including two known as pathogenic [1, 16], and nine not previously reported. To our knowledge, this is the first description of compound heterozygosity for a whole gene deletion (WGD) including DYNC2H1. Interestingly, the novel c.6140-5A>G splice site change was found in three subjects with variable clinical features fitting with ATD (case 1), EvC (case 2), and both conditions (case 3). In two cases, c.6140-5A>G was combined with a truncating variant [p.(Glu3058Ter), p.(Arg4207Ter)], and in one case with a WGD. We speculate that the phenotypic variability of these patients, ranging from ATD to EvC, is attributable to a variable loss of DYNC2H1 function induced by the null allele, while the specific c.6140-5A>G splice change probably acts as a hypomorphic allele. Accordingly, this intronic variant has never been identified in association with SRP3, which is the most severe DYNC2H1-related SC. c. $6140-5 \mathrm{~A}>\mathrm{G}$ was found in patients from Southern Italy, probably representing a founder effect in that population. Interestingly, the three DYNC2H1mutated individuals with EvC phenotype recently described in Aubert-Mucca et al. [13] were also compound heterozygous for a mutant null allele and an intronic variant outside the canonical splice sites. The description of further DYNC2H1-mutated EvC cases may clarify whether or not there is an association between DYNC2H1 intronic variants and EvC. The identification of two missense changes [p.(Ala3763Thr) and p.(Leu1061Val)] in MZ twins displaying a typical EvC phenotype may suggest the existence of specific DYNC2H1 missense variants determining less severe consequences on the protein function and, thus, leading to milder phenotypes. This hypothesis seems to be consistent with protein stability computations, predicting that variants associated with SRP3 destabilize the protein [p.(Ala384Val), p.(Leu1567Val) and p.(Thr3818lle)], while those associated with EvC are either neutral [p.(Leu1061Val)] or increase protein stability [p.(Ala3763Thr)].

In conclusion, this study adds nine novel variants to the DYNC2H1 mutational repertoire and provides evidence that the associated clinical spectrum of pathogenic DYNC2H1 variants includes EvC and EvC-like phenotypes. This work also highlights the utility to add splicing and CNV analysis in the diagnostic flowchart of SCs in order to improve the clinical effectiveness of the laboratory report.

DATA AVAILABILITY

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request. All variants have been added to the Leiden Open Variation Database (LOVD, https://databases.lovd.nl/shared/variants/ DYNC2H1/unique).

REFERENCES

1. Zhang W, Taylor SP, Ennis HA, Forlenza KN, Duran I, Li B, et al. Expanding the genetic architecture and phenotypic spectrum in the skeletal ciliopathies. Hum Mutat. 2018;39:152-66.
2. Hammarsjo A, Pettersson M, Chitayat D, Handa A, Anderlid B-M, Bartocci M, et al. High diagnostic yield in skeletal ciliopathies using massively parallel genome sequencing, structural variant screening and RNA analyses. J Hum Genet. 2021;66:995-1008.
3. Ruiz-Perez VL, Ide SE, Strom TM, Lorenz B, Wilson D, Woods K, et al. Mutations in a new gene in Ellis-van Creveld syndrome and Weyers acrodental dysostosis. Nat Genet. 2000;24:283-6.
4. Ruiz-Perez VL, Tompson SW, Blair HJ, Espinoza-Valdez C, Lapunzina P, Silva E, et al. Mutations in two nonhomologous genes in a head-to-head configuration cause Ellis-van Creveld syndrome. Am J Hum Genet. 2003;72:728-32.
5. D'Asdia MC, Torrente I, Consoli F, Ferese R, Magliozzi M, Bernardini L, et al. Novel and recurrent EVC and EVC2 mutations in Ellis-van Creveld syndrome and Weyers acrofacial dyostosis. Eur J Med Genet. 2013;56:80-87.
6. Caparrós-Martín JA, De Luca A, Cartault F, Aglan M, Temtamy S, Otaify GA, et al. Specific variants in WDR35 cause a distinctive form of Ellis-van Creveld syndrome by disrupting the recruitment of the EvC complex and SMO into the cilium. Hum Mol Genet. 2015;24:4126-37.
7. Niceta M, Margiotti K, Digilio MC, Guida V, Bruselles A, Pizzi S, et al. Biallelic mutations in DYNC2LI1 are a rare cause of Ellis-van Creveld syndrome. Clin Genet. 2018;93:632-9.
8. Palencia-Campos A, Ullah A, Nevado J, Yıldırım R, Unal E, Ciorraga M, et al. GLI1 inactivation is associated with developmental phenotypes overlapping with Ellisvan Creveld syndrome. Hum Mol Genet. 2017;26:4556-71.
9. Palencia-Campos A, Aoto PC, Machal EMF, Rivera-Barahona A, Soto-Bielicka P, Bertinetti D, et al. Germline and mosaic variants in PRKACA and PRKACB cause a multiple congenital malformation syndrome. Am J Hum Genet. 2020;107:977-88.
10. Schmidts M, Arts HH, Bongers EM, Yap Z, Oud MM, Antony D, et al. Exome sequencing identifies DYNC2H1 mutations as a common cause of asphyxiating thoracic dystrophy (Jeune syndrome) without major polydactyly, renal or retinal involvement. J Med Genet. 2013;50:309-23.
11. El Hokayem J, Huber C, Couve A, Baujat G, Bouvier R, Cavalcanti DP, et al. NEK1 and DYNC2H1 are both involved in short rib polydactyly Majewski type but not in Beemer Langer cases. J Med Genet. 2012;49:227-33.
12. Wang Z, Moult J. SNPs, protein structure, and disease. Hum Mutat. 2001;17:263-70.
13. Aubert-Mucca M, Huber C, Baujat G, Michot C, Zarhrate M, Bras M, et al. Ellis-Van Creveld Syndrome: clinical and molecular analysis of 50 individuals. J Med Genet 2022:2022-108435.
14. Mortier GR, Cohn DH, Cormier-Daire V, Hall C, Krakow D, Mundlos S, et al. Nosology and classification of genetic skeletal disorders: 2019 revision. Am J Med Genet A .2019;179:2393-419.
15. Ho NC, Francomano CA, van Allen M. Jeune asphyxiating thoracic dystrophy and short-rib polydactyly type III (Verma-Naumoff) are variants of the same disorder. Am J Med Genet. 2000;90:310-4.
16. Mei L, Huang Y, Pan Q, Su W, Quan Y, Liang D, et al. Targeted next-generation sequencing identifies novel compound heterozygous mutations of DYNC2H1 in a fetus with short rib-polydactyly syndrome, type III. Case Reports. Clin Chim Acta. 2015;447:47-51.

ACKNOWLEDGEMENTS

We would like to express our gratitude to the patients who made this study possible.

AUTHOR CONTRIBUTIONS

Conceptualization: FP-S, BM, MT, ADL; Formal analysis: MCD, FP, LB, TM; Funding acquisition: $F P-S, L M, T M, M T, M C, A D L$; Investigation: $F P-S, L M, B T, V G, F C, I T, A O, E F$, MCD, FP, LB, CM, DC, ADL; Project administration: FP-S, ADL; Resources: FS, DG, GM, CP, FF, NB-P, AN, AP, BM, MCD, BD, VLR-P, MC; Supervision: TM, MC, ADL; Visualization: FP-S, LM, LB, MCD, TM, ADL; Writing - original draft: FP-S, LM; Writing - review \& editing: TM, BD, VLR-P, MT, MC, ADL.

FUNDING

This study was supported by funding from the Italian Ministry of Health (RC-2020 and RC-2021, to ADL; RC-2018-2021 to LM and MC; 5×1000, to MT and TM), and the Sapienza University of Rome research grants "avvio alla ricerca 2019 (AR11916B7A1835AC)" and "avvio alla ricerca 2021 (AR12117A86EA0740)" to FP-S.

COMPETING INTERESTS

The authors declare no competing interests.

ETHICS APPROVAL

The study was performed in accordance with the principles set out in the 1984 Declaration of Helsinki and subsequent versions and was approved by the local institutional review board (no. 13/CE 2021). All patients signed an informed consent for the scientific use of clinical and genetic data. Written informed consent for publication of images was obtained.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41431-022-01276-7.

Correspondence and requests for materials should be addressed to Alessandro De Luca.

Reprints and permission information is available at http://www.nature.com/ reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

[^0]: ${ }^{1}$ Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy. ${ }^{2}$ Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy. ${ }^{3}$ Laboratory of Bioinformatics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy. ${ }^{4}$ Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy. ${ }^{5}$ Medical Genetic Unit, Santa Chiara Hospital APSS, Trento, Italy. ${ }^{6}$ Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital and Research Institute, IRCCS, Rome, Italy. ${ }^{7}$ Department of Pediatrics, Obstetrics and Gynecology, "Sapienza" University of Rome, Rome, Italy. ${ }^{8}$ Pediatric Hospital, Tortona, Italy. ${ }^{9}$ Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy. ${ }^{10}$ Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy. ${ }^{11}$ Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM Madrid, Spain. ${ }^{12}$ CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain. ${ }^{13}$ Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPaz-UAM, Madrid, Spain.
 $\boxtimes_{\text {email: }}$ a.deluca@css-mendel.it

