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Clinical variability in DYNC2H1-related skeletal ciliopathies
includes Ellis-van Creveld syndrome
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Deleterious variants of DYNC2H1 gene are associated with a wide spectrum of skeletal ciliopathies (SC). We used targeted parallel
sequencing to analyze 25 molecularly unsolved families with different SCs. Deleterious DYNC2H1 variants were found in six sporadic
patients and two monozygotic (MZ) twins. Clinical diagnoses included short rib-polydactyly type 3 in two cases, and asphyxiating
thoracic dystrophy (ATD) in one case. Remarkably, clinical diagnosis fitted with EvC, mixed ATD/EvC and short rib-polydactyly/EvC
phenotypes in three sporadic patients and the MZ twins. EvC/EvC-like features always occurred in compound heterozygotes
sharing a previously unreported splice site change (c.6140-5A>G) or compound heterozygotes for two missense variants. These
results expand the DYNC2H1 mutational repertoire and its clinical spectrum, suggesting that EvC may be occasionally caused by
DYNC2H1 variants presumably acting as hypomorphic alleles.
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Ciliopathies are an expanding group of clinically variable and
genetically heterogeneous disorders characterized by renal, liver,
central nervous system, ocular and skeletal anomalies. Those with
predominant skeletal involvement are grouped as skeletal
ciliopathies (SCs). SCs comprise Weyers acrofacial dysostosis
(WAD, MIM# 193530), Ellis-van Creveld syndrome (EvC, MIM#
225500), cranioectodermal dysplasia (CED, MIM# 218330, or
Sensenbrenner syndrome), asphyxiating thoracic dystrophy
(ATD, MIM# 208500; or Jeune syndrome), short rib-polydactyly
type 1 (SRP1 or Saldino-Noonan type, MIM# 613091), type 2 (SRP2
or Majewski type, MIM# 263520), type 3 (SRP3 or Verma-Naumoff
type, MIM# 613091), and type 4 (SRP4 or Beemer-Langer type,
MIM# 269860).
To date, at least 30 genes coding for different structural cilia

proteins have been implicated in SC [1, 2]. The distinct roles that
these proteins have in ciliary function likely underlie some
consolidated genotype-phenotype correlations and the different
molecular epidemiology among SC. Most EvC cases are due to
biallelic variants in EVC and EVC2 [3–5], while a few cases are
caused by recessive variants inWRD35 [6], DYNC2LI1 [7], GLI1 [8] or
dominant variants in PRKACA and PRKACB [9]. Among SC-
associated genes, DYNC2H1 is the most commonly involved locus

and DYNC2H1 deleterious variants have been found in a broad
spectrum of skeletal ciliopathies ranging from the perinatally
lethal SRP types 1, 2, and 3 to non-lethal-ATD cases [1, 2, 10, 11].
We used targeted parallel sequencing to analyze an extended

panel of 110 ciliary genes in 26 subjects (7 prenatal and 19
postnatal cases) belonging to 25 families with clinically suspected
EvC or another SC. The genes included in the panel are listed in
Supplementary Table S1. In all cases, single nucleotide variants in
EVC, EVC2, WDR35, DYNC2LI1, GLI1, PRKACA and PRKACB, and
intragenic copy number variants (CNVs) in EVC and EVC2 had been
previously excluded by Sanger sequencing, a restricted multigene
panel assessed by parallel sequencing and multiplex ligation-
dependent probe amplification analysis. Clinical selection criteria
and description of the methods used for the molecular analyses
are reported in the Supporting Information.
Sequencing identified putative deleterious variants in DYNC2H1

(NCBI Reference Sequence: NM_001377.3) in seven index cases,
including six sporadic cases and a couple of monozygotic (MZ)
twins. In six patients, two variants were identified, while one
sporadic case showed a homozygous variant. In patients 1, 3, 6, 7
and 8 parental genotyping confirmed the occurrence of com-
pound heterozygosity. In case 3, the homozygous splice site
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change, c.6140-5A>G, was absent in the father, whose paternity
had been confirmed by DNA fingerprinting test (PowerPlex 16
System, Promega, Madison, WI, USA). In this patient, SNP-array
analysis allowed to identify a large deletion encompassing 31
genes, including the entire DYNC2H1 as well as other 21 OMIM
genes (arr[GRCh37] 11q22.1q22.3 (99715102_103351453) × 1)
(Supplementary Fig. S1 and Supplementary Table S2).
The mutation spectrum included a total of 11 DYNC2H1

variants (Table 1). Among the novel variants, two were recurrent
(c.6140-5A>G [patients 1, 2, and 3] and c.9171_9174delGGAA
[patients 1 and 6]). Although the DYNC2H1 variants were
distributed along the entire length of the gene, missense
changes affected two specific regions of the protein, the Stem
and AAA+ 6 domains (Fig. 1). We explored a possible structural
and functional impact of these amino acid alterations in terms of
protein stability by measuring their induced thermodynamic
change [12]. Based on the difference in free energy value
(ΔΔG= ΔGmt – ΔGwt), p.(Ala384Val), p.(Leu1567Val) and
p.(Thr3818Ile) variants were classified as destabilizing and
p.(Ala3763Thr) change as slightly stabilizing. Finally, a neutral
impact was predicted for the p.(Leu1061Val) substitution. The
free energy calculations results are summarized in Table 1, while
protein stability study methods are described in the Supporting
Information.
According to in silico splicing predictions, c.6140-5A>G and

c.503-9C>G intronic variants were expected to affect proper
transcript processing (Supporting Information). cDNA analysis
confirmed that both variants affected splicing. Specifically, c.6140-
5A>G creates a new 3´ splice acceptor site leading to an aberrantly
processed transcript, which incorporates four bases of intron 38
(r.6139_6140insATAG) (Supplementary Fig. S2). This altered
processing results in a frameshift and introduces of a premature
termination codon [p.(Val2048ArgfsTer9)], which is predicted to
lead to nonsense-mediated mRNA decay (NMD). Similarly, cDNA
analysis confirmed that also c.503-9C>G affects splicing by causing
the out-of-frame skipping of exon 4 (r.503_621del), the conse-
quent introduction of a premature stop codon, and the translation

of a truncated protein presumably undergoing NMD (Supplemen-
tary Fig. S3).
Demographic, radiographic and clinical data of the eight

patients are shown in Table 2. Selected clinical and radiological
features are illustrated in Supplementary Fig. S4. Detailed clinical
descriptions of each case are reported in Supporting Information.
In summary, clinical features suggested the diagnosis of EvC in
two cases (patients 2 and 4/5), SRP3 in two cases (patients 6 and
7), ATD in one case (patient 1) and a mixed EvC/ATD (patient 3) or
EvC/SRP3 (patient 8) phenotype in two cases.
Deleterious biallelic variants in DYNC2H1 gene have been

identified in patients with ATD, SRP1, SRP2, SRP3, and very
recently in three individuals with EvC showing no cardiac
involvement, but multiple frenula and nail hypoplasia [13]. The
present results further expand DYNC2H1-associated mutational
repertoire and widen the clinical spectrum of the deleterious
variants of this gene to include also EvC. The identification of
potentially disease-causing DYNC2H1 variants in individuals with
a presentation fitting with EvC rather than with ATD and short
rib-polydactyly is not surprising within the spectrum of SCs. The
current nosology of hereditary bone disorders maintains
separate these conditions [14]. Such a distinction is supported
by considering the overall severity, postnatal life expectancy and
pattern of associated extra-skeletal features. However, the
existence of a phenotypic continuum among them dates back
to the observation of SRP3 and ATD in the same family [15]. In
the present cohort, two index cases had a diagnosis of SRP3
before molecular testing, supporting the presence of a
predominant pattern of anomalies associated with DYNC2H1
deleterious variants at the severe end of the spectrum. In
addition, biallelic DYNC2H1 variants were found in a case of ATD
with multiple oral frenula and favorable prognosis (patient 1). A
sporadic case was considered affected by a mixed ATD/EvC
phenotype featuring short stature of the short limb type,
dysplastic nails, tetramelic postaxial polydactyly, and congenital
heart and genitourinary anomalies (patient 3). Another sporadic
case was clinically framed as a mixed SRP3/EvC phenotype

Fig. 1 3D structure of DYNC2H1 obtained through modeling. Functional domains were colored in violet (stem, residues 1-1650), brown
(AAA+ 1, residues 1651–1875), green (AAA+ 2, residues 1938–2161), beige (AAA+ 3, residues 2251–2505), blue (AAA+ 4, residues
2617–2863), pink (stalk, residues 2881–3169), gray (AAA+ 5, residues 3244–3473) and orange (AAA+ 6, residues 3690–3905). Variants were
mapped on the wild-type structure and highlighted in red.
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because of a mild bone dysplasia with short ribs associated with
partial feet syndactyly. Finally, two MZ twins showed full-blown
characteristics of EvC including multiple oral frenula, dysplastic
nails, short stature with short limbs, narrow thorax and
polydactyly (patients 4 and 5). The present findings support
the existence of a much wider phenotypic spectrum for biallelic
DYNC2H1 variants extending to an attenuated skeletal pheno-
type strongly resembling EvC.
We identified 11 different DYNC2H1 variants, including two

known as pathogenic [1, 16], and nine not previously reported.
To our knowledge, this is the first description of compound
heterozygosity for a whole gene deletion (WGD) including
DYNC2H1. Interestingly, the novel c.6140-5A>G splice site
change was found in three subjects with variable clinical
features fitting with ATD (case 1), EvC (case 2), and both
conditions (case 3). In two cases, c.6140-5A>G was combined
with a truncating variant [p.(Glu3058Ter), p.(Arg4207Ter)], and in
one case with a WGD. We speculate that the phenotypic
variability of these patients, ranging from ATD to EvC, is
attributable to a variable loss of DYNC2H1 function induced by
the null allele, while the specific c.6140-5A>G splice change
probably acts as a hypomorphic allele. Accordingly, this intronic
variant has never been identified in association with SRP3, which
is the most severe DYNC2H1-related SC. c.6140-5A>G was found
in patients from Southern Italy, probably representing a founder
effect in that population. Interestingly, the three DYNC2H1-
mutated individuals with EvC phenotype recently described in
Aubert-Mucca et al. [13] were also compound heterozygous for a
mutant null allele and an intronic variant outside the canonical
splice sites. The description of further DYNC2H1-mutated EvC
cases may clarify whether or not there is an association between
DYNC2H1 intronic variants and EvC. The identification of two
missense changes [p.(Ala3763Thr) and p.(Leu1061Val)] in MZ
twins displaying a typical EvC phenotype may suggest the
existence of specific DYNC2H1 missense variants determining
less severe consequences on the protein function and, thus,
leading to milder phenotypes. This hypothesis seems to be
consistent with protein stability computations, predicting that
variants associated with SRP3 destabilize the protein [p.(Ala384-
Val), p.(Leu1567Val) and p.(Thr3818Ile)], while those associated
with EvC are either neutral [p.(Leu1061Val)] or increase protein
stability [p.(Ala3763Thr)].
In conclusion, this study adds nine novel variants to the

DYNC2H1 mutational repertoire and provides evidence that the
associated clinical spectrum of pathogenic DYNC2H1 variants
includes EvC and EvC-like phenotypes. This work also highlights
the utility to add splicing and CNV analysis in the diagnostic flow-
chart of SCs in order to improve the clinical effectiveness of the
laboratory report.
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