Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bi-allelic variants in human TCTE1/DRC5 cause asthenospermia and male infertility

Abstract

Asthenozoospermia (AZS) is a common male infertility phenotype, accounting for 18% of infertile patients. The N-DRC (Nexin-dynein Regulatory Complex) complex is the motor regulating device in the flagellum, which is found in most eukaryotic organisms with flagellum. The deletion of TCTE1 (T-Complex-Associated Testis-Expressed 1), a component of the N-DRC complex also known as DRC5 (Dynein regulatory complex subunit 5), has been shown to cause asthenospermia in mice. This study mainly introduces a clinical case of male infertility with normal sperm count, normal morphological structure, but low motility and weak forward movement. By whole-exome sequencing, we found that TCTE1 became a frameshift mutant, ENST00000371505.5: c.396_397insTC (p.Arg133Serfs*33), resulting in the rapid degradation of TCTE1 protein and male infertility. This phenotype is similar to the Tcte1/ (Tcte1 knockout) mice, which showed structural integrity but reduced motility. Further, different from mice, in vitro Fertilization (IVF) could successfully solve the patient’s problem of infertility. Our data provides a better understanding of the biological functions of TCTE1 in human flagellum assembly and male fertility.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the mutated TCTE1 variant and its expression profile.
Fig. 2: Morphological observations of the patient sperm using TEM and immunofluorescence.
Fig. 3: Expression and localization of N-DRC components in the human and mice sperm flagellum.
Fig. 4: Mice IVF experiment and movement analysis.
Fig. 5: Morphological observation of brain and tracheal cilia in mice.

Data availability

The data associated with this article can be shared upon reasonable request.

References

  1. Curi SM, Ariagno JI, Chenlo PH, Mendeluk GR, Pugliese MN, Sardi Segovia LM, et al. Asthenozoospermia: analysis of a large population. Arch Androl. 2003;49:343–9.

    Article  CAS  PubMed  Google Scholar 

  2. Ben Khelifa M, Coutton C, Zouari R, Karaouzene T, Rendu J, Bidart M, et al. Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. Am J Hum Genet. 2014;94:95–104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Coutton C, Martinez G, Kherraf ZE, Amiri-Yekta A, Boguenet M, Saut A, et al. Bi-allelic mutations in ARMC2 lead to severe astheno-teratozoospermia due to sperm flagellum malformations in humans and mice. Am J Hum Genet. 2019;104:331–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. He X, Li W, Wu H, Lv M, Liu W, Liu C, et al. Novel homozygous CFAP69 mutations in humans and mice cause severe asthenoteratospermia with multiple morphological abnormalities of the sperm flagella. J Med Genet. 2019;56:96–103.

    Article  CAS  PubMed  Google Scholar 

  5. He X, Liu C, Yang X, Lv M, Ni X, Li Q, et al. Bi-allelic loss-of-function variants in CFAP58 cause flagellar axoneme and mitochondrial sheath defects and asthenoteratozoospermia in humans and mice. Am J Hum Genet. 2020;107:514–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu C, He X, Liu W, Yang S, Wang L, Li W, et al. Bi-allelic mutations in TTC29 Cause Male Subfertility with Asthenoteratospermia in Humans and Mice. Am J Hum Genet. 2019;105:1168–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu C, Miyata H, Gao Y, Sha Y, Tang S, Xu Z, et al. Bi-allelic DNAH8 variants lead to multiple morphological abnormalities of the sperm flagella and primary male infertility. Am J Hum Genet. 2020;107:330–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu W, He X, Yang S, Zouari R, Wang J, Wu H, et al. Bi-allelic mutations in TTC21A induce asthenoteratospermia in humans and mice. Am J Hum Genet. 2019;104:738–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu W, Sha Y, Li Y, Mei L, Lin S, Huang X, et al. Loss-of-function mutations in SPEF2 cause multiple morphological abnormalities of the sperm flagella (MMAF). J Med Genet. 2019;56:678–84.

    Article  CAS  PubMed  Google Scholar 

  10. Lorès P, Coutton C, El Khouri E, Stouvenel L, Givelet M, Thomas L, et al. Homozygous missense mutation L673P in adenylate kinase 7 (AK7) leads to primary male infertility and multiple morphological anomalies of the flagella but not to primary ciliary dyskinesia. Hum Mol Genet. 2018;27:1196–211.

    Article  PubMed  CAS  Google Scholar 

  11. Lv M, Liu W, Chi W, Ni X, Wang J, Cheng H, et al. Homozygous mutations in DZIP1 can induce asthenoteratospermia with severe MMAF. J Med Genet. 2020;57:445–53.

    Article  CAS  PubMed  Google Scholar 

  12. Sha YW, Xu X, Mei LB, Li P, Su ZY, He XQ, et al. A homozygous CEP135 mutation is associated with multiple morphological abnormalities of the sperm flagella (MMAF). Gene. 2017;633:48–53.

    Article  CAS  PubMed  Google Scholar 

  13. Shen Y, Zhang F, Li F, Jiang X, Yang Y, Li X, et al. Loss-of-function mutations in QRICH2 cause male infertility with multiple morphological abnormalities of the sperm flagella. Nat. Commun. 2019;10:433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tang S, Wang X, Li W, Yang X, Li Z, Liu W, et al. Biallelic mutations in CFAP43 and CFAP44 cause male infertility with multiple morphological abnormalities of the sperm flagella. Am J Hum Genet. 2017;100:854–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Auguste Y, Delague V, Desvignes J-P, Longepied G, Gnisci A, Besnier P, et al. Loss of Calmodulin- and Radial-Spoke-Associated Complex Protein CFAP251 leads to immotile spermatozoa lacking mitochondria and infertility in men. Am J Hum Genet. 2018;103:413–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li W, He X, Yang S, Liu C, Wu H, Liu W, et al. Biallelic mutations of CFAP251 cause sperm flagellar defects and human male infertility. J Hum Genet. 2019;64:49–54.

    Article  CAS  PubMed  Google Scholar 

  17. Liu S, Zhang J, Kherraf ZE, Sun S, Zhang X, Cazin C, et al.: CFAP61 is required for sperm flagellum formation and male fertility in human and mouse. bioRxiv 2021: 2021.2003.2004.433881.

  18. Tu C, Wang W, Hu T, Lu G, Lin G, Tan YQ. Genetic underpinnings of asthenozoospermia. Best Pract Res Clin Endocrinol Metab. 2020;34:101472.

    Article  CAS  PubMed  Google Scholar 

  19. Wilton LJ, Temple-Smith PD, de Kretser DM. Quantitative ultrastructural analysis of sperm tails reveals flagellar defects associated with persistent asthenozoospermia. Hum Reprod. 1992;7:510–6.

    Article  CAS  PubMed  Google Scholar 

  20. Xu X, Sha YW, Mei LB, Ji ZY, Qiu PP, Ji H, et al. A familial study of twins with severe asthenozoospermia identified a homozygous SPAG17 mutation by whole-exome sequencing. Clin Genet. 2018;93:345–9.

    Article  CAS  PubMed  Google Scholar 

  21. Olbrich H, Häffner K, Kispert A, Völkel A, Volz A, Sasmaz G, et al. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat Genet. 2002;30:143–4.

    Article  CAS  PubMed  Google Scholar 

  22. Antony D, Becker-Heck A, Zariwala MA, Schmidts M, Onoufriadis A, Forouhan M, et al. Mutations in CCDC39 and CCDC40 are the major cause of primary ciliary dyskinesia with axonemal disorganization and absent inner dynein arms. Hum Mutat. 2013;34:462–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Castleman VH, Romio L, Chodhari R, Hirst RA, de Castro SC, Parker KA, et al. Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-microtubular-pair abnormalities. Am J Hum Genet. 2009;84:197–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moye AR, Bedoni N, Cunningham JG. Mutations in ARL2BP, a protein required for ciliary microtubule structure, cause syndromic male infertility in humans and mice. PLoS Genet. 2019;15:e1008315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heuser T, Raytchev M, Krell J, Porter ME, Nicastro D. The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. J cell Biol. 2009;187:921–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bower R, Tritschler D, Vanderwaal K, Perrone CA, Mueller J, Fox L, et al. The N-DRC forms a conserved biochemical complex that maintains outer doublet alignment and limits microtubule sliding in motile axonemes. Mol Biol cell. 2013;24:1134–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Castaneda JM, Hua R, Miyata H, Oji A, Guo Y, Cheng Y, et al. TCTE1 is a conserved component of the dynein regulatory complex and is required for motility and metabolism in mouse spermatozoa. Proc Natl Acad Sci USA. 2017;114:E5370–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu M, Shi X, Bi Y, Qi L, Guo X, Wang L, et al. SHCBP1L, a conserved protein in mammals, is predominantly expressed in male germ cells and maintains spindle stability during meiosis in testis. Mol Hum Reprod. 2014;20:463–75.

    Article  PubMed  CAS  Google Scholar 

  29. Hasuwa H, Muro Y, Ikawa M, Kato N, Tsujimoto Y, Okabe M. Transgenic mouse sperm that have green acrosome and red mitochondria allow visualization of sperm and their acrosome reaction in vivo. Exp Anim. 2010;59:105–7.

    Article  CAS  PubMed  Google Scholar 

  30. Wirschell M, Olbrich H, Werner C, Tritschler D, Bower R, Sale WS, et al. The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans. Nat Genet. 2013;45:262–8.

    Article  CAS  PubMed  Google Scholar 

  31. Akhmanova A, Mausset-Bonnefont A, van Cappellen W, Keijzer N, Hoogenraad C, Stepanova T, et al. The microtubule plus-end-tracking protein CLIP-170 associates with the spermatid manchette and is essential for spermatogenesis. Genes Dev. 2005;19:2501–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oda T, Yanagisawa H, Kikkawa M. Detailed structural and biochemical characterization of the nexin-dynein regulatory complex. Mol Biol cell. 2015;26:294–304.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Lin J, Tritschler D, Song K, Barber CF, Cobb JS, Porter ME, et al. Building blocks of the nexin-dynein regulatory complex in Chlamydomonas flagella. J Biol Chem. 2011;286:29175–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gui L, Song K, Tritschler D, Bower R, Yan S, Dai A, et al. Scaffold subunits support associated subunit assembly in the Chlamydomonas ciliary nexin-dynein regulatory complex. Proc Natl Acad Sci USA. 2019;116:23152–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang J, He X, Wu H, Zhang X, Yang S, Liu C, et al. Loss of DRC1 function leads to multiple morphological abnormalities of the sperm flagella and male infertility in human and mouse. Hum Mol Genet. 2021;30:1996–2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bower R, Tritschler D, Mills KV, Heuser T, Nicastro D, Porter ME. DRC2/CCDC65 is a central hub for assembly of the nexin-dynein regulatory complex and other regulators of ciliary and flagellar motility. Mol Biol Cell. 2018;29:137–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang B, Ramanis Z, Luck DJ. Suppressor mutations in Chlamydomonas reveal a regulatory mechanism for Flagellar function. Cell. 1982;28:115–24.

    Article  CAS  PubMed  Google Scholar 

  38. Gardner LC, O’Toole E, Perrone CA, Giddings T, Porter ME. Components of a “dynein regulatory complex” are located at the junction between the radial spokes and the dynein arms in Chlamydomonas flagella. J Cell Biol. 1994;127:1311–25.

    Article  CAS  PubMed  Google Scholar 

  39. Miyata H, Satouh Y, Mashiko D, Muto M, Nozawa K, Shiba K, et al. Sperm calcineurin inhibition prevents mouse fertility with implications for male contraceptive. Science. 2015;350:442–5.

    Article  CAS  PubMed  Google Scholar 

  40. Horani A, Brody SL, Ferkol TW, Shoseyov D, Wasserman MG, Ta-shma A, et al. CCDC65 mutation causes primary ciliary dyskinesia with normal ultrastructure and hyperkinetic cilia. PloS One. 2013;8:e72299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Austin-Tse C, Halbritter J, Zariwala MA, Gilberti RM, Gee HY, Hellman N, et al. Zebrafish ciliopathy screen plus human mutational analysis identifies C21orf59 and CCDC65 defects as causing primary ciliary dyskinesia. Am J Hum Genet. 2013;93:672–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Olbrich H, Cremers C, Loges NT, Werner C, Nielsen KG, Marthin JK, et al. Loss-of-Function GAS8 mutations cause primary ciliary dyskinesia and disrupt the nexin-dynein regulatory complex. Am J Hum Genet. 2015;97:546–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ha S, Lindsay AM, Timms AE, Beier DR. Mutations in Dnaaf1 and Lrrc48 cause hydrocephalus, laterality defects, and sinusitis in mice. G3 (Bethesda). 2016;6:2479–87.

    Article  CAS  PubMed Central  Google Scholar 

  44. Jeanson L, Thomas L, Copin B, Coste A, Sermet-Gaudelus I, Dastot-Le Moal F, et al. Mutations in GAS8, a gene encoding a nexin-dynein regulatory complex subunit, cause primary ciliary dyskinesia with axonemal disorganization. Hum Mutat. 2016;37:776–85.

    Article  CAS  PubMed  Google Scholar 

  45. Lewis WR, Malarkey EB, Tritschler D, Bower R, Pasek RC, Porath JD et al. Mutation of growth arrest specific 8 reveals a role in motile cilia function and human disease. PLoS Genet. 2016;12:e1006220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Shoemark A, Boon M, Brochhausen C, Bukowy-Bieryllo Z, De Santi MM, Goggin P et al. International consensus guideline for reporting transmission electron microscopy results in the diagnosis of primary ciliary dyskinesia (BEAT PCD TEM Criteria). Eur Respir J. 2020;55:1900725.

  47. Edwards RG. Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes. Nature. 1965;208:349–51.

    Article  CAS  PubMed  Google Scholar 

  48. Ménézo YJ, Hérubel F. Mouse and bovine models for human IVF. Reprod Biomed Online. 2002;4:170–5.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We extend our appreciation to Fan Hu and Jinyang Cai for their support and provision of the microscope.

Funding

This work was supported by the Natural Science Foundation of China (31771654 and 32070842 to ML, 32000584 to RH, 82171607 to XH, 81901541 to HW); the Non-profit Central Research Institute Fund of the Chinese Academy of Medical Sciences (Grant no. 2019PT310002 to YC); the Natural Science Foundation of Jiangsu Province (Grants No. BK20190081 to ML); the Science and Technology Project of Anhui Province (Grant No.202003a07020012 to PZ); and Qing Lan Project (to ML).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Hua, Yunxia Cao or Mingxi Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Clinical exome sequencing was approved by the ethics committees of the First Affiliated Hospital of Anhui Medical University, Number P2020-12-36. All human subjects provided informed consent for this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Wu, H., Zhang, J. et al. Bi-allelic variants in human TCTE1/DRC5 cause asthenospermia and male infertility. Eur J Hum Genet 30, 721–729 (2022). https://doi.org/10.1038/s41431-022-01095-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41431-022-01095-w

This article is cited by

Search

Quick links