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Accurate detection of pathogenic single nucleotide variants (SNVs) is a key challenge in whole exome and whole genome
sequencing studies. To date, several in silico tools have been developed to predict deleterious variants from this type of data.
However, these tools have limited power to detect new pathogenic variants, especially in non-coding regions. In this study, we
evaluate the use of a new metric, the Shannon Entropy of Locus Variability (SELV), calculated as the Shannon entropy of the variant
frequencies reported in genome-wide population studies at a given locus, as a new predictor of potentially pathogenic variants in
non-coding nuclear and mitochondrial DNA and also in coding regions with a selective pressure other than that imposed by the
genetic code, e.g splice-sites. For benchmarking, SELV was compared to predictors of pathogenicity in different genomic contexts.
In nuclear non-coding DNA, SELV outperformed CDTS (AUCsg y = 0.97 in ROC curve and PR-AUCsg y = 0.96 in Precision-recall
curve). For non-coding mitochondrial variants (AUCsg y = 0.98 in ROC curve and PR-AUCsg v = 1.00 in Precision-recall curve) SELV
outperformed HmtVar. Moreover, SELV was compared against two state-of-the-art ensemble predictors of pathogenicity in splice-
sites, ada-score, and rf-score, matching their overall performance both in ROC (AUCsg v = 0.95) and Precision-recall curves (PR-AUC
= 0.97), with the advantage that SELV can be easily calculated for every position in the genome, as opposite to ada-score and rf-
score. Therefore, we suggest that the information about the observed genetic variability in a locus reported from large scale
population studies could improve the prioritization of SNVs in splice-sites and in non-coding regions.
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INTRODUCTION

Whole Exome and Whole Genome Sequencing (WES, WGS) have
revolutionized the way we study a range of genetic diseases.
However, given the high degree of human variability, WES/WGS
analysis renders a large number of variants, making it challenging
to discriminate pathogenic from neutral variants. For this purpose,
researchers have built several predictors to aid variant prioritiza-
tion for the detection of deleterious variants.

To date, gnomAD represents the greatest effort to summarize
human population genetic variability, including around 241
million variants detected in 125,748 WES and 15,708 WGS from
unrelated individuals in v2.1 and 76,156 WGS from unrelated
individuals in v3.1 [1]. Similarly, helixMTdb compiles human
genetic variability in mitochondrial DNA from 196,554 individuals
[2]. It is known that pathogenic variants are observed at low
frequencies in the population and that they appear in regions with
stronger selective pressure [3]. Therefore, it is interesting to study
how the number and distribution of different variants present in a
population at a given locus, might also provide relevant
information about the pathogenicity of the variants.

Recent studies have modeled mutation probabilities based on
mutation frequencies observed at 5 or 7-mers, highlighting the
clear influence of neighboring nucleotides in the pathogenicity of
a variant [4, 5]. However, the effect of nucleotide context may also

be reflected in allele frequencies associated with the variants
described for that specific position.

The genetic variability observed at a given locus in coding DNA
might, however, be distorted due to the redundancy of the
genetic code [6], resulting in the coexistence of synonymous and
lethal single nucleotide variants (SNVs). However, locus variability
could be useful for genomic positions in which the genetic code
does not hold (non-coding regions) or the effect of the genetic
code redundancy is diminished by the selective pressure imposed
by an additional functionality, as the splicing in splice-sites. Unlike
nuclear DNA, whose material is inherited from both parents and
whose main source of variability is sister chromatid exchange,
mitochondrial DNA is maternally inherited with a high mutation
rate being its main source of variability [7]. Therefore, mitochon-
drial DNA has its own conservation path and population
frequencies that may not resemble the behavior of nuclear DNA
[8]. Hence, the specifics of mitochondrial DNA must be considered,
in predictors of mitochondrial variant pathogenicity.

In this work, we hypothesize that the locus variability at a given
genomic position observed in a population might be an indicator
of the pathogenicity of the variants placed there. Hence, we
propose a simple metric of locus variability based on the Shannon
entropy (SELV) calculated over the population frequencies
associated to a genomic position, in order to detect pathogenic
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SNVs within splice-sites and non-coding regions DNA. We
compared the performance of SELV with established tools for
variant prioritization and found that it adds highly valuable
information for genomic positions that remain under-studied in
genetically based diseases.

MATERIALS AND METHODS

Prediction of variants in splice-sites

For the prediction of deleterious variants in splice-sites, we built a dataset
with 131,002 unique variants (65,734 pathogenic, 65,268 neutral) retrieved
from five independent benchmark data-sets HumVar [9], ExoVar [10],
VariBench [11], predictSNP [12] and SwissVar [13] and also variants selected
from Clinvar [14], classified as benign or pathogenic variants. These
131,043 variants were classified as splice-site/not-splice-site (according to
ensembl information for canonical transcript), resulting in 10,294 variants
located in splice-sites and 120,708 not located in splice-sites. Then, we
selected a subset of 7,941 out of these 10,294 variants for which there were
pre-computed values for ada-score [15] and rf-score [15] in dbNSFP [16], to
benchmark the use of the Shannon entropy locus variability metric (SELV)
for the prediction of deleteriousness in splice-site SNVs. Neutral/
pathogenic distribution in splice-site/Not-splice-site SNVs is depicted in
Fig. 1A. The proportion of pathogenic variants in splice-sites was
significantly larger than that for neutral variants (10.4% vs 3%, Fisher's
exact test: p < 0.001), reinforcing the relevance of accurate prediction of
the pathogenicity of new variants located in splice-sites. Splice-site
condition was annotated using Variant effect Predictor [17], which
was also used to retrieve the ada-score and the rf-score values from
dbNSFP. Moreover, phastCons [18] and phylop [19] conservation scores
calculated on multiple sequence alignment from sequences of 100 species
of vertebrates, was retrieved using UCSC table browser data retrieval
tool [20].

Prediction of variants in mitochondrial DNA

For the evaluation of SELV in mitochondrial DNA we first selected curated
pathogenic variants plus variants with high frequency (Fq>0.01), con-
sidered to be neutral polymorphisms, reported in Mitomap [21]. In
addition, mitochondrially encoded variants reported in HumVar, ExoVar,
VariBench, predictSNP, SwissVar and Clinvar (only benign and pathogenic)
were also chosen, resulting in a total amount of 451 SNVs. From them, 169
were located in non-coding regions (28 in control region, 108 in tRNA
genes and 33 in rRNA genes) and 282 in protein-coding regions (Fig. 1B).
From the pathogenic variants, 45.6% were located in non-protein-coding
DNA, suggesting again the need for predictors of variant pathogenicity in
non-coding mitochondrial DNA. These variants were annotated with
HmtVar disease score [22], retrieving 336 annotated variants (112 non-
coding; 224 protein-coding).

Prediction of variants in non-coding nuclear DNA
For SELV assessment in non-coding nuclear DNA, pathogenic non-coding
SNVs were obtained from those used for the context-dependent tolerance
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score (CDTS) assessment [23], while neutral non-coding SNVs were
randomly selected from VariSNP [24]. Finally, the dataset contained a
total of 29480 variants: 16,292 neutral SNVs and 13,188 pathogenic, Fig. 1C.

SELV definition

At each locus, there is a number of variants reported in the population,
either in gnomAD or in helixMTdb, with a specific frequency F;. Hence, for
each locus there’s a vector of frequencies (Fj,...,F,), where F; is the
frequency of variant i in the given locus, for each of the n variants at this
place. Then SELV is defined as:

SELV = =" Fix log(F))

i=1

SELV takes positive values. The higher the value of SELV, the more
variability is observed for that genomic position.

In order to obtain the highest throughput for SELV calculation from
gnomAD data, gnomAD v2.1 was used for splice site analysis, because it
contains more splice site information, and v3.1 was used to assess
pathogenicity in non-coding nuclear SNVs, because it contains a larger
amount of WGS from unrelated individuals.

Benchmarking

The performance of SELV in splice-site variants was compared with two
state-of-the-art predictors, ada-score and rf-score, using AUC in receiver
operating characteristic (ROC) curves and PR-AUC in precision recall (PR)
curves. Then, AUC differences were tested for ROC curves, calculating the
D-statistic, as described in pROC R-package, which was used for this
purpose. ROC and PR curve analyses were performed using ROCR and
precrec R-packages. In nuclear non-coding SNVs, SELV was compared to
CDTS, while in non-coding mitochondrial SNVs, it was compared to
HmtVar. In addition, SELV was also evaluated in protein-coding regions. In
all three genetic contexts SELV performance was compared with the
conservation scores phyloP and phastCons.

SELV-based classification of variants of uncertain significance
SELV was used to reclassify variants of uncertain significance (VUS)
obtained from Clinvar. For this, three different cut-off points for SELV were
used, depending on whether the variants were splice-site, nuclear non-
coding or mitochondrial non-coding SNVs, because the frequencies are
obtained from different databases depending on the analysis. The cut-off
values were calculated based on the Youden index.

SELV was also assessed to consider whether gnomAD ancestries can
influence in SELV, (Supplementary document 1).

RESULTS
SELV distribution was significantly different in genomic positions
spanning splice-site vs non-splice-sites (Kolmogorov-Smirnov:
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Fig. 2 Performance of predictors compared to SELV. ROC (A) and PR curves (B) for SELV, ada score, rf score, phastCons, and phyloP
conservation scores for deleteriousness in splice-site SNVs. ROC curves (C) and precision-recall curves (D) for SELV, HmtVar disease score
phastCons, and phyloP conservation scores for pathogenic variant detection in mitochondrial non-coding SNVs. The performance of SELV,
CDTS, phastCons and phyloP conservation scores for pathogenic variant detection in nuclear non-coding SNVs depicted as ROC (E) and PR
curves (F). Abbreviations: ROC receiver operating characteristic, PR precision-recall, SELV Shannon entropy locus variability, CDTS context-

dependent tolerance score, and SNV single nucleotide variants.

D =0.186, p <0.001). This result confirms that locus variability is a
distinctive feature of variants located in splice sites vs coding
regions of the genome. Hence, we tested the ability of SELV to
predict the pathogenicity of variants located in splice-sites. SELV
reached an AUCsgy = 0.95, outperforming rf-score and showing
similar behavior to ada-score (Fig. 2A). Regarding Precision-
Recall performance, SELV achieved an PR-AUCgg v = 0.97, match-
ing rf-score results and being slightly surpassed by ada-score,
(Fig. 2B).

European Journal of Human Genetics (2022) 30:555 - 559

For mitochondrial and nuclear non-coding SNVs, SELV pre-
sented the best behavior, both in ROC curves and PR curve
(Fig. 2C-F).

All these differences were statistically significant, except for ada-
score (Table 1). However, SELV can be calculated for every
genomic position, while ada-score is only available for a limited
number of locus, making SELV more usable.

In all three analysis carried out, SELV outperformed phyloP and
phastCons in both AUC and PR-AUC values. However, SELV
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Table 1.
sites and non-coding mitochondrial DNA.

Splice-site SNVs

AUCf score = 0.94
AUC,da score = 0.95
AUCphastcons = 0.84
AUCppyiop = 0.9

Non-coding mitochondrial SNVs

AUCpimtvar = 0.82
AUCphastCons =0.86
AUCphy|op =0.88

Non-coding nuclear SNVs

AUCCDTS =0.71
AUCphastCons =0.93
AUCphyiop = 0.95

performed poorly for protein coding variants, in both mitochon-
dria (AUCsgy =0.68) and nuclear not-splice-site protein coding
regions (AUC = 0.86).

Importantly, SELV was able to reclassify 62521 VUS retrieved
from ClinVar: 2,005 SNVs in splice-sites, 60356 in non-coding
nuclear regions, and 160 in non-coding mitochondrial DNA. In the
splice-site regions, SELV was able to identify pathogenic variants
with a 0.97 sensitivity and 0.87 specificity (threshold =0.001),
retrieving 90 neutral and 1915 pathogenic SNVs. In mitochondrial
non-coding regions, SELV predicted pathogenicity with the same
sensitivity but higher specificity, 0.92 (threshold = 0.009), yielding
two neutral and 158 pathogenic variants. Finally, in non-coding
nuclear DNA, the sensitivity was slightly worst (0.91) than in the
previous genetic contexts, but the specificity increased up to 0.94
(threshold = 0.0002), resulting in the reclassification of VUS as
28,760 neutral and 31,596 pathogenic SNVs.

The data-sets used in the benchmarking and Clinvar's
reclassified VUS tables are listed in supplementary tables 1 and 2.

DISCUSSION

Our results confirm that locus variability is an important feature
in genomic regions for which the genetic code redundancies are
not relevant, eg. splice-sites. For these regions, SELV outperformed
conservation-based scores and showed a similar performance
to scores specific to splice-sites, such as ada-score and rf-score.
However, ada-score and rf-score are machine learning ensemble
scores that combine several predictors [15] and are only available
for certain genomic positions, while SELV can be easily computed
for each position in the genome, providing a great advantage
over more sophisticated tools and without the loss of
performance.

In the mitochondrial genome, the vast majority of predictors are
focused in protein-coding variants with the significant exception
of HmtVar. Considering Cambridge reference sequence for human
mitochondrial DNA, non-coding DNA represents around 31% of
the mitochondrial genome, pointing out the importance of
developing a predictor oriented to non-coding regions. Regarding
our results in non-coding sequences in mitochondria, it seems
that SELV shows a straightforward relationship with deleterious-
ness and might be an interesting predictor, outperforming some
widely used predictors such as HmtVar.

CDTS is an interesting model that quantifies the degree of
tolerance of a region to mutate, taking into account surrounding
sequences [23]. In spite of this interesting approach, SELV
outperformed the results of CDTS for pathogenic SNVs detection
in nuclear non-coding regions. Similarly, SELV was more accurate
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Comparison of the area under the receiving operative characteristic curve between different considered predictors and SELV, both in splice-

AUCsgy = 0.95
D=2.02, p<0.05
D=—-035, p=0.7232
D=19.12, p<0.001
D=9.10, p <0.001
AUCsg,y = 0.98
D=234, p<0.05
D=431, p<0.001
D=3.99, p<0.001
AUCsg,y = 0.97
D=83.59, p < 0.001
D=21.57, p<0.001
D=14.91, p<0.001

and precise than traditional conservation scores, in both nuclear
and mitochondrial non-coding regions.

Regarding the behavior of SELV according to the different
gnomAD populations considered (Supplementary document 1),
generally, the reduction in population size leads to an increase in
the number of false positives. It could be that the analyzed
number of individuals per population is not enough to gather
population variability. Nevertheless, the use of SELV by population
could be an interesting approach, once the number of sampled
subjects is increased.

All'in all, SELV is a very accurate predictor of pathogenic variants
in regions that escape the effect of the redundancy of the genetic
code. It may represent an option to evaluate SNVs placed in non-
coding regions, which represent the vast majority of the genome
(>98%). Thanks to its simplicity, it can be easily incorporated into
pipelines for variant prioritization, reducing the number of SNVs
classified as variants of uncertain significance in mendelian or
mitochondrial diseases.
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VEP. VariSNP, http://structure.bmc.lu.se/VariSNP/.
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