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Although variant alleles of hundreds of genes are associated with sensorineural deafness in children, the genes and alleles involved
remain largely unknown in the Sub-Saharan regions of Africa. We ascertained 56 small families mainly of Yoruba ethno-lingual
ancestry in or near Ibadan, Nigeria, that had at least one individual with nonsyndromic, severe-to-profound, prelingual-onset,
bilateral hearing loss not attributed to nongenetic factors. We performed a combination of exome and Sanger sequencing analyses
to evaluate both nuclear and mitochondrial genomes. No biallelic pathogenic variants were identified in GJB2, a common cause of
deafness in many populations. Potential causative variants were identified in genes associated with nonsyndromic hearing loss
(CIB2, COL11A1, ILDR1, MYO15A, TMPRSS3, and WFS1), nonsyndromic hearing loss or Usher syndrome (CDH23, MYO7A, PCDH15, and
USH2A), and other syndromic forms of hearing loss (CHD7, OPA1, and SPTLC1). Several rare mitochondrial variants, including
m.1555A>G, were detected in the gene MT-RNR1 but not in control Yoruba samples. Overall, 20 (33%) of 60 independent cases of
hearing loss in this cohort of families were associated with likely causal variants in genes reported to underlie deafness in other
populations. None of these likely causal variants were present in more than one family, most were detected as compound
heterozygotes, and 77% had not been previously associated with hearing loss. These results indicate an unusually high level of
genetic heterogeneity of hearing loss in Ibadan, Nigeria and point to challenges for molecular genetic screening, counseling, and
early intervention in this population.
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INTRODUCTION
Hearing loss (HL) is one of the most common sensory disorder
worldwide. In high-income countries (HICs), the estimated
prevalence of permanent bilateral HL of 40 dB HL or more is
estimated to be between 1.33 and 1.5 per 1000 live births; 2.7 per
1000 by 5 years of age [for review [1, 2]]. HL seems to be more
prevalent in Sub-Saharan Africa [3]. In Nigeria, the exact
prevalence of HL (as defined by >40 dB HL) is unknown but has
been estimated to be at least 19.2 per 1000 newborns [4–6].
Early childhood HL in HICs is thought to be primarily due to

genetic factors and monogenic variants, although permanent
profound HL can also be caused by environmental factors, or a
combination of both [7, 8]. In Western Africa and Nigeria,
environmental factors have been reported as frequent risk factors
for HL [3, 9–12]. There are only a few published studies of genetic
contributions to HL in Sub-Saharan African populations [13–15]. In
many populations, pathogenic variants of GJB2 [MIM: 121011]
sometimes in trans with deletions in the GJB2/GJB6 genomic region
(del(GJB6-D13S1830), del(GJB6-D13S1854), and del(chr13:19,837,

344-19,968,698) [16, 17] represent a common cause of genetic HL.
Variants in these genes have rarely been found in individuals with
HL from Sub-Saharan Africa or of Sub-Saharan African descent,
except in Ghana where the pathogenic variant NM_004004.6:
c.427C>T p.(Arg143Trp) of GJB2 is prevalent [13]. Pathogenic variants
in other genes associated with HL such as SLC26A4 [MIM: 605646],
OTOF [MIM: 603681], HGF [MIM: 142409], MYO15A [MIM: 602666],
and TMC1 [MIM: 606706] are found frequently in specific popula-
tions outside of Sub-Saharan Africa. It is still unclear whether
pathogenic variants in these same genes or others are associated
with HL in populations of Sub-Saharan Africa, and whether some of
these pathogenic variants are common.
Nigeria is located in Sub-Saharan West Africa and is the most

populous country in Africa with approximately 210 million
inhabitants. Our cohort is comprised of families from Ibadan,
Nigeria, with at least one member with nonsyndromic congenital
or early childhood severe-to-profound HL without a known
environmental cause. We used exome and Sanger sequencing
analyses in these subjects to study nuclear and mitochondrial
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genes reported to be associated with human nonsyndromic or
syndromic HL in other populations, and identify potential
causative variants associated with HL in Yoruba ethnic group.

MATERIALS AND METHODS
Study approval
This study was approved by the University of Ibadan, University College
Hospital Ethics Committee (UI/EC/15/0047), the Combined Neurosciences
Institutional Review Board at the National Institutes of Health (01-DC-0229),
and the Institutional Review Board of Columbia University (IRB-AAAS2343).
All adult participants provided written informed consent. For minors, at
least one parent provided consent and minors provided their assents.

Subjects, recruitment, and ascertainment
Fifty-six families were studied, which included 70 individuals with HL and
102 individuals without HL (Supplementary Table 1). Probands were
identified from government schools for the deaf or from the Deaf
Community in Ibadan, southwest Nigeria. The majority of subjects were of
the Yoruba ethnic origin, the most prevalent ethnic group in southwest
Nigeria. All probands were of Black African ancestry with bilateral
congenital or prelingual-onset nonsyndromic HL. Whenever possible,
parents, siblings, and other relatives of probands were enrolled. Individuals
with HL associated with obvious features of known syndromes or whose
HL was likely secondary to a nongenetic etiology such as trauma, infection,
metabolic, or immunologic disorders, or exposure to ototoxic agents such
as noise or aminoglycoside antibiotics were excluded from the study. None
of the probands had a reported history of dizziness or significant neonatal
illness. Physical examinations were carried out by a physician (AA) to
identify or rule out obvious syndromic features. Pure-tone audiometry was
performed, in some cases, to confirm bilateral severe-to-profound
sensorineural HL. Family history was obtained by interview of all
participants.

DNA sequencing analyses
Genomic DNA (gDNA) was extracted from peripheral blood samples and
processed as shown in Fig. 1. We first screened whole gDNA extract from
one subject with HL from each family, or both parents if they both had HL
(N= 60 independent cases tested), by Sanger sequencing the single
protein-coding exon of GJB2, NM_000601.6:c.482+1986_1988delTGA and
c.482+1991_2000delGATGATGAAA intronic deletions of HGF that are
frequent in Asia [18] and the mitochondrial genes MT-RNR1, MT-TS1, and
MT-TL1 using custom designed primers (Supplementary Table 2). Exome
sequencing (ES) was performed with gDNA samples from 67 individuals
with HL and 48 family members without reported HL. ES libraries were
prepared using a Nextera Rapid Capture Exome kit (Illumina, San Diego,
CA, USA) and sequenced on an Illumina NextSeq500 instrument. The mean
depth of coverage of the targeted coding regions was 44×. Due to
insufficient coverage, microRNA MIR96 [MIM: 611606, (DFNA50)] was
Sanger-sequenced [19].

Data analyses
Sequence data from exome libraries were mapped to the GRCh38 human
reference genome using the bcbio-nextgen germline variant calling
pipeline. See Supplementary Information 1 for all URLs and corresponding
references. Reads were mapped using the Burrows–Wheeler Aligner (BWA-
MEM), then remapped after removing duplicate data and recalibration
with Genome Analysis Toolkit (GATK). Single-nucleotide variants (SNV) and
insertion/deletions were detected using GATK-haplotypecaller, platypus,
varscan, freebayes, and samtools variant callers. The final ensemble variant
call file (vcf) required concordance between at least two callers. As a
quality control, we checked the entire cohort for excess heterozygosity and
verified the sex of each individual with exome data using PLINKv1.9. Family
relationships were verified via both Identity-by-Descent sharing
(PLINKv1.9) and Kinship-based INference for Gwas (KING) algorithm.
Samples identified to have problems were removed from further exome
data analysis. Individual vcf files were then analyzed using the Ingenuity
Variant Analysis platform (IVA version 5.6, Qiagen, Hilden, Germany) using
data from gnomAD v2.1.1, The Human Gene Mutation Database (HGMD)
v2019.2, NCBI dbSNP v151, and Allele Frequency Community (AFC) v2019-
09-25. The systematic review of the variants and prioritization of the
predicted pathogenic, likely pathogenic, and variants of uncertain
significance (VUS) with predicted deleterious effects segregating in each

family was performed as shown in Fig. 1 and is summarized below. Copy
number variants (CNVs) were assessed using the copy number inference
from exome reads (CoNIFER) pipeline.

Variant prioritization and verification
Single-nucleotide and insertion-deletion variants detected in at least eight
reads from any one individual with HL, and absent from the top 5% of most
variable 100-bp exonic sequences in 1000 Genomes database, were further
analyzed. We first searched for variants in genes associated with nonsyn-
dromic HL likely to be pathogenic (Supplementary Information 2) assuming
complete penetrance. In Family 29, HL was present in both parents and
children. In most families, only one individual with HL was present and the
family history was limited. Variants were analyzed and evaluated according to
several inheritance models (Fig. 1). In order to avoid missing prevalent and
potentially enriched pathogenic alleles (founder variants), we used thresholds
that were larger, by a factor of ten, than conventional thresholds for minor
allele frequency for HL [20]. Assuming a model of autosomal dominant (AD)
inheritance and searching for de novo variants, variants were only considered
when: (1) they were already established to be pathogenic or likely pathogenic,
(2) they were not detected in unaffected parents, or (3) when the ES data from
one or both parents were not available, their minor allele frequency (MAF) was
≤0.5% in any reference subpopulation in gnomAD, ExAC, and in African
(American) from the National Heart, Lung, and Blood Institute Exome
Sequencing Project Exome Variant Server. In models of autosomal recessive
(AR) and X-linked inheritance (XL), only variants with a frequency of less than
5% in the variant databases were initially considered, unless they were an
established pathogenic or likely pathogenic variant. Variants detected in family
members without reported HL that were either homozygous or heterozygous
in cis without additional variant in trans were disregarded. Previously reported
pathogenic variants, novel nonsense or frameshift variants, splice site variants
within two nucleotides of intron-exon junctions, and missense variants with a
combined annotation-dependent depletion (CADD) score of at least 15 were
reported and further analyzed, as well as synonymous variants predicted to
affect splicing (Supplementary Table 3). Variants were prioritized for further
study when: (1) one of them had an allele frequency ≤1% (recessive model);
(2) there were five or less (recessive model) or no (dominant model)
individuals homozygous for the variant reported in gnomAD; and (3) if at least
two algorithms predicted the variant to be damaging/deleterious or likely
damaging/deleterious. The algorithms used were SIFT, PolyPhen-2, FATHMM-
MKL or XF, MutationAssessor, MutationTaster, REVEL, and CADD (Supplemen-
tary Information 1). Evolutionary conservation of nucleotides was evaluated by
PhyloP. The effects of variants on mRNA splicing were predicted by
MaxEntScan, Human splice finder, BDGP Splice Site Prediction, and NetGene2.
In addition, a second and independent SNV/insertion/deletion annota-

tion and prioritization analysis was performed with the same outcome, on
the jointly called variants with GATK only, similar to what has been
described in detail [21]. In short, variants were annotated using ANNOVAR,
including prediction scores from dbnsfp35a and dbscSNV1.1, ClinVar, and
several frequency databases such as gnomAD. Variants were considered
further if either (1) they were reported pathogenic/likely pathogenic in
ClinVar; or (2) they met filtering criteria including inheritance model (AR,
AD, and XL [including de novo]), variant location (exonic and splice site),
predicted effect (missense, nonsense, frameshift, and in-frame insertion/
deletion, splicing and start and stop altering), and variant frequency
(<0.5% MAF for AR and XL; <0.05% MAF for AD) [21].
Prioritized variants were validated via Sanger sequencing and further

tested for co-segregation with HL in each family. Variant frequency in the
Yoruba population was determined using Ensembl to access data from 108
Yoruba individuals from Ibadan, Nigeria (AFR YRI) available through 1000
Genomes. When a variant site was not evaluated due to insufficient read
depth for example, we performed Sanger sequencing using gDNA samples
from 118 unrelated Yoruba individuals (59 females and 59 males) from
Ibadan, Nigeria (NHGRI Repository at the Coriell Institute for Medical Research
Cat # MGP00013). Variants were then classified according to the American
College of Medical Genetics and Genomics/Association for Molecular
Pathology (ACMG/AMP) Guidelines for the interpretation of sequence
variants in HL genes [22], taking into account data from ClinVar, the
Deafness Variation Database, and HGMD, with two modifications. The genetic
causes of HL have not yet been well characterized in the YRI population, and
the information regarding variant MAF in this population is still limited, so we
did not exclude any variant based on their “high” MAF. PP3 criterion was
applied even if the REVEL score was below 0.7, if at least two of the
algorithms used predicted that the variant was damaging or likely damaging
(Fig. 1 and Table 1). In families with potential de novo variants, maternity and
paternity were verified by genotyping short tandem repeat markers when no
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parental ES data were available. A similar analysis was performed for genes
implicated in syndromic forms of HL assuming full penetrance unless
otherwise reported [23].
CNVs were annotated using ANNOVAR, BioMart database, and

bedtools to obtain genes, functions, and known disease associations
[21]. Rare variants (MAF < 0.5%) were selected based on variant
frequency data from the Database of Genomic Variants and gnomAD.
Candidate CNVs were visually inspected with the CoNIFER plotting tool
and were subsequently validated using Digital Droplet PCR (ddPCR,
BioRad Laboratories, Hercules, CA, USA) [24] if deemed of interest. ddPCR
was also used to confirm the absence of a deletion in trans when a
damaging variant appeared to be homozygous and gDNA of one parent
was not available.

RESULTS
Study subjects and families
In the 56 families studied from Ibadan, Nigeria, a total of 60 (N)
independent cases of HL were studied (Supplementary Table 1).
All individuals with HL had bilateral congenital or prelingual-onset
severe-to-profound HL and used sign language. The presence
of pathogenic, likely pathogenic and VUS with predicted
deleterious effects in genes reported to be associated with HL
was investigated (Fig. 1).

GJB2 pathogenic variants are not prevalent in the Yoruba
population of Nigeria
Sanger sequence analyses of GJB2 in 60 independent cases with HL
revealed in one subject a heterozygous pathogenic recessive variant
that was previously reported (NM_004004.6:c.405delC, p.(Tyr136f-
sTer32)). One heterozygous previously reported VUS was also
identified in the 5’ UTR of GJB2 (c.−6T>A) in three individuals from
three different families. We excluded by PCR testing the possibility

that a second allele involving deletions at the DFNB1A/B locus [del
(GJB6-D13S1830), del(GJB6-D13S1854), and del(chr13:19,837,344-
19,968,698)] was in trans in any of these four subjects who carry
heterozygous GJB2 variants.

Exome sequencing reveals high heterogeneity in potential
causal variants in genes associated with hearing loss
ES was performed using gDNA samples from 67 individuals with
HL and a subset of family members without HL (48). The region
encoding microRNA MIR96 was Sanger-sequenced, but no variants
were identified. The small size of the families and the absence of
reported consanguinity precluded linkage or homozygosity
mapping studies. Lack of access to one or both parents in several
families limited our ability to confirm that identified heterozygous
variants were compound heterozygous.
Potential causative variants were found in 20 of 60

independent cases of HL of our cohort (Table 1 and Supple-
mentary Table 4). These variants were identified in genes
associated with nonsyndromic forms of HL in nine cases, in
genes associated with nonsyndromic forms of HL or Usher
syndrome in seven cases, and in genes associated with other
forms of syndromic HL in four cases (Fig. 2a, c). Pathogenic or
likely pathogenic variants were only identified in 6 of 20
independent cases of HL in our cohort (Table 1, Supplementary
Table 4, and Fig. 2a). Sixteen percent of these variants were
nonsense variants, 6% were small deletions, 13% were predicted
to affect splicing, and 65% were missense variants (Fig. 2b).
Seventy-seven percent of these variants had not been pre-
viously associated with HL. We also identified several potential
CNVs. However, subsequent ddPCR experiments either did not
confirm the presence of these CNVs or showed that they did not
cosegregate with the HL.

Inheritance
Recessive (13) vs Dominant (7)

For AR inheritance: Variants homozygotes (2)
vs Compound heterozygotes (11)

Pathogenic (8), Likely pathogenic (3), VUS (20)
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modification (4), Deletion (2)
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individual with HL also carrying potential causative VUS in CDH23 and OTOF (the latter were not indicated here but are available in Table 1).
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Fig. 3 Pedigrees of Nigerian Yoruba families segregating likely causative variants in genes associated with nonsyndromic hearing loss
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Variants identified in genes associated with nonsyndromic
forms of hearing loss
Variants predicted by bioinformatic analyses to be damaging and
segregating with HL were identified in four genes known to be
associated with recessive forms of nonsyndromic HL (Table 1,
Supplementary Table 4, and Figs. 2 and 3a). A homozygous variant
(confirmed by ddPCR) that is likely pathogenic was identified in
CIB2 [MIM: 605564, DFNB48] in Family 2. Potential compound
heterozygous variants that are pathogenic or predicted to be
damaging were detected in ILDR1 [MIM: 609739, DFNB42] in Family
57 and in MYO15A [MIM: 602666, DFNB3] in Families 6, 13, and 44
(Table 1 and Fig. 3a). In addition, two damaging homozygous
variants were identified in TMPRSS3 [MIM: 605511, DFNB8/B10]
(NM_024022.3:c.323-6G>A, a previously reported variant, and
c.1363T>C, p.(Ter455ArgextTer9)) in one subject with HL in Family
40. Using ddPCR, we confirmed that this subject does not carry a
deletion in this region, and further showed that these variants are
present within a stretch of homozygosity at the telomeric ~5.3-Mb
region of chromosome 21q. It may be a consequence of maternally
inherited partial uniparental isodisomy or this individual with HL
could have received the same region of chromosome 21 from her
father, which we could not examine (gDNA not available). Analysis
of the exome of this individual with HL did not reveal other regions
of homozygosity, suggesting that she is not the result of a
consanguineous mating.
Potential causative variants were identified in two genes

associated with dominant forms of HL: in COL11A1 [MIM:
120280, DFNA37] NM_001854.4: c.1031C>T, p.(Thr344Met) in
Family 23, and NM_001854.4:c.1314G>A, p.(Met438Ile) in Family
32, and in WFS1 [MIM: 606201, DFNA6/A14/A38] NM_006005.3:
c.2029G>A, p.(Ala677Thr) in Family 51 (Table 1, Supplementary
Table 4, and Fig. 3a). These variants were not inherited maternally
and paternal gDNA was not available in these three families to
assess whether these variants arose de novo. Pathogenic variants
in COL11A1 have been associated with nonsyndromic forms of HL
DFNA37 [MIM: 618533] [25], and syndromic HL associated with
Marshall and Stickler Syndromes [MIM: 154780 and 604841] [26].
In Family 32, a second variant predicted to be damaging,

NM_001854.4: c.4049C>G, p.(Ser1350Cys), was identified in the
individual with HL (Table 1 and Supplementary Table 4). This
variant was inherited from the mother who did not have HL.
Further evaluation of this individual with HL for potential signs of
Stickler Syndrome was not possible. Variants of WFS1 are also
associated with AD Wolfram-like Syndrome and AR Wolfram
Syndrome [MIM: 614296 and 222300].
In these nine families, among these rare variants predicted to be

deleterious by bioinformatic approaches, only the homozygous
CIB2 variant, TMPRSS3 splice variant, and potential compound
heterozygous ILDR1 variants were classified as pathogenic or likely
pathogenic according to ACMG/AMP guidelines for the inter-
pretation of sequence variants in HL genes [22]. In the other
families, one or both of the identified variants were classified as
VUS (Table 1).

Variants identified in genes associated with nonsyndromic
forms of hearing loss or Usher syndrome
Variants predicted to be damaging and known or suspected to be
compound heterozygous were identified in CDH23 [MIM: 605516]
in Families 8, 21, 56 (father with HL), and 60 (mother with HL),
MYO7A [MIM: 276903] in Family 56 (mother with HL), PCDH15
[MIM: 605514] in Family 5, and USH2A [MIM: 608400] in Family 29
(mother with HL) (Table 1, Supplementary Table 4, and Fig. 3b). In
Family 60 (mother with HL), two VUS were found in OTOF, in
addition to the two VUS identified in CDH23 (Table 1). Overall, in
these seven families with potential causal variants in genes
associated with nonsyndromic HL or Usher syndrome [27, 28], the
variants met both ACMG/AMP criteria for the interpretation of
sequence variants in HL genes for pathogenic or likely pathogenic
classification in three families (Families 5, 8, and 21).

Variants found in genes associated with other syndromic
forms of hearing loss
We also analyzed our cohort for variants in 175 genes known to be
involved in syndromic forms of HL (Supplementary Information 3),
following the same strategy presented in Fig. 1. Variants predicted
to be damaging were identified in CHD7 [MIM: 608892] (Families
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Fig. 4 Pedigrees of Nigerian Yoruba families segregating likely causative variants in genes associated with syndromic forms of hearing
loss. Features in addition to HL associated with pathogenic variants in these genes are known to have variable expressivity. Legend for
pedigree drawings is similar to that of Fig. 3. The genotype for the candidate variant(s) are shown above each pedigree. + represents the
reference allele; /, variants in trans.
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14 and 16), OPA1 [MIM: 605290] (Family 10), and SPTLC1
[MIM: 605712] (Family 26; Fig. 4). These variants, although
classified as VUS, were all predicted to be damaging by multiple
algorithms. The variants were absent in Yoruba controls and
extremely rare in other populations (Table 1 and Supplementary
Table 4). Pathogenic variants of CHD7 are known to be associated
with CHARGE syndrome [29] [MIM: 214800] and hypogonado-
tropic hypogonadism with or without anosmia [30] [MIM: 612370].
OPA1 pathogenic variants have been reported in patients with AD
optic atrophy 1 (ADOA, [MIM: 165500]), which can also be
associated with delayed-onset sensorineural deafness (ADOAD)
[MIM: 125250] [31, 32]. SPTLC1 pathogenic variants have been
reported in patients with hereditary sensory and autonomic
neuropathy type IA [MIM: 162400] [33].

A few rare mitochondrial variants were identified in MT-RNR1
We used Sanger sequencing to detect pathogenic variants in
three mitochondrial genes reported to be associated with HL. We
identified several variants in MT-RNR1 [MIM: 561000] encoding the
12S rRNA (Supplementary Table 5). Eight of those variants were
absent from Yoruba control samples and rare in other populations
(Table 2). Although the pathogenicity of most of these variants is
unknown, the variant m.1555A>G found in Family 60 (mother with
HL) has previously been associated with aminoglycoside-induced
HL as well as late-onset nonsyndromic HL not associated with
aminoglycoside exposure [34–37]; however, other potential causes
of HL have also been identified in the same individual (Table 1).
We did not detect variants in MT-TS1 [MIM: 590080]. One variant
was found in MT-TL1 [MIM: 590050]. It was predicted to be benign
(m.3277G>A, c.48G>A) and was detected in the probands and
their unaffected mothers in both Families 1 and 51. In Family 1, it
was also detected in one unaffected sibling.
Overall, our molecular genetic analyses indicate a remarkably

high level of heterogeneity associated with childhood HL in
Yorubas from Ibadan, Nigeria, including the presence of the
mitochondrial variant associated with aminoglycoside-induced HL
m.1555A>G.

DISCUSSION
No prevalent pathogenic variants for HL were identified in this
cohort of 56 small families of Yoruba ethno-lingual ancestry
ascertained in or near Ibadan, Nigeria and segregating severe-to-
profound bilateral sensorineural HL with congenital or early
childhood onset. Only heterozygous variants of GJB2 were
identified, none of which were associated in trans with any of
the three previously reported deletions in the genomic region of
GJB2-GJB6. These results are consistent with those reported for 44
probands from Nigeria with nonsyndromic HL [15] and 90 families
from Nigeria with nonsyndromic mild-to-profound prelingual HL
[14]. In addition, none of the variants we identified were
previously reported in those studies, supporting our conclusion
of highly diverse genetic etiology of childhood HL in Nigeria. The
heterogeneity of variants associated with HL may reflect the
genomic heterogeneity of Sub-Saharan Africans and the fact that
the Ibadan population has lived in a large city for many centuries
with a constant flux of people. For AR forms of HL, homozygous
variants were only found in a few cases, consistent with a lack of
consanguineous matings in Yoruba population and the diverse
array of variants identified at low frequency.
Different variants of a gene may cause either a syndromic

form of HL such as Usher syndrome or nonsyndromic HL [7, 38].
Although our recruitment focused on probands with nonsyn-
dromic HL, we identified several pathogenic, likely pathogenic
and VUS with predicted deleterious effects in genes that can
cause nonsyndromic HL or Usher syndrome (CDH23, MYO7A,
PCDH15, and USH2A), CHARGE syndrome (CHD7), syndromic
optic atrophy (OPA1), and a hereditary sensory and autonomicTa
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neuropathy (SPTLC1). The HL phenotype in these individuals
may indeed be nonsyndromic, but a syndromic association
could have been missed due to the young age of the patients at
the time of examination, before the onset of signs or symptoms
such as retinitis pigmentosa as the cause of vision loss in Usher
syndrome. Furthermore, some of the signs and symptoms may
have been present but either subclinical or may not have been
detected at the time of examination. Another hypothesis is that
there are modifiers present in African populations which are not
present in the populations in which these syndromes have been
phenotypically characterized. Variable expressivity of clinical
presentations associated with CHD7 and OPA1 variants, both
within and between families, has been previously documented
[30, 39].
In a subset of families, including Family 60 that has a mother with

HL, we identified several potential causes of HL. Lack of access to
parental gDNA and limited information regarding the pathogenicity
of the variants does not allow a definitive conclusion regarding the
etiology of the HL in this family.
In 66.7% of the cases, the analyses presented here did not

identify any potential causative variants in nonsyndromic and
syndromic HL reported genes. This may be due to technical
difficulties such as variants missed that are located in poorly
sequenced GC rich coding exons, deletions of the scale of an
exon and insertions that may not have been detected by our
CNV analyses, failure to detect causal variants affecting splicing
or in noncoding regions of the genome, unannotated exons for
which there are no probes in the commercial ES reagents we
used, novel HL genes or a nongenetic, multigenic, or multi-
factorial etiology of the HL in those families. We identified
additional rare VUS with predicted deleterious effects in some of
the unsolved families in this study in genes associated with
syndromic forms of HL (Supplementary Table 3). Further clinical
examinations of the individuals carrying such variants would
be very informative, but are hampered by the difficulty of re-
contacting and re-phenotyping the families. In numerous
families, we identified rare heterozygous pathogenic or likely
pathogenic variants in genes that are associated with recessive
forms of HL. The presence of these variants could be
coincidental but could also indicate that we failed to identify a
second pathogenic variant responsible for the phenotype.
In conclusion, our study highlights the extreme heterogeneity

of variants and genes associated with HL in the Yoruba population
of Sub-Saharan Africa. This work underscores the need for
comprehensive genomic sequencing approaches for molecular
genetic diagnosis of HL in Sub-Saharan Africans.
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