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A primary challenge in understanding disease biology from genome-wide association studies (GWAS) arises from the inability to
directly implicate causal genes from association data. Integration of multiple-omics data sources potentially provides important
functional links between associated variants and candidate genes. Machine-learning is well-positioned to take advantage of a
variety of such data and provide a solution for the prioritization of disease genes. Yet, classical positive-negative classifiers impose
strong limitations on the gene prioritization procedure, such as a lack of reliable non-causal genes for training. Here, we developed
a novel gene prioritization tool—Gene Prioritizer (GPrior). It is an ensemble of five positive-unlabeled bagging classifiers (Logistic
Regression, Support Vector Machine, Random Forest, Decision Tree, Adaptive Boosting), that treats all genes of unknown relevance
as an unlabeled set. GPrior selects an optimal composition of algorithms to tune the model for each specific phenotype. Altogether,
GPrior fills an important niche of methods for GWAS data post-processing, significantly improving the ability to pinpoint disease
genes compared to existing solutions.
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INTRODUCTION
Despite the tens of thousands of genetic associations identified
using GWAS to date, the ultimate goal—informing and guiding
therapeutic development—has been achieved for only a few
phenotypes. A major complication in understanding disease
biology from GWAS often arises from the inability to directly
identify disease genes [1]. Therefore, additional post-GWAS
analysis is needed to first, identify a variant that drives the signal
within the locus, and then to connect this variant to a gene.
Fine-mapping, based on a Bayesian framework, sets out to

prioritize variants within the locus and, ultimately, to identify the
disease-causing variant [2–4]. Fine-mapping algorithms—FINE-
MAP [5], PAINTOR [6], fGWAS [7], SUSIE [8], etc. have made a
significant impact on the field and have helped to successfully
identify causal variants for multiple traits. Importantly, fine-
mapping is done independently for each locus and in its current
configuration does not take advantage of biological relatedness
(e.g., the same pathway membership) of genes involved in a
phenotype [9].
At the same time, identification of the disease-relevant gene

linked to a disease-associated variant presents a major, unresolved
challenge to gaining biological insight from the genetic associa-
tion. Most GWAS associations implicate a set of correlated genetic
variants, none of which alter the protein-coding sequence of a
gene and which often physically span or are near to multiple
genes. Since our knowledge of regulatory sequence patterns of
the genome, as well as the cells, tissues, and developmental time-
points most relevant to disease, are all incomplete, it is currently
the case that the vast majority of GWAS “hits” do not have an

established link to a gene—though data sets with which to infer
functional annotation and gene expression are growing rapidly in
their utility.
Analytic methods for post-processing GWAS results using

functional information are therefore promising tools for disease
gene identification. For example, Post-GWAS Analysis Platform
(POSTGAP [10]) uses GWAS summary statistics along with Linkage
Disequilibrium (LD) structure and external functional databases
(GTEx [11], FANTOM5 [12], RegulomeDB [13]) to prioritize SNPs
within the locus and narrow down the list of potential gene
candidates. Yet, the gene prioritization utility of POSTGAP is still in
early development and has not been fully tested.
Altogether, fine-mapping, functional annotations, and known

biologic relatedness across putative disease genes can become
valuable data sources for gene prioritization, which we define as
the evaluation of the likelihood of a gene being causally involved
in generating a disease phenotype [14]. Machine-learning (ML)
based prioritization could take an advantage of these data sources
and provide a solution for novel disease gene identification.
Typically, existing ML solutions use Positive-Negative (PN)

classification strategy. In PN classification per-gene probabilities
are obtained by using known disease genes as a positive (P)
training set and unknown genes as a negative (N) training set [15–
18]. In addition to often having a limited set of confirmed positives
in each disease, such an approach suffers from contamination of a
negative set by hidden positives (HP), represented by yet
undiscovered disease genes. In addition, it is challenging to find
reliable negative examples (i.e., genes that with certainty do not
contribute to the development of a phenotype). Most biological
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databases do not store negative evidence (e.g., absence of gene
interaction), rather they provide only observed positive evidence.
As a result, particularly in highly polygenic traits, PN-classifiers
could suffer from high false-negative prediction rates and biased
quality metrics.
It is feasible to design a model, where a limited number of

reliable positive examples (likely causal genes) will be used along
with all remaining genes without treating the latter as reliable
negatives. PU-learning treats unknown examples as a mixture of P
and N, called unlabeled (U) set, and has been developed to
overcome limitations of PN-learning.
A theoretical study of PU-learning was first conducted by Denis

et al. [19], and several algorithms have been published since then
[20, 21]. A particular class of PU methods—PU-bagging, showed
the best stability of the learning algorithm. Specifically, Mordlet
et al. [22] proposed the “bagging SVM” approach that took
advantage of a limited number of positive examples and
significantly improved the performance and stability of classifica-
tion using a bootstrap aggregating technique. It treats all provided
positives as TP and iteratively subsamples the same size of
unlabeled instances, using them as negatives. Thus, on each
iteration only a small portion of U is treated as N, minimizing false-
negative error rate [22].
Nevertheless, a single ML algorithm cannot fit all complex

phenotypes and highly heterogeneous biological data. To over-
come this, Yang et al. [23] introduced a method that integrated
several PU learning classifiers into one workflow using ensemble
technique. This technique was only tested with a specific family of
PU algorithms—two-step methods, heuristic in nature, and
sensitive to the initial choice of negative examples [24],
significantly limiting applicability to GWAS data. Two-step PU
algorithms first attempted to identify negative examples in the
unlabeled set, and then train a model from the positive, unlabeled,
and likely negative examples. Such algorithms are preferable
when classes are close to each other, but at least separable [21].
However, in most polygenic traits, heterogeneous gene-based
data are far from being divisible. Directly learning to discriminate P
from U with the estimation of optimal misclassification costs is
preferable in this case.
Therefore, a composition of different ML algorithms along with

PU bagging is a promising strategy for building a gene-
prioritization model suitable for a large number of complex
phenotypes and a high variety of data sources, which is still
lacking in the field.
Here, we propose a novel gene prioritization tool based on PU-

learning—Gene Prioritizer (GPrior), intended for post-fine-
mapping interpretation of GWAS results. In GPrior we implemen-
ted the ensemble of 5 different ML classifiers for PU-bagging with
a further selection of the optimal composition of predictions. Our
approach returns probability scores for the provided set of genes
based on similarity level with positive examples used for training.
It is complementary to other gene prioritization tools and fine-
mapping techniques further expanding potential usage scenarios.
We illustrate the utility of PU-learning and GPrior for the disease

gene prioritization with a series of case studies and validation
experiments. Comparison with popular methods (TOPPGENE [25];
Bagging SVM [22]; MAGMA [26]) confirmed significantly higher
quality of predictions returned by GPrior.

METHODS
GPrior was designed for prioritizing disease-relevant genes given a matrix
of gene-level features and a set of reliably causal genes. We integrated
multiple ML techniques in a single tool with a data-driven framework to
select the most appropriate algorithm (or composition of algorithms) on a
case-by-case basis.
The prioritization scheme includes two independent steps. First, each ML

algorithm is used for positive-unlabeled bagging and generation of

predictions for each gene. Second, the best-performing composition of
predictions is generated. To ensure the independence of steps, GPrior uses
two independent training sets—a set of genes for training individual ML
algorithms and a second algorithm evaluation set (Fig. 1, Supplementary
Fig. S1). The latter is used to evaluate the quality of predictions from ML
algorithms and select predictions that will contribute to the optimal
composition. Altogether, such an approach allows the composition of
multiple learning algorithms and can thereby achieve performance
previously unattainable for an individual algorithm.

Input and features
In addition to the described above true gene sets needed for training,
GPrior requires a data matrix with rows representing genes and columns
representing features. Note that training sets were defined prior to running
GPrior. To avoid sampling bias, we used three different gene set compiling
strategies: GWAS Catalog mining, publication-based and expert curation
(Supplementary Materials, Training and validation gene sets).
GWAS summary statistics contain only variant information that needs to be

converted into gene-level data. Initially, we filtered out likely non-associated
variants with the p-value threshold determined on a case-by-case basis,
ensuring the inclusion of the majority of potentially causal genes into the
prioritization analysis, even if no significant association was observed in
GWAS. The threshold depended on the trait polygenicity and the number of
already discovered signals. We used p value < 10−8 for well-studied traits,
otherwise, for highly-polygenic traits, we took variants with p value < 10−6.
Further, GWAS p values were not a part of the prioritization model.
Next, we used POSTGAP [10] with the default parameters to assign gene

candidates for each variant (could be more than one gene)—LD threshold
of r2 > 0.7 and variant functional annotations. Such preprocessing of GWAS
summary statistics yields a variant-based data matrix with mappings to an
extensive list of candidate genes.
A major challenge in transforming variant-based data into a gene-based

data matrix for GPrior is the preservation of valuable information about

Fig. 1 GPrior ensemble positive-unlabeled learning framework.
Matrix of gene features along with a vector of supervised answers is
used to train 5 models (LR Logistic Regression, SVM Support Vector
Machine, RF Random Forest, DT Decision Tree, AB Adaptive
Boosting) using PU-bagging approach. Two independent gene sets
are used for training –a true set of genes for individual classification
algorithms training and algorithm evaluation set of true genes for
selecting the optimal composition of the predictions. Predictions are
generated using positive-unlabeled bagging and further, an optimal
composition returning the largest PU-score is returned.
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variant annotations. We used a transformation of variant-level features (e.g.
functional annotations, GERP scores, etc) into gene-level features using a
method proposed by Lehne et al. [27] to obtain a gene-based data matrix.
In addition, we used gene expression and gene interaction data that

proved their utility for the gene identification problem in previous works
[15, 28, 29]. Specifically, we used the GTEx database to obtain median gene
expression levels for 53 tissues, the Reactome database to obtain
interaction data, UCSC Gene Sorter to obtain protein homology informa-
tion, etc. (Supplementary Table S1). All of them were used as features for
further gene annotation.
Additional functional features and predictions of other prioritization

algorithms could be included in the data matrix to be used for the GPrior
model to boost the performance quality [30]. GPrior could take as input
either the raw output of POSTGAP (variant-based data matrix) or any gene-
based data matrix provided by a user.
We kept the same set of features for the case studies to preserve the

fairness of performance comparisons for different phenotypes. Although,
for each phenotype, features could be selected in concordance with
phenotype-specific needs, for example, relevant cell type expression data.
Overall, GPrior is not bound to POSTGAP pre-processing or a pre-specified
set of features and could be used with more advanced variant-to-gene
mapping algorithms and a user-defined set of features to boost the trait-
specific performance (Supplementary Methods, Input and Features).

GPrior algorithm
GPrior consists of five PU Bagging ensembles, each of them uses a
different classification algorithm: Logistic Regression (LR), Support-Vector
Machine (SVM), Decision Tree (DT), Random Forest (RF), Adaptive boosting
(AB) (Fig. 1, Supplementary Methods, GPrior Algorithm).
Each positive-unlabeled bagging procedure starts with the creation of a

training set with all positive (P) instances, treated as Positives, and a
random subsample of unlabeled, size of P, treated as negatives (bN).
Resulting in the total size of a bootstrap sample being equal to 2 P.
However, it is possible to tune the bN:P ratio in GPrior parameters. This
way, on each iteration only a small portion of unlabeled instances is
treated as negatives, minimizing the false-negative error rate (Supplemen-
tary Fig. S2). Each learning method is then fine-tuned by finding an optimal
set of parameters (Supplementary Table S2).
After training and tuning, individual classifiers generate a probability

score for each gene to belong to the positive class. All the steps are
repeated T times. Per-gene probabilities are obtained by dividing the sum
of all predictions by the number of times each gene was sampled from the
unlabeled set. All the predictions are averaged and stored as a final PU
Bagging result. All the steps are repeated for each classification algorithm.
Next, GPrior selects the composition of predictions that shows the best

performance in prioritizing true genes given by an independent algorithm
evaluation set. Since “true negative” data points that falsely were classified as
positives could not be identified in PU-data, any metric depending on false
positives could not be applied for quality evaluation. Furthermore, separation
of all genes into confident “risk” and confident “non-relevant” classes is not
known for any polygenic trait. Rather we are limited only by “currently
identified” risk genes, which makes usage of common classification quality
metric (e.g. F1 score) inaccurate. Thus, we used PU-score as a formal quality
metric suitable for positive-unlabeled data classes [31, 32].
We performed a set of experiments using public benchmarks data to

confirm similar behavior (Pearson’s correlation R= 0.99, p value < 2.2e−16)
of F1-score and PU-score, to justify further usage and interpretation of
prediction quality assessment with PU-score (Supplementary Methods,
Supplementary Figs. S5–S7).
All compositions from individual predictions are evaluated using PU-

score calculated for the algorithm evaluation set and the best performing
composition of methods is then selected as the best fitting for a given
phenotype. The selected composition is used to return a vector of
probabilities corresponding to the genes in the input matrix.

RESULTS
The number of known true positive and negative data points is
the essential information for gene prioritization. It is challenging to
estimate both the number of genes involved in a complex trait
and the number of genes confidently irrelevant to the disease.
Height GWAS, as a classic example of a highly polygenic trait

study, shows substantial effect sizes for variants that are not

reaching genome-wide significance. This suggests that significant
associations are observed only for a small proportion of true
positive data points, while many others are yet to be confirmed.
However, additional alleles at known genes are a likely source of
much of what is missing from disease-relevant variants or genes,
so this does not easily translate into an estimate of how many
relevant genes are implicated from a GWAS [33].
As shown in recent work, the genetic architecture of height is

broadly similar to that of a wide variety of other quantitative traits
and diseases ranging from diabetes and autoimmune diseases to
BMI and cholesterol levels [33]—for all of which the evidence
suggests many more positive genes exist in the “currently not
associated” gene set. In addition, only a fraction of the genome-
wide significant loci were mapped to a single gene, even further
reducing the number of known true genes suitable for training a
model. Therefore, it is reasonable to assume that gene prioritiza-
tion algorithms should expect to be trained using only a small
fraction of all disease-relevant genes.
Furthermore, in the absence of reliable sets of genes

conclusively unrelated to a disease, it is unclear how to validate
prioritization results based only on positive examples.
We conducted several benchmarking experiments to validate

the utility of PU-learning for gene prioritization and check the
applicability of some of the commonly used quality scores. First,
we used a Breast Cancer Wisconsin (Diagnostic) data set, a popular
public dataset for machine learning benchmarking, to compare
the performance of a PU-learning approach and a conventional
PN-learning method. Further, we tested the interchangeability of
two quality scores (F1-score and PU-score). F1-score is immeasur-
able in real data experiments, thus we wanted to validate the
utility of PU-score on a data set with known ground truth prior to
conducting case studies.
Benchmarking confirmed the superior performance of PU-

learning compared to a single PN-learning approach. Specifically,
the PU-bagging algorithm is most useful when the fraction of
known to-date true instances is below 20%, which is quite clearly
the case for the majority of polygenic traits (Supplementary
Methods, Benchmark data experiments; Supplementary Figs. S5–S7).
Further, we conducted a series of case studies using complex

disease GWAS data to evaluate performance and compare GPrior
with other methods in the real-life setting that the application is
targeted towards.

Case study 1: inflammatory bowel disease (IBD)
We used GPrior and summary statistics from Huang et al. [34], to
construct gene prioritization for IBD. It consisted of 67,852
individuals of European ancestry, including 33,595 with IBD
(18,967 Crohn’s disease and 14,628 ulcerative colitis) and 34,257
healthy controls. Summary statistics were preprocessed to obtain
a data matrix with 2,166 gene candidates found in loci with
original p-value < 10−8. A list of 31 genes with known evidence to
be likely causal for IBD was used as a positive training set [35–38].

The algorithm evaluation set consisted of 14 genes reported in
monogenic loci with p value < 10−10 found in the GWAS catalog.
We use “monogenic loci” here to refer to GWAS loci with either a
single gene in a fine-mapped region or a coding variant in a
credible set in the corresponding publication. Independent
validation set used only for performance evaluation included 51
genes found within monogenic loci with p-values falling in range
10−10−10−8 (Fig. 2A, Supplementary Table S3). For more details
about gene sets compiling procedure see Supplementary
Materials, Training and validation gene sets.
In addition, we validated the importance of training set

compiling procedure and influence of contamination on the
prioritization quality (Supplementary Methods, GPrior Algorithm).
We generated gene priorities using GPrior (optimal composi-

tion: LR, RF) (Supplementary Table S4) and a set of methods for
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comparison—a single PU-learning (bagging-SVM [22]), PN-learning
(weighted LR [31]), and TOPPGENE [25]. While GPrior implies two
training steps and usage of two training gene sets—true gene set
and algorithm evaluation set, for other methods we used a union
of the two gene sets for training.
Next, we compared the performance quality of the methods.

PU-score is a formal quality metric for an ML-based classifier,
rather than for a prioritization itself, and it depends on the
decision threshold used to assign classes to the instances. Gene
prioritization implies only a construction of the ranked list of
genes, but not the classification of the genes into “disease” and
“non-disease”. Yet, we evaluated the maximal possible perfor-
mance of the methods in the classification problem. We used an
independent validation gene set to estimate PU-scores for all
possible decision thresholds (fraction of positive predictions made
by the classifier) and GPrior has a significantly greater maximal PU-
score compared to others (Fig. 2B).

To evaluate prioritization quality, we estimated cumulative
gains. The gain chart shows enrichment of the genes from the
validation set at the top of the ranked list of predictions, that is the
sharper is the growth of gain at the beginning of the chart – the
more enriched are correct predictions at the top of the predictions
list (Fig. 2C).
Since original GWAS summary statistics were preprocessed to

include only variants with p value < 10−8, all 2166 genes in the
data matrix are found in or in the proximity of significantly
associated locus. GPrior does not use association strength or DNA
location information for gene prioritization. Yet, genes from the
validation set are significantly prioritized over the non-relevant
neighbors (+/−250 kb, N= 239, Mann–Whitney, one-sided, p
value = 4.335 × 10–6, Fig. 2D).
We evaluated the non-randomness of the predictions, by

estimating enrichment of the validation set genes at the top of the
ranked list produced by GPrior (permutation p value < 1*10–6; Fig. 2E).

Fig. 2 Gene prioritization for inflammatory bowel disease GWAS. A Scheme for selection of training, algorithm evaluation, and validation
gene sets; B Classification quality comparison for GPrior, Bagging SVM, TOPPGENE and conventional PN-learning with weighted linear
regression; C Cumulative gains curve shows better prioritization of true genes at the top of the candidate list using GPrior in comparison with
other methods; D True genes from the independent validation gene set receive significantly higher scores than genes found within the same
loci but not implicated inthe disease; E Enrichment of true genes from independent validation gene set among top predictions from GPrior.
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Treatment of all genes from the validation set as a finite set of
disease genes implies that all genes that are not in the validation
set are true negatives. In the case of polygenic traits, this is most
likely a false assumption that would lead to an underestimation of
the true value of the area under the ROC curve (ROC AUC). Thus
AUC values will illustrate only approximate quality measurement.
In such settings, GPrior demonstrated the most efficient predictive
power out of all tools (AUC= 0.8, Supplementary Table S5).

Case study 2: educational attainment
We performed a control experiment to demonstrate that GPrior
predictions are disease-specific and are driven by underlying
biological similarities for disease-related genes. We considered
two phenotypes with a very modest expected overlap in
underlying biological causes—IBD and educational attainment
(EA). We hypothesized that usage of the training gene set fitted
for IBD should fail to predict genes for EA.
GWAS summary statistics data from Lee et al. [39] for EA, which

included 1,131,881 individuals, was preprocessed to obtain the
feature matrix for candidate genes (N= 10,638), found in loci with
original p value < 10–6. Educational attainment is a highly
polygenic trait and modern genetic studies were able to explain
only a relatively low proportion of phenotypic variation, thus we
used the p-value threshold of 10–6 to incorporate even moderate
signals for further analysis.
To eliminate potential bias in the size of training sets for the two

phenotypes, we used for GPrior training only 18 genes (12 for ML
training and 6 for algorithm selection) from the IBD training gene
set that were also found in EA GWAS loci with p value < 10–6. As a
validation set for IBD we used the original IBD validation genes
(N= 51), for EA we used 381 genes found in monogenic loci from
GWAS catalog EA results (Supplementary Table S6, Supplementary
Methods).
Usage of appropriate training set for IBD resulted in significant

enrichment (permutation P < 10–6) of validation set genes in the
top predicted genes (Supplementary Fig. S8A). Predictions based
on the same list of training genes were constructed for EA and
demonstrated no enrichment of the EA-specific validation gene
set (permutation p value = 0.12, Supplementary Fig. S8B). Yet,
usage of the EA-specific training gene set of the same size (N= 18,
Supplementary Methods) led to successful prioritization of EA-
specific genes (permutation P < 10–6, Supplementary Fig. S8C).
We expanded the training set for EA by including all genes

found in monogenic loci in GWAS Catalog with (N= 119) and
repeated prioritization analysis. As a result, we obtained even
more significant enrichment for the validation set and confirmed
superior performance quality of GPrior (optimal composition: LR,
Ada, RF) in comparison with other methods (Supplementary
Fig. S9, Supplementary Tables S8, S9). Genes from the validation
set had significantly higher probability scores in comparison with
neighboring genes (+/−250 kb, N= 1390, Mann–Whitney, one-
sided, p value < 2.2e-16).
Further, we utilized a set of previously undescribed genes

associated with developmental disorders from a recent Kaplanis
et al. [40] study to validate GPrior prioritization results. 183 of them
were overlapped with our dataset and did not occur in other
previously used gene sets, thus we used them as an additional
validation set. GPrior successfully achieved significant prioritization
of these genes (permutation p value = 2 × 10–5). Some of them
CAMTA1, ZEB2, CAMK2A, TUBB3, NFIA, SHANK3, WAC, PAFAH1B1,
UBTF, NFIX, MEF2C, and CAMK2B were placed at the top 200 genes.
We estimated how strongly GWAS summary statistics prepro-

cessing with POSTGAP contributed to the overall success of the
prioritization. POSTGAP, which was used for mapping variants to
an expanded list of candidate genes, was not originally designed
for gene prioritization. The package reports a variant-to-gene
(V2G) mapping score based on the sum of values for 7 features
that potentially could be used for ranking genes (Supplementary

Fig. S10). We used the maximal variant-to-gene score for each
gene to construct a ranked list of genes (score_max). Next, we
estimated the largest possible PU-score using only POSTGAP-
based gene ranking for educational attainment data (PU-score =
3.82). To evaluate the advancement in prediction quality due to a
model design we limited feature space to exactly the same 7
features and ran gene prioritization using GPrior, which resulted in
a nearly 10% increase in PU-score (PU-score = 4.1).
POSTGAP score is limited to the initial 7 features used to

construct score_max. In turn, GPrior can take advantage of all
available feature space. Including all available features into the
GPrior model yielded a significant increase in quality (~27%)
leading to the maximal PU-score of 4.84 (Supplementary Fig. S10).

Case study 3: Coronary artery disease (CAD)
We used the summary statistics of coronary artery disease GWAS
of 34,541 CAD cases and 261,984 controls from UK Biobank
followed by replication in 88,192 cases and 162,544 controls [41].
After preprocessing we obtained a gene-based data matrix with
2,794 gene candidates found in loci with original p value < 10−8.
A recent review by Khera and Kathiresan [42] was used to

compile gene sets for GPrior (Fig. 3A). All genes with identified
biological roles in any of the known disease pathways were used
for the training set (TS= 18, AES= 8). All other genes, implicated
in CAD and mentioned in the review, were used as validation set
(VS= 37) (Supplementary Table S9).
Prioritization list obtained with GPrior (optimal composition:

Ada, RF) (Supplementary Table S10) has shown the best accuracy
with all quality metrics in comparison with other methods
(Fig. 3B–E, Supplementary Table S11). GPrior showed both
significant enrichment of genes from VS at the top of the
prioritized geneset (p value < 10–6) and significantly higher
probability scores in comparison with neighboring genes (+/−250
kb, N= 100, Mann–Whitney, one-sided, p value = 2.973 × 10–7).
Conclusively, using risk genes with known molecular pathway

membership GPrior successfully prioritizes genes with yet
unknown biological contribution but confidently implicated in
the disease. Importantly, by further analyzing feature importance
in the prediction model it is possible to build testable biological
hypotheses for novel genes discovered in predictions.

Case study 4: Schizophrenia
We used GWAS Summary statistics from Pardiñas et al. [43]. This
study used genotypes of 105,318 individuals—40,675 schizophre-
nia cases and 64,643 controls.
After preprocessing we obtained a gene-based data matrix with

3831 gene candidates found in loci with original p value < 10−6.
The training set was prepared using reported genes found in

monogenic loci from GWAS meta-analysis results [43]. Training
gene set for individual ML algorithms included 20 genes with p
values falling in the range 10–44–10–14, and algorithm evaluation
set included 24 genes with p values within 10−13–10−8 range. The
validation set (VS) included 28 genes and was obtained from the
same study and included all genes from significant polygenic loci
(Fig. 4A, Supplementary Tables S12 and S13).
GPrior (optimal composition: SVM, DT, RF) demonstrated

superior results in comparison with other methods using all
quality metrics. GPrior achieved the highest PU score (9.64) and
AUC (0.92) values. On all the top intervals of the predictions list
(1%, 5%, 15%, 25%) GPrior showed the highest enrichment of the
validation set genes (Fig. 4B–E, Supplementary Table S14). Also,
the latter had significantly higher probability scores in comparison
with neighboring genes (+/−250 kb, N= 162, Mann–Whitney,
one-sided, p value = 5.202 × 10−6).
Further, we compiled two additional validation sets to evaluate the

disease-specific nature of the GPrior prediction and test the ability of
the proposed method to predict disease genes from the latest
schizophrenia studies based on the previously published data. The
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first set was derived from Singh et al. [44] analysis of schizophrenia
exomes. We used 10 genes identified with FDR< 5% as associated
with the disease that overlapped with the initial set of genes from the
feature table and used them as a validation set (Fig. 4F; Supplemen-
tary Table S12). GPrior successfully achieved significant prioritization
of these genes (permutation p value = 0.00356; Fig. 4G), confirming
the overlap between associations for schizophrenia identified in
GWAS and in rare variant studies. Several known schizophrenia-
associated genes from this list were placed in the top 200 hits:
GRIN2A, MAGI2, SP4, and STAG1 [45–48].
The second validation set was derived from the recently

published data of Psychiatric Genomics Consortium (PGC3) [48].
We took 16 genes from monogenic loci that weren’t overlapping
with genes previously used for compiling TS, AES or any VSs
(Fig. 4H; Supplementary Table S12). GPrior demonstrated even
more superior enrichment (p value < 10−6; Fig. 4I). 5 genes from

the list were presented in the top 200 hits: CALN1, NEGR1, NMUR2,
WSCD2, PPARGC1A. Additional trait-specific feature selection and
integration of both common and rare variants data into the
analysis can further significantly improve the overall quality of
schizophrenia disease genes prioritization.
Conclusively, using three different validation sets we show that

even for such a complex trait as schizophrenia GPrior can recover
novel biologically relevant genes using only previously published
data. Furthermore, using GPrior we can confirm significant overlap
between gene sets acting through common or rare variants on
schizophrenia risks.

MAGMA comparison
We compared GPrior with a commonly used method that takes
GWAS summary statistics as input and attempts to pinpoint likely
disease genes—MAGMA [26]. It computes gene-based p value (mean

Fig. 3 Gene prioritization for coronary artery disease GWAS. A Scheme for selection of training, algorithm evaluation, and validation gene
sets; B Classification quality comparison for GPrior, Bagging SVM, TOPPGENE and conventional PN-learning with weighted linear regression; C
Cumulative gains curve shows better prioritization of true genes at the top of the candidate list using GPrior in comparisonwith other
methods; D True genes from the independent validation gene set receive significantly higher scores than genes found within the same loci
but not implicated inthe disease; E Enrichment of true genes from independent validation gene set among top predictions from GPrior.
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association of SNPs in the gene, corrected for LD). We ran MAGMA
with default parameters and compared performance quality with
GPrior. As an output MAGMA returns a list of genes and
corresponding p-values, which we used to sort the list for
prioritization purposes.

One of the challenges for a non-biased comparison was the
relatively small number of gene candidates in output from
MAGMA. Therefore, we took the same number of top genes
from GPrior results to compare an equal number of gene
predictions.

Fig. 4 Gene prioritization for schizophrenia GWAS. A Scheme for selection of training, algorithm evaluation, and validation gene sets; B
Classification quality comparison for GPrior, Bagging SVM, TOPPGENE and conventional PN-learning with weighted linear regression; C
Cumulative gains curve shows better prioritization of true genes at the top of the candidate list using GPrior in comparison with other
methods; D True genes from the independent validation gene set receive significantly higher scores than genes found within the same loci
but not implicated in the disease; E Enrichment of true genes from independent validation gene set among top predictions from GPrior; F
Scheme describing the selection of additional validation set from Singh et al. publication; G Enrichment of genes from Singh et al. validation
set; H Scheme describing the selection of additional validation set from PGC3; I Enrichment of genes from the PGC3 validation set.
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GPrior demonstrated enrichment of top ranked predictions for
validation sets for all phenotypes–EA (p value= 9 × 10−3), schizo-
phrenia (p value= 7 × 10−4), CAD (p value= 3 × 10−3) and IBD (p
value= 0.019). MAGMA produced significantly enriched predic-
tions only for CAD (p value= 9 × 10−3) (Supplementary Fig. S11).
Conclusively, GPrior demonstrated the best performance out of

all evaluated approaches for gene prioritization in multiple
settings and for various phenotypes.

DISCUSSION
A large number of GWAS studies performed to date provide an
invaluable source of information for generating biological
hypotheses for disease causes. The majority of these studies have
greatly benefitted from fine-mapping that implicated a limited
number of gene candidates. However, for highly polygenic
phenotypes like schizophrenia, known genes represent only a
tiny segment of the disease biology. Current methodologies are
unable to precisely separate true effector transcripts from nearby
non-causal genes within associated GWAS loci.
The challenge of mapping “variants to function” can in principle

greatly benefit from machine learning approaches—particularly for
those phenotypes for which a strictly genetic fine-mapping
approach has had limited success in conclusively identifying risk
genes. As we illustrate, conventional positive-negative machine
learning approaches require a substantial fraction of already known
disease genes to achieve sufficient prioritization quality for novel
candidates. In addition, it is nearly impossible at this point to
confidently state that a gene is not involved in a disease, therefore,
directly assuming “negative” examples for training is fated to include
false negatives in a training set, further reducing prediction quality.
Instead, we provide a tool that uses positive-unlabeled learning

and requires only confidence in selecting positive instances for
training. Such genes are relatively easy to identify based on
association significance, previously reported functional studies,
etc. Importantly, PU-learning performs well even when the training
set is quite small.
An additional challenge for a single-method-based solution is

presented by phenotype complexity. Phenotypes may present
significantly different genetic architectures or impose certain
limitations on the set of available data sources; therefore, it is
unlikely that a single technique will be suitable for gene
prioritization in all of them. We provide a software package for
gene prioritization – GPrior that takes advantage of the ensemble
of PU-learning techniques. Such an approach overcomes the
unresolved challenges of PN-learning and issues arising from
phenotype complexity. In GPrior, two key steps of the model
training: PU-classifiers training and selection of optimal classifiers
composition are performed using two independent gene sets. The
two-step strategy ensures independent quality assessment for all
classifiers and unbiased selection of the optimal prioritization
method, as well as delivering optimal prioritization results for the
specific phenotype.
Several limitations of the method should be mentioned. First,

there are a great number of understudied phenotypes, for which
assembly of a reliable set of “gold-standard” disease genes that
could be used for training still imposes a challenge. Therefore,
using several gene sets (TS and AES) for training a model is nearly
impossible due to the lack of the known genes. For this reason, we
have an option to run GPrior using a single True set, without
finding the optimal composition of predictions based on the
algorithm evaluation set, and to obtain the prioritizations from all
five algorithms for further manual analysis.
Further, the lack of a complete set of causal and non-causal

genes for a trait significantly limits the validation procedure of
gene prioritization results. We lack reliable benchmark data for
gene prioritization, thus limiting the scope of validation experi-
ments and introducing undesirable contamination in most of the

commonly used quality scores. Using a clinically diverse set of
well-studied phenotypes, we demonstrate the broad utility of the
approach and validate the disease-specific nature of the resulting
predictions in case studies (introducing noise into the training
data and switching validation sets between genetically distant
phenotypes).
Also, one of the limiting steps in our GWAS processing scheme

was naïve and inclusive selection of gene candidates from each
locus. More sophisticated preprocessing of the raw GWAS
summary statistics with methods such as SuSie or FINEMAP to
improve variant-to-gene mapping could significantly aid variant-
level to gene-level features transformation.
Finally, as with any data-driven classifier, the predictions would be

naturally biased by the features that were selected for input. For
example, functional interactions derived from the Reactome are
naturally biased towards more studied genes. Furthermore, we have
not selected features to be specific to each phenotype. We used a
relatively conservative set of features for gene annotations, which
could be significantly expanded or replaced with more relevant
phenotype-specific annotations, such as – single-cell expression
data, specific protein–protein interactions, gene conservation
metrics (pLI, LOEUF), and others. From the analysis of features
importance we concluded that SNP-level features contributed the
most in the resulting GPrior gene prioritization (e.g. VEP, Fantom5,
DHS), but at the same time, there is a strong trait specificity in the
importance of gene expression features. For example, IBD features
importance analysis showed that gene expression in the Colon and
Esophagus appears to be important for prioritizing true disease
genes in comparison with other tissues (Supplementary Tables S15-
S18). Therefore, users can expect to see higher performance in case
of thorough feature selection. Additionally, GPrior can be straight-
forwardly integrated with conventional fine-mapping tools or other
prioritization methods. Altogether, we certainly recommend using
phenotype-specific annotations along with manual feature curation
to achieve the best possible result.
Conclusively, GPrior fills an important and currently under-

developed niche of methods for GWAS data post-processing,
significantly improving the ability to pinpoint disease genes
compared to existing solutions.

CODE AVAILABILITY
https://github.com/faramer86/GPrior.
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