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Abstract
Pleiotropy (i.e., genes with effects on multiple traits) leads to genetic correlations between traits and contributes to the
development of many syndromes. Identifying variants with pleiotropic effects on multiple health-related traits can improve
the biological understanding of gene action and disease etiology, and can help to advance disease-risk prediction. Sequential
testing is a powerful approach for mapping genes with pleiotropic effects. However, the existing methods and the available
software do not scale to analyses involving millions of SNPs and large datasets. This has limited the adoption of sequential
testing for pleiotropy mapping at large scale. In this study, we present a sequential test and software that can be used to test
pleiotropy in large systems of traits with biobank-sized data. Using simulations, we show that the methods implemented in
the software are powerful and have adequate type-I error rate control. To demonstrate the use of the methods and software,
we present a whole-genome scan in search of loci with pleiotropic effects on seven traits related to metabolic syndrome
(MetS) using UK-Biobank data (n~300 K distantly related white European participants). We found abundant pleiotropy and
report 170, 44, and 18 genomic regions harboring SNPs with pleiotropic effects in at least two, three, and four of the seven
traits, respectively. We validate our results using previous studies documented in the GWAS-catalog and using data from
GTEx. Our results confirm previously reported loci and lead to several novel discoveries that link MetS-related traits through
plausible biological pathways.

Introduction

Many human diseases (e.g., hypertension, gout, and dia-
betes) cluster into syndromes. Evidence from quantitative
genetic studies [1, 2] and from genome-wide association
(GWA) analyses [3] suggest that pleiotropy (i.e., variants
with simultaneous effects on several traits) is an important

driver of the genetic correlation between comorbid condi-
tions. Therefore, in recent years, there has been an increased
interest in mapping genetic loci with pleiotropic effects
[4–6]. However, mapping these loci on multiple traits can
be computationally and statistically challenging because of
the large number of tests involved. For example, in a system
of three traits, there are four possible configurations invol-
ving pleiotropy: one for associations with three traits and
three involving two traits. The number of possible pleio-
tropic configurations grows exponentially with the number
of traits; for example, in a system of 10 traits there are 1013
configurations which involve the same variant having
effects in at least two traits. This exponential growth in the
number of hypotheses that need to be tested creates obvious
computational difficulties, makes type I error control chal-
lenging, and renders interpretation and communication of
results difficult. These challenges get exacerbated by the
fact that whole-genome scans require performing these tests
for potentially millions of variants and by the very large
sample size of modern biobanks.

To confront the challenges posed by the analysis of
systems of many traits, some authors considered using
phenotype-derived principal components (PCs) as traits in
GWA analyses. For example, this approach has been used
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to identify variants associated with patterns shared across
multiple MetS-related traits [7]; however, this approach has
several limitations. Firstly, the phenotype-derived PCs often
lack a clear biological interpretation, which can lead to
difficult-to-interpret GWA results. Secondly, PCs are
derived from phenotypic (co)variance patterns, which may
be highly influenced by shared environmental factors, thus
reducing the power to detect genetic associations [8].

Schaid et al. [9] proposed a formal test for pleiotropy that
addresses many of the statistical challenges posed by GWA
analyses of systems involving many traits. The approach
uses a multivariate model and a sequence of likelihood-ratio
tests (sLRT) designed to identify the set of SNPs that are
associated with at least two, three, …, p traits in the system.
This sequential test controls the type-I error rate while
offering the power of multi-trait models. The methodology
developed by Schaid et al. has several attractive features.
Firstly, the test uses all the information available, without
relying on dimension reduction techniques such as PCs.
Secondly, the approach groups the possible pleiotropic
configurations into a few meaningful states where the locus
affects at least q trait(s) in the system (q= 1,…, p), thus
facilitating interpretability. Finally, the p values for each of
these states are derived using a well-established intersec-
tion-union test that guarantees adequate type I error control,
regardless of the complexity of the system [10]. However,
the sLRT is computationally demanding, and the existing
software [11] that implements it does not scale to whole-
genome scans involving many traits and large sample size.

Therefore, in this study, we developed an approximation
to the sLRT that achieves the same power and error-control
performance but is orders of magnitude faster to compute.
Our approach (pleiotest) succeeds at evaluating the
sequential test faster by using three main strategies: (i)
instead of using a likelihood ratio test with decorrelated
data, we use Wald’s test [12] with a simplified version of
the variance of the coefficients, which is slightly faster to
compute. (ii) Following Turley et al. [13], we approximate
the error (co)variance matrix with an estimate derived from
covariate (e.g., sex, age, evaluation center, etc.) adjusted
phenotypes. For complex traits, this (co)variance matrix
approximates well the residual (co)variance matrix because
individual SNPs explain only a small fraction of the phe-
notypes. Finally, (iii) we implemented the core of the
computations using the C++ language and integrated this
into an R package that is both fast and user friendly.
Importantly, our package is compatible with the BEDMatrix
R-package [14], which implements memory mapping for
binary genotype files in bed format; thus, enabling big data
analysis within the R-environment.

In this study we describe the methodology implemented
in pleiotest, present extensive simulations that show that the
proposed approximation has the same power and error

control than the original test, and provide a benchmark
that shows that our method is orders of magnitude faster
than the sLRT and scales well to analyses involving many
traits (e.g., 10 or more) and very large sample sizes (e.g.,
n > 300 K; K= 1000). Finally, to demonstrate the use of
pleiotest to map pleiotropic loci with big data, we applied
the sequential testing to seven traits related to metabolic
syndrome (MetS), using a dataset of distantly related white-
European individuals from the UK-Biobank (n= ~316 K
and ~624 K variants).

Materials and methods

Statistical methods

Consider a single-marker regression (SMR) in which a
(centered and covariate-adjusted) phenotype (y) is regressed
on an SNP genotype (x) using a linear model of the form

yj ¼ xβj þ εj

where yj ¼ yj1; ¼ ; yjn
� �0

is the vector of phenotypes for the
jth trait (j = 1, ... , p), x ¼ x1; ¼ ; xnð Þ0 is a vector
containing the (mean-centered) genotypes of each of the
individuals at a given SNP, βj is the SNP effect on the jth
trait, and εj ¼ εj1; ¼ ; εjn

� �0
is the vector of error terms for

the jth trait which we will assume to be normally distributed
(more below).

For the balanced case (i.e., when all subjects had data for
all traits) a multi-trait SMR can be expressed using:

y ¼ Xβ þ ε

where y ¼ ðy01; y02; ¼ ; y0pÞ0 is a vector containing phenotype
values for each individual and trait, X ¼ Ip � x, β ¼
β1; ¼ ; βp
� �0

is a vector containing the effects of the SNP
on each of the p-traits, and ε ¼ ðε01; ε02; ¼ ; ε0pÞ0 is a vector
of error terms, assumed to follow a Multivariate Normal
Distribution (MVN) with zero mean and (co)variance matrix
R⊗In. Here, ⊗ represents the Kronecker product operator,
In stands for an n-dimensional identity matrix, and R is a
(p×p) within-subject (co)variance matrix of the error terms.

For the balanced case, the Maximum Likelihood Esti-
mator of the SNP effects (also known as Seemingly Unre-
lated Regressions [15], SUR, estimator) is

β̂ ¼ X0Ω�1X
� ��1

X0Ω�1y ð1Þ

where Ω�1 ¼ R�1 � In. The sampling (co)variance matrix
of the estimated effects is

cov β̂
� �

¼ X0Ω�1X
� ��1¼ R=ðx0xÞ ð2Þ
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The (co)variance matrix R is unknown; therefore, estimates
are often obtained using a two-stage procedure where in the
first step, each trait is regressed on the SNP separately and
the residuals from these single-trait regressions are used to
estimate R using a method of moments estimator

R̂ ¼ R̂jj0 ¼ n� 1ð Þ�1ε̂0jε̂j0
n o

ð3Þ

In the second step, expressions (1) and (2) are evaluated
using R̂ in place of R. This procedure requires fitting
models twice for each SNP, which is computationally
demanding.

For most complex traits, individual SNPs typically
explain a small fraction of the variance of phenotypes (e.g.,
loci with large effects may explain up to 3% of the trait
variance). Therefore, following Turley et al. [13], we pro-
pose using mean-centered and covariate-adjusted pheno-
types (yj) instead of single-marker regression residuals (ε̂j)
in (3): S ¼ fSjj0 ¼ n� 1ð Þ�1y0jyj0 g. Since the adjusted phe-
notypes do not depend on SNP genotypes, expression (3)
needs to be computed only once, using adjusted phenotypes
instead of model residuals; thus, avoiding the need to fit
regressions twice for every SNP. Since S� R̂ is guaranteed
to be positive semi-definite, using S in place of R can only
lead to slightly conservative inferences. Although this could
reduce power, this would only happen if an individual SNPs
had a sizable effect (i.e., whenS � R̂); however, in that
case power is expected to be very high even with a small
sample size (e.g., n= 3000). Therefore, the proposed
approximation is expected to preserve error control and
power – our simulation results confirm this expectation.

Wald test

Schaid et al. [9] proposed testing pleiotropy using a
sequential likelihood ratio test (sLRT). For computational
convenience, we consider using a sequential Wald’s test
with a simplified version of X0Ω�1X

� ��1
and X0Ω�1y that

can be obtained even in the unbalanced case (more in
Section III of the Appendix). It can be shown that these two
tests are equivalent in special cases (e.g., in linear models
with balanced data and when variance components are
assumed to be known) and, more generally, become
equivalent for relatively modest sample sizes [16] (see
Section I of the Appendix for further details).

Sequential testing

Implementing a sequential test for pleiotropy requires
evaluating multiple configurations in which SNPs may have
effects on 2, 3, …, p traits. All the hypotheses that need to
be tested can be expressed in linear form H0 : Cβ ¼ 0. The

Wald’s statistic for this linear hypothesis takes the form
w ¼ β̂

0
C0½Ccovðβ̂ÞC0��1Cβ̂. Under the null hypothesis, the

test statistic follows a chi-square distribution with degrees
of freedom equal to the rank of C. The first step in the
sequence test whether the SNP has an effect on at least one
trait (H0 : β ¼ 0), thus w0 ¼ β̂

0
covðβ̂Þ�1β̂ � χ2p. If this test is

rejected, the next step involves testing whether the SNP has
an effect on at least two traits. Here, there is a multiplicity of
null hypotheses. The p value for the test that the SNP has a
non-zero effect in at least two traits is obtained using an
intersection-union (IU) test [10]: the p values for all pos-
sible nulls are computed and the final p value is the one
corresponding to the minimum Wald’s statistic: min

k¼1;::;p
wk,

where wk is wk ¼ C0
kβ̂

0ðC0
kcovðβ̂ÞCkÞ�1C0

kβ̂ . The contrasts
needed to obtain the Wald’s statistics for this second step
(Ck) can be obtained by removing the kth row (k = 1, 2, …,
p) of a p-dimensional identity matrix (see Section II of the
Appendix for an example). If this test is rejected, the fol-
lowing steps in the sequence test whether the SNP has
effects on at least 3 traits, then 4 traits, and so on.

Unbalanced data

Above, we described the implementation of SUR and Wald
sequential tests for the case of balanced data. The same tests
can be extended to cases involving incomplete phenotype
data. We designed an efficient approach for obtaining GLS
estimates, SEs and p values for the sequential test for the
case of unbalanced data. We identify all missing-value
patterns present in the data, then we compute the relevant
summary statistics for each group, and finally we combine
them to obtain the GLS estimates–further details are pre-
sented in Section III of the Appendix. Our approach
assumes that the missing values are non-informative. Under
these conditions, it can be shown that the resulting GLS
estimator is unbiased because it is a weighted average of
group-specific estimators which are themselves unbiased
[17]. However, when the missing values are informative
(e.g., when the probability of missing value depends on
other trait values or on covariates) the estimator won’t be
unbiased unless the missing value process is modeled
adequately.

Software

We implemented the methods described in the preceding
sections into the R-package pleiotest. The computationally
demanding steps of the algorithm are implemented in C++
language, embedded into R-code using the RcppArmadillo
package. Our package offers functions to perform multi-trait
GWA analyses, a sequential test for pleiotropy, and gra-
phical display of pleiotropy analysis. The package and
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documentation, including standard pipelines and examples
can be found in the GitHub repository https://github.com/
FerAguate/pleiotest and in The Comprehensive R Archive
Network https://cran.r-project.org/web/packages/pleiotest.

Monte Carlo study

We performed simulations to assess the type I error rate and
power of the sequential testing based on Wald’s test with the
proposed approximation of the (co)variance matrix (S � R̂)
(hereafter named pleiotest), and those of Schaid’s sLRT. To
study type I error rate, we first simulated three traits (p = 3;
j = 1, ... , p; yji ¼ μj þ xiβj þ εji), with cor εji

� �
= 0.2 or 0.8

and sample size of 3000 or 10,000. Genotypic variants (xi)
were simulated from a Binomial distribution with allele fre-
quencies sampled the empirical distribution of minor-allele
frequencies ranging from 0.01 to 0.5. In a first setting, there
were no genetic effects on any trait (β1 ¼ β2 ¼ β3 ¼ 0);
subsequently, we simulated a system with the SNP having an
effect on trait one only (β1 ≠ 0; β2 ¼ β3 ¼ 0). For the trait
with a genetic effect, the SNP explained 1% of the phenotypic
variance. Clearly, none of these settings involve pleiotropy.
We carried out 500 million Monte Carlo (MC) simulations for
the scenario with a sample size of 3000 and 100 million
for the sample size of 10,000. In the first setting
(β1 ¼ β2 ¼ β3 ¼ 0) we tested the alternative hypothesis
that the SNP had an effect on at least one of the traits
(i.e., Ha1: β1 ≠ 0; β2 ≠ 0 or β3 ≠ 0). In the second setting
(β1 ≠ 0; β2 ¼ β3 ¼ 0) we tested two-traits pleiotropy (i.e.,
Ha2: β1 ≠ 0&β2 ≠ 0 or β1 ≠ 0&β3 ≠ 0 or β2 ≠ 0&β3 ≠ 0) against
the composite null where all βj are equal to zero or one is
different than zero while the others remain equal to zero.

To quantify power, we performed an MC simulation of
the three traits simultaneously affected by the same locus.
We considered different settings regarding absolute and
relative effect sizes. The proportion of variance explained
by the locus on trait one varied from 0 (no effect) to 1%. For
each setting we considered: (i) equal effect size across traits
(β1 ¼ β2 ¼ β3; i.e., effect-ratio = 1), and (ii) β1 twice as big
as β2 and β3 (effect-ratio = 0.5). We also considered sce-
narios with homogeneous error correlations of 0.2, 0.5, or
0.8 and sample sizes of 3000, 5000, or 10,000. Combining
these scenarios led to 360 (2 × 20 × 3 × 3) different analysis
settings. For power analysis (since the Monte Carlo Error is
expected to be much lower than for Type-I error rate esti-
mations) we conducted 100,000 MC replicates per setting.

Computational performance

We measured the computation time that takes for pleiotest
to prepare the data (pre-processing), fit the model, and
perform the sequential test for pleiotropy (processing). To
this end, we simulated 1000 variants, in systems involving

three, five, or ten traits, with a sample size of 10,000,
50,000, or 300,000, and a proportion of missing of either
0.0 or 0.3 (we introduce this factor because the presence of
missing values has an impact on computational complex-
ity). The computation time was measured 1000 times on a
Dual-core Intel Core i5 processor with 2.3 GHz and 16 GB
of RAM LPDDR3.

Mapping loci with pleiotropic effect on metabolic-
syndrome-related traits

Finally, we used pleiotest to perform a multi-trait GWA
analysis to map loci with pleiotropic effects on seven con-
tinuous traits related to MetS: body mass index, systolic
blood pressure, serum urate, glucose level, low-density
lipoproteins, triglycerides, and creatinine. The traits serum
urate and triglycerides were log-transformed to make their
distribution symmetric. These traits were selected based on
the articles used for comparison and data availability.
Genotypes and phenotypes derived from distantly related
white Europeans from the UK Biobank [18]. All pheno-
types were centered and linearly adjusted by age, sex,
smoking status, assessment center, and 10 SNP-derived PCs
using single-trait least square regressions.

SNP-genotypes were from the UKBiobank Axiom
Array [19] (820,967 SNPs); these SNPs were filtered by
removing those with minor-allele frequency smaller than
0.1% and using a call rate of 95%. After filtering we
retained 607,490 SNPs in autosomal chromosomes. Gen-
otyping data were available on 316,411 distantly related
white European participants. To identify these individuals,
we first confirmed self-reported ethnicity with SNP-
derived PCs, and then computed genomic-relationships
Gij

� ¼ p�1
Pp

k¼1ðxik � 2θkÞðxjk � 2θkÞ=2θkð1� θkÞ, where
θk is the allele frequency at the kth SNP) among white
Europeans and retained only individuals that had genomic
relationship smaller than 0.05. Genomic relationships were
computed using the BGData R-package. For further details
about the sample selection process refer to Kim et al [20].
Among the individuals included in the study, 46% were
male and age ranged from 39 to 73, with an average (and
SD) of 56.9 (7.99) years.

For each SNP we obtained p values for various degrees
of pleiotropy; we considered an association to be significant
if the p value was smaller than 1e−8, a standard genome-
wide significance threshold that accounts for multiple tests
across SNPs. Further adjustment for multiple testing within
loci is not needed because the sequential nature of the test
controls for it.

We report our results in terms of independent regions of
significance. We obtained these regions using the pleio_i-
deogram function, included in the pleiotest package. This
function uses p values and a genetic map to group
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significant results that are at a distance smaller than a user-
specified threshold (we use 1 Mbp) into non-overlapping
genomic regions, each harboring at least one significant
association.

Finally, we used data on tissue-specific eQTL from
GTEx [21] to test whether the variants detected in our study
were enriched for cis-eQTLs (i.e., SNPs within ±1 Mbp of
the transcriptional start site of each gene) on 48 human
tissues for which GTEx offer data. We tested for significant
enrichment using a hypergeometric test by tissue.

Results

Power and Type-I error rate

The simulation results (Table 1), which were based on 500
million MC-replicates, showed that both sLRT and pleiotest
had highly accurate type I error rate control. There were no
statistical differences between these tests in type I error rate
in any of the scenarios tested. With a sample size of 3000
pleiotest was, on average, slightly more conservative than
sLRT (i.e., smaller error rate, which translates to slightly
larger -log10(error rate)); this was expected because
pleiotest uses S instead of R̂. Increasing sample size to
10,000 resulted in virtually the same type I error rate on
both methods (Table S1 in Supplementary materials).
Finally, both methods were slightly more conservative in
cases of low error correlations (0.2), but the empirical type-I
error rates were in all cases close to the desired significance
level.

The results of the power analysis showed that sLRT and
pleiotest had indistinguishable power across scenarios
(Fig. 1). MC error is not displayed in Fig. 1 because with
the number of replicates conducted, the MC-error was
always smaller than 1% of the reported power. As it is
expected, power increased effect- and sample-size. Holding
everything else constant, the power was higher with low
error correlation and effect ratio = 1 (i.e., the same effect
size on both traits). In a suite of three traits, achieving high
power to detect pleiotropy for an SNP with moderately
small effect size (<0.2% of the phenotypic variance)
required a sample size larger than 10,000 (The estimated
MC error is in all scenarios < 0.0016). A large sample size
such as the one of the UKBiobank (>300 K) or more pro-
duces high power even with small effect sizes (<0.2%).

Computational performance

For balanced data, the benchmark (Fig. 2) showed that the
computational time required to perform the test scales
approximately linearly with the number of traits and with
sample size (left panel of Fig. 2); but these two factors

interact, making the difference in the time required to pro-
cess 5 or 10 traits larger for large sample size. When 30% of
the data were missing at random, the computational time
was no longer linear on the number of traits (right panel of
Fig. 2); this happens because with completely random
missingness the number of missing-value patterns present in
the data grows exponentially with the number of traits (i.e.,
increasing data fragmentation). However, with real data,
missing data often does not happen completely at random
(e.g., some subjects lack data for a subset of the traits); in
such cases the increase of computational time with missing
records is expected to be smaller.

For balanced data and a biobank-sized sample (n =
300,000), it took on average ~85 seconds for pleiotest to
analyze 1000 SNP for 5 traits. For systems involving 10
traits, the computational times required to process 1000
SNPs were about 50–60% higher than for analysis with the
same sample size and 5 traits. This represents a remarkable
computational improvement relative to the sLRT of the
pleio R-package [22] that, with no missing values and n =
300,000, yielded a median computation time of 20.1, 25.8,
and 44.6 s per variant for 3, 5, and 10 traits, respectively.

The benchmark presented in Fig. 2 shows that pleiotest
can process an entire chromosome (~50,000 SNPs) with a
very large sample size and five traits in about one hour and
ten minutes (chromosomes can be process in parallel as
separate jobs). For imputed genotypes, after QC and filter-
ing, long chromosomes may include ~1million SNPs. Thus,
for a sample size of 300,000 and 5 traits, processing a long
chromosome in a single job would take about 23.5 h; but
this task can also be parallelized (using features offered by
the BEDMatrix package which is compatible with pleiotest)
in, for example, jobs of 100,000 SNPs each, which will take
<2.5 h to finish.

Pleiotropic analysis of seven metabolic-syndrome-
related phenotypes

Metabolic syndrome (MetS) is characterized by a group of
conditions that are often co-morbid and are considered risk
factors for cardiovascular disease (CVD) and type-2 dia-
betes [23]. MetS scoring systems are based on different
measures of conditions such as obesity, vascular dysfunc-
tion, and inflammation, elevated plasma glucose, pro-
thrombotic state, and/or atherogenic dyslipidemia [7]. We
used pleiotest, with data from the UK-Biobank, for the
multivariate GWA analysis of seven traits associated with
MetS: body mass index (1; BMI), systolic blood pressure
(2; SBP), serum urate (3; URA), glucose level (4; GLU),
low-density lipoproteins (5; LDL), triglycerides (6; TRI),
and creatinine (7; CRE). The correlations between the
adjusted phenotypes ranged from −0.09 to 0.38 (Fig. S1 in
supplemental material). Traits TRI, BMI, and URA
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Table 1 Type I error rate (in -log10 scale) of sLRT and pleiotest by effects-scenario (Ha1 or Ha2), error correlation (Cor), and significance level (α).

Cor = 0.2 Cor = 0.8

Ha1 Ha2 Ha1 Ha2

-log10(α) sLRT pleioR sLRT pleioR sLRT pleioR sLRT pleioR

8 7.65 7.73 8.23 8.40 8.02 8.11 8.24 8.24

[7.41,7.94] [7.46,8.05] [7.76,8.91] [7.85,9.32] [7.65,8.50] [7.70,8.68] [7.78,8.93] [7.78,8.93]

7 6.95 7.00 7.19 7.24 6.94 7.03 7.06 7.10

[6.84,7.07] [6.88,7.12] [7.04,7.35] [7.08,7.42] [6.83,7.06] [6.91,7.17] [6.93,7.19] [6.96,7.24]

6 5.96 6.02 6.08 6.14 5.95 6.03 5.99 6.04

[5.92,5.99] [5.98,6.06] [6.04,6.13] [6.10,6.19] [5.91,5.99] [5.99,6.07] [5.95,6.03] [6.00,6.08]

5 4.98 5.02 5.05 5.09 4.97 5.02 4.97 5.01

[4.96,4.99] [5.01,5.03] [5.04,5.06] [5.08,5.10] [4.96,4.98] [5.00,5.03] [4.96,4.99] [5.00,5.02]

4 3.98 4.01 4.02 4.05 3.98 4.01 3.99 4.01

[3.98,3.98] [4.01,4.02] [4.02,4.03] [4.05,4.05] [3.98,3.99] [4.01,4.02] [3.98,3.99] [4.01,4.01]

3 2.99 3.01 3.00 3.02 2.99 3.01 2.99 3.01

[2.99,2.99] [3.01,3.01] [3.00,3.00] [3.02,3.02] [2.99,2.99] [3.01,3.01] [2.99,2.99] [3.00,3.01]

2 1.99 2.00 2.00 2.00 1.99 2.00 2.00 2.00

[1.99,1.99] [2.00,2.00] [2.00,2.00] [2.00,2.00] [1.99,1.99] [2.00,2.00] [2.00,2.00] [2.00,2.00]

Results are based on 500 million Monte Carlo (MC) simulations with sample size 3000; 95% confident intervals between square brackets.

Fig. 1 Power to detect pleiotropy of sLRT (thin solid line) and pleiotest (thick dashed line). Each plot corresponds to a different sample size
and effect-size ratio (effect ratio = 1: β1 ¼ β2 ¼ β3 ≠ 0; effect ratio = 0.5: 0:5β1 ¼ β2 ¼ β3 ≠ 0).
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clustered with phenotypic correlations above 0.27; the pairs
of traits TRI - LDL, and URA - CRE had moderate corre-
lations (0.30 and 0.25, respectively).

Our analyses of seven MetS-related traits found widespread
pleiotropy, including 170 non-overlapping genomic regions
(2982 SNPs) with pleiotropic effects in at least two traits
(Table 2). TRI was the trait with the largest number of SNPs
with simultaneous significant associations with it and at least
another trait (1953); however, URA was the trait most often
involved in regions exhibiting pleiotropic effects (99 segments
involving SNPs with pleiotropic effects harbored SNPs with
significant effects for URA). Overall, traits URA and CRE
were involved in the largest number of regions (45) harboring
SNPs significantly associated with both traits.

We also tested for higher-order pleiotropy, including
three- and four-traits pleiotropy. We found 18 well-defined
regions harboring (246) SNPs with significant associations
with at least four traits (Fig. 3; Manhattan plots are in
Fig. S3 of the supplemental material) but did not find any
SNP with significant association with more than four traits.
Table 3 shows the traits involved in four-traits pleiotropy by

region, as well as the annotated genes corresponding to the
SNPs with the lowest p values. BMI was the trait most often
involved in regions with pleiotropic effects in at least four
traits. Traits URA, TRI, and CRE were also highly repre-
sented in regions harboring SNPs with four-traits pleio-
tropy. The first region in the chromosome (CHR) 2,
positioned between 26.8 and 28.6 Mbp, contains the SNPs
with the lowest p values and harbors three important MetS-
related genes: GCKR, C2orf16, and ZNF512. Many of the
genes in Table 3 were already reported in associations with
up to four metabolic traits, [24] but there are also seven
regions that, according to the NHGRI-EBI catalog of human
GWA studies (GWAS catalog; https://www.ebi.ac.uk/gwas/),
do not contain SNPs reported in association with
MetS. Two of these regions, which harbor genes ARL15
(CHR 5) and TM6SF2 (CHR 19), were reported in
MetS studies [25, 26] that are not part of the GWAS catalog
database. Therefore, we found five regions harboring
SNPs with at least four MetS traits that have not
been reported before. The most important genes (corre-
sponding to the SNPs with the lowest p values) in these

Table 2 Number of non-
overlapping genomic regions
(# of SNPs) with a significant
effect on at least two traits.

BMI SBP URA GLU LDL TRI CRE Total

BMI 16 (44) 22 (268) 7 (96) 17 (83) 30 (334) 14 (56) 80 (881)

SBP 16 (44) 11 (25) 2 (4) 5 (22) 9 (121) 3 (18) 33 (234)

URA 22 (268) 11 (25) 4 (43) 23 (170) 27 (602) 45 (155) 99 (1263)

GLU 7 (96) 2 (4) 4 (43) 6 (17) 9 (165) 2 (7) 21 (332)

LDL 17 (83) 5 (22) 23 (170) 6 (17) 32 (648) 6 (25) 63 (965)

TRI 30 (334) 9 (121) 27 (602) 9 (165) 32 (648) 14 (83) 88 (1953)

CRE 14 (56) 3 (18) 45 (155) 2 (7) 6 (25) 14 (83) 70 (344)

Fig. 2 Total computational time (in seconds) to process 1000 variants with balanced and unbalanced data, and an increasing number of
traits. Colors indicate sample size from 10,000 to 300,000.
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regions are MAP4, SEMA3F-AS1, ADH1B, BLK, and
SEMA7A.

To further determine which of the associations found in
our study were previously reported, we compared our
findings against the GWAS catalog and two specific stu-
dies, Avery et al. [7] and Kraja et al. [24]; the former used
principal components derived from multiple MetS-related
traits as phenotypes for the GWA, and the latter published
a meta-analysis of eight metabolic traits and six inflam-
matory markers related to MetS. Table 4 shows the
number of SNPs and genomic regions that matched our
findings and these studies. Fifty-six percent of the SNPs
we found to have pleiotropic effects in at least two traits
were located at a distance smaller than 1-Mbp to SNPs
reported for MetS in the GWAS catalog. Only 30% of the
170 regions with two-traits pleiotropy included SNPs
reported in the GWAS catalog, and only 8% were reported
by Avery et al. or by Kraja et al. Of the 18 pleiotropic
regions reported in Table 3, only 6 and 8 contained SNPs
reported by Avery et al. and Kraja et al., respectively.
Differences in sample sizes, in the methods used for
association analyses (e.g., Avery et al. use a PC-based
method that can be underpowered to find associations
involving only a few traits of the system), as well as the
thresholds used to determine significance (e.g., Avery
et al. used a higher p value threshold of 2.13e−7 than the
one used here, namely 1e−8) could explain the partial
overlap of findings.

Finally, using data from the gene expression data (GTEx)
portal, [21] we found that the SNPs with pleiotropic effects
on at least four traits reported in this study were enriched for
eQTL in 41 of the 48 tissues for which GTEx eQTL results
are available (Table S3 and Fig. S3 of the Supplementary
materials). We also found that the genes listed in Table 3
had distinctive average expression patterns across tissues
(Fig. S4). Not surprisingly, the genes located in regions

which we found to be involved in four-traits pleiotropy
tended to be over-expressed in the liver.

Discussion

Quantitative genetic studies [2] and GWA analyses [3]
suggest that pleiotropy is a widespread phenomenon.
Pleiotropy drives genetic correlations between traits and
underlies the concurrent development of multiple diseases.
Therefore, identifying risk loci with a pleiotropic effect is
an important step towards understanding the genetic basis
of many syndromes. However, genome-wide systematic
mapping of loci with pleiotropic effects is both statistically
and computationally challenging. Conceptually, one could
identify loci with pleiotropic effects by identifying SNPs
that have significant associations with more than one trait
using p values from single-trait association analysis.
However, defining significance with this approach is
challenging because it is not clear how to determine the
number of independent tests being performed. This hap-
pens because the tests statistics are often correlated
between traits; as a result, accurate error control is chal-
lenging. To address this, Schaid et al. [9] proposed a formal
(sequential) test for pleiotropy that provides both adequate
error control and the power achieved with multi-trait
models. Simulations provided by Schaid et al. and in the
present study confirm that the sequential test is powerful
and offers adequate error control. Additionally, the
sequential test groups a potentially large number of pleio-
tropic configurations (i.e., many alternative hypotheses)
into a smaller number of meaningful pleiotropic states
defined by the number of traits involved (e.g., pleiotropy
involving at least q traits for q = 2, …, p); this facilitates
the communication and interpretation of results. However,
the computation of the required test statistics as proposed
by Schaid et al., does not scale well to large sample size

Fig. 3 Ideogram of regions harboring SNPs with effects in at least
four traits. The symbols by the region indicate the trait. Traits
included in the analyses were: body mass index (1), systolic blood

pressure (2), serum urate (3), glucose level (4), low-density lipopro-
teins (5), triglycerides (6), and creatinine (7). Blue arrows denote novel
associations.
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and hundreds of thousands (possibly millions) of SNPs.
Therefore, to overcome those limitations we developed an
approximation to the test and software package (pleiotest)

that scales to big data. Our approach uses a Wald’s test
instead of a likelihood ratio test and, more importantly, an
approximation to the residual (co)variance matrix, which

Table 3 Regions harboring SNPs with four-trait pleiotropic significant effects (p value < 1e−8).

Chromosome GWAS
Catalogb

SNP w/smallest p value in
-log10 scale

Genesc Traits

[position]a BMI SBP URA GLU LDL TRI CRE

2 Yes rs1260326 (56.312) GCKR C2orf16 × × × ×

[26.8–28.6] ZNF512

2 Yes rs1128249 (13.556) COBLL1 × × × ×

[164.2–165.2]

3 No rs62260779 (8.429) MAP4 × × × ×

[47.5–48.5]

3 No rs2624847 (8.631) SEMA3F-AS1 × × × ×

[49.6–50.6]

4 No rs1229984 (10.626) ADH1B × × × ×

[98.8–99.8]

4 Yes rs13107325 (9.390) SLC39A8 × × × ×

[101.8–102.8]

5 Nod rs4865796 (10.417) ARL15 × × × ×

[53.5–54.5]

6 Yes rs1264377 (13.211) DDR1 × × × ×

[27.3–33.2] NOTCH4

8 Yes rs898137 (8.854) LOC157273 × × × ×

[8.6–10]

8 No rs13280813 (8.611) BLK × × × ×

[11.1–12]

8 Yes rs2001945 (11.847) TRIB1 × × × ×

[125–126]

11 Yes rs174547 (10.284) FADS1 × × × ×

[61.3–62.3] FADS2

12 Yes rs653178 (9.673) ATXN2 × × × ×

[111–112.6]

15 No rs11856835 (10.799) SEMA7A × × × ×

[73.9–74.9]

16 Yes rs1421085 (10.767) FTO × × × ×

[53.3–54.3]

19 Nod rs58542926 (9.965) TM6SF2 × × × ×

[18.8–19.8]

19 Yes rs4420638 (10.508) APOC1 × × × ×

[44.4–45.4] TOMM40

20 Yes rs8121509 (9.408) OPRL1 × × × ×

[63.6–64.3]

BMI body mass index, SBP systolic blood pressure, URA serum urate, GLU glucose level, LDL low-density lipoprotein, TRI triglycerides, CRE
creatinine.
aPosition in mega base-pairs (Mbp).
bWhether at least one SNP in the region has been reported for MetS in the GWAS catalog.
cGene corresponding to the SNP with the smallest p value.
dReported elsewhere.
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reduces the computational burden of the test and provides
some computational improvements.

The simulations presented in this study show that the
proposed approximation (pleiotest) has adequate error
control and achieves the same power of the original
sequential test. In systems involving many traits and with a
small sample size (e.g., n < 3000) our approach could be
slightly conservative; however, this does not deteriorate
power because the test is only conservative in situations in
which power is very high (e.g., when a SNP explains 1% of
the variance or more).

Conducting large-scale GWA studies requires efficient
computational strategies. We achieve this by two means.
Firstly, we implemented the proposed test of pleiotropy using
the C++ language and several computational strategies aiming
at optimizing the software’s performance. Secondly, we
leveraged software packages previously developed by our
group (the BEDMatrix package [14]) which implements
memory mapping of PLINK’s .bed files [27], thus offering the
possibility of performing analyses on extremely large datasets
using commodity software within the R-environment and
without having to subset genotype files. Together, these stra-
tegies make our software suitable for analysis of systems
involving many traits (e.g., up to 10 or 15, depending on the
tolerable computation time) with very large sample size.

Unlike existing software [28] for Seemingly Unrelated
Regressions (SUR), our package can be used with unbalanced
data (i.e., cases in which some individuals may not have data
for some traits). Our approach computes the likelihood of the
observed data, under the assumption of non-informative
missingness (i.e., the probability that a record is missing does
not depend on the trait value, covariates, or the values of other
traits). Computing the likelihood of unbalanced data can be
challenging. To address this challenge our strategy is to group
observations according to their missing-value pattern, gen-
erate the required summary statistics for each group, and then
combine these statistics to derived estimates, SEs and p
values. This approach is computationally efficient when the

number of missing-value groups is small (e.g., when a sizable
number of observations share the same missing-value pat-
tern). However, the approach can involve a substantial com-
putational burden when there are many missing-value groups,
each involving a small number of observations. To avoid
substantial increases in computation time due to highly frag-
mented data, pleiotest offers the option of dropping groups
involving a small number of observations (e.g., n < 50).

The package also offers the possibility to set an early stop to
the sequential tests if p values are higher than a user-specified
threshold (e.g., 0.01), which also saves computation time.
Finally, the algorithm offers the possibility of processing var-
iants in parallel at multiple cores within a single R session.
However, for a large-scale analysis conducted in high-
performance computing clusters it may be more effective to
parallelize the analysis into multiple jobs, each processing a
chunk of DNA (e.g., tens of thousands of variants) in a single
core – our software also offers this possibility.

The test implemented in this work assumes that traits
follow a multivariate normal distribution. For analysis of
quantitative traits this is not a major limitation because traits
with strong departure from normality can be transformed
and because with a large sample size, the Central Limit
Theorem guarantees the normality of estimates obtained
from linear models [29]. Schaid et al. [11] presented an
extension of the sequential testing to generalized linear
models. Further work is needed to adapt the approach
presented in this study to such a class of models. In the
meantime, a possible approximation is to first use single-
trait generalized linear models to “adjust” traits by (co)
variates and then use residuals (e.g., z-scores or deviance
residuals) as traits in our software.

Deng and Pan [30] presented an implementation of the
sequential test for pleiotropy that uses summary statistics. The
authors considered both standard pleiotropy as well as analyses
conditional on other traits. Tests based on summary statistics
are appealing; implementing them requires approximating the
error (co)variance matrix (which in the case of Deng and Pan is

Table 4 Number and percentage
of discoveries in our study
(p value < 1e−8) that have been
previously reported, by number
of traits simultaneously affected
(variants with pleiotropic effects
in at least 2, 3, or 4 traits).

Number of traits
simultaneously affected

Number of
discoveries in
this study

Overlap with other studiesa

GWAS catalog Avery et al.
(2011)

Kraja et al.
(2014)

Non-overlapping genomic regions

2 170 51 (30%) 14 (8%) 13 (8%)

3 44 22 (50%) 6 (14%) 8 (18%)

4 18 11 (61%) 6 (33%) 8 (44%)

SNPs

2 2982 1677 (56%) 305 (10%) 1081 (36%)

3 871 497 (57%) 95 (11%) 329 (38%)

4 246 202 (82%) 54 (22%) 130 (53%)

aSNPs reported in other studies that were within a 1-Mbp of a discovery in our study were considered
overlapping.
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done based on Z-statistics) and assuming Hardy-Weinberg
equilibrium. When the data for each of the traits originate either
from the same set of subjects (complete data) or from com-
pletely different cohorts (no overlap in samples) the imple-
mentation of the test is straightforward. However,
implementing the test based on summary statistics becomes
challenging when the data used to generate the summary sta-
tistics originate from partially overlapping samples (i.e., when
there is multiple “missing value patterns”). In this case, the
error (co)variance matrix depends on the sample size of each of
the missing value patterns. Unfortunately, this information is
often not available–these difficulties and possible approxima-
tions are discussed in Deng and Pan [30].

We used pleiotest to map variants with pleiotropic effects on
seven MetS-related traits. We found abundant evidence of
pleiotropy: 170, 44, and 18 independent genomic regions that
contained significant associations with at least two, three, and
four of the seven traits studied, respectively. These regions
cover many previously reported findings as well as many novel
ones. As expected, the proportion of shared risk loci between
any pair of traits was directly related to the phenotypic corre-
lation between traits (see Figs. S1 and S2); however, two pairs,
LDL-TRI and URA-TRI, stand-out as cases with a proportion
of pleiotropic loci that is much higher than what one would
predict based on the linear trend relating the proportion of
pleiotropic loci and the phenotypic correlation.

The SNPs discovered to have at least 4-trait pleiotropy
(see Table 3) are located in regions that include important
genes; for example, the smallest-p value in our study cor-
responds to a SNP in GCKR which has been previously
linked to MetS by Avery et al. [7], as well as by Kraja et al.
[24]. Genes C2orf16, ZNF512 and COBLL1 were also
previously reported [24, 31, 32], as was SLC39A8 in
chromosome (CHR) 4, which plays a role in hypertension
and has been found to be associated to type-2 diabetes [33].
Genes ARL15 (CHR 5) and TM6SF2 (CHR 19) were not
included in the GWAS catalog as MetS-associated genes;
however, these genes were reported elsewhere [25, 26];
thus, we do not consider these genes novel discoveries of
our study in relation to MetS.

Chromosome 6 harbors the longest genomic region (~6-
Mbp) containing SNPs with pleiotropic effects on MetS-
traits. This region involves many BMI-related genes, such
as DDR1 and NOTCH4. Genes FADS1 and FADS2 in CHR
11 encode fatty acid desaturase enzymes and were reported
affecting LDL cholesterol levels and MetS [34]. Other
genes reported for MetS are ATXN2 (CHR 12), FTO (CHR
16), APOC1, and TOMM40 (CHR 19) [35].

In addition to confirming previous findings, our analysis
of MetS-related traits identified five novel regions asso-
ciated with at least four MetS-related traits. These regions
harbor multiple genes potentially associated with MetS
including genes MAP4 and SEMA3F-AS1 (both in CHR 3),

ADH1B (CHR 4), BLK (CHR 8), and SEMA7A (CHR 15).
While these genes have not been directly related to MetS,
some have been implicated with other MetS-related traits
and behaviors such as SBP (gene MAP4 [36]), alcohol
dependence, and gout (gene ADH1B [37]), rheumatoid
arthritis, systemic sclerosis, and the immune response to
smallpox vaccine (gene BLK), and neuronal processes and
the risk of acute atherothrombotic stroke (gene SEMA7A
[38]).

Gianola et al. [39] noted that linkage disequilibrium (LD)
could lead to spurious findings about pleiotropy. Specifi-
cally, the authors noted that it is theoretically possible for
two casual variants with effects on separate traits (i.e.,
without pleiotropic effects) to be in mutual LD with one or
more SNPs. In those cases, there is no pleiotropy, but an
association analysis may falsely identify some loci as being
associated with more than one trait. This general problem
also applies to the methods presented in this study. How-
ever, the level of LD among variants in the genotype array
used in our study drops rapidly with physical distance, thus,
reducing the likelihood of such apparent pleiotropy to be a
major driver of the findings reported here.
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