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Abstract
Amyotrophic Lateral Sclerosis (ALS) is recognised to be a complex neurodegenerative disease involving both genetic and
non-genetic risk factors. The underlying causes and risk factors for the majority of cases remain unknown; however, ever-
larger genetic data studies and methodologies promise an enhanced understanding. Recent analyses using published
summary statistics from the largest ALS genome-wide association study (GWAS) (20,806 ALS cases and 59,804 healthy
controls) identified that schizophrenia (SCZ), cognitive performance (CP) and educational attainment (EA) related traits
were genetically correlated with ALS. To provide additional evidence for these correlations, we built single and multi-trait
genetic predictors using GWAS summary statistics for ALS and these traits, (SCZ, CP, EA) in an independent Australian
cohort (846 ALS cases and 665 healthy controls). We compared methods for generating the risk predictors and found that
the combination of traits improved the prediction (Nagelkerke-R2) of the case–control logistic regression. The combination
of ALS, SCZ, CP, and EA, using the SBayesR predictor method gave the highest prediction (Nagelkerke-R2) of 0.027
(P value= 4.6 × 10−8), with the odds-ratio for estimated disease risk between the highest and lowest deciles of individuals
being 3.15 (95% CI 1.96–5.05). These results support the genetic correlation between ALS, SCZ, CP and EA providing a
better understanding of the complexity of ALS.

Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegen-
erative disease, with death typically occurring within 3–5
years of symptom onset [1, 2]. Currently, there is no
effective treatment for ALS, likely in part due to a limited
understanding of its underlying causes [1–3]. Approxi-
mately 10% of ALS cases are considered to have a Men-
delian form of the disease [1, 3] carrying a highly penetrant

variant, however the remaining and vast majority of cases,
likely have a more complex aetiology reflecting both
genetic and environmental susceptibility risk factors [4].

Cognitive impairment affects ≈30% of ALS patients,
with ~10% diagnosed with frontotemporal dementia (FTD)
[5, 6]. However, most studies consider cognitive impair-
ment as a consequence of the ALS-FTD spectrum, rather
than discussing attenuated cognitive performance as a risk
factor of ALS [7–9]. Recent studies that link ALS and
cognitive performance remain inconclusive. For example,
lower educational attainment was reported to increase ALS-
FTD risk in Italian and the United States (US) ALS cohorts
[10, 11]. However, a larger cohort from the Swedish Con-
script Register reported the opposite result; higher IQ in
young conscripts was associated with higher ALS risk in
later life [5]. Traditional prospective studies designed to
investigate if cognitive decline is a risk factor that precedes
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the diagnosis of ALS are hard to establish since ALS is a
relatively low-frequency disorder with a lifetime risk of
~0.3% (ref. [1, 2]). Demonstrating a genetic relationship
between ALS and cognitive traits would provide more
conclusive evidence for the direction of association between
them. Cognitive related traits have high heritability esti-
mates (~60%) [12, 13] and are frequently measured in large
population or community samples, particularly using
proxies such as educational attainment. In contrast, while
ALS has a substantial genetic component (heritability of
40–45%) [14], it is a late onset disease of relatively low
frequency, making the collection of large cohorts difficult.

Advances in genotyping technology allow estimation of
the genetic contribution to traits associated with SNPs
measured genome-wide. These estimates of so-called SNP-
based heritability use genome-wide association study
(GWAS) data to capture the contribution from common
genetic variants and so are smaller than heritability esti-
mates from family studies. The meta-analysis of the ALS
published GWAS study reported a SNP heritability estimate
of ~8% [15]. Moreover, we can use GWAS summary sta-
tistics to estimate the genetic correlation (rg) between traits
using independently collected samples; for other diseases
and traits correlation estimates made from genome-wide
SNPs have been found to be similar to estimates from tra-
ditional epidemiology [16]. Using these approaches ALS
has been reported to be negatively correlated with fluid
intelligence (rg= –0.34) and academic or professional
qualifications (rg= –0.25) [17], and positively correlated
with schizophrenia (rg= 0.14) [18]. Combining information
from genetically correlated traits can improve genetic pre-
dictors of disease risk [19, 20], particularly for diseases such
as ALS where cohort sizes are relatively small [21].

Here, we investigate the genetic relationship between
ALS and over 700 traits using linkage disequilibrium score
regression (LDSR) as implemented in LDhub ver1.90 plat-
form [22], confirming previously identified correlations with
ALS. We provide independent evidence for a genetic rela-
tionship between ALS and these traits using out-of-sample
polygenic risk prediction into an independent data set of 846
ALS cases and 665 controls to demonstrate improvements in
genetic prediction when combining multiple traits.

Materials and methods

Australian ALS GWAS data

We present new data from an Australian ALS GWAS
cohort comprising 836 cases and 665 controls, and inde-
pendent of all published ALS GWAS data. The sample
includes the University of Sydney’s Australian Motor
Neuron Disease DNA Bank (MND Bank) cohort recruited

between April 2000 and June 2011 (462 cases, 449 con-
trols), with study protocol approved by the Sydney South
West Area Health Service Human Research Ethics Com-
mittee (HREC). The remainder of the cases (N= 374)
comprised ALS patients recruited from clinics across Aus-
tralia between 2015 and 2017 under HREC approvals from
University of Sydney, Western Sydney Local Health Dis-
trict, Royal Brisbane and Women’s Hospital and Macquarie
University. The ALS cases were diagnosed with definite or
probable ALS according to the revised El Escorial criteria
[23]. Those with a recorded family history of ALS or had
tested positive for genetic variants with strong support for
ALS causality were excluded. Some controls (N= 127)
were recruited as either partners or friends of patients,
healthy individuals free of neuromuscular diseases. Addi-
tional controls were included from the Older Australian
Twin Study (OATS) [24] comprising 89 monozygotic (MZ)
twin pairs from QIMR Berghofer Medical Research Insti-
tute, University of New South Wales and the University of
Melbourne, and was approved by their respective HRECs.
Twin pair data helped in quality control checks but only one
twin from each pair was used in analyses.

DNA was extracted using standard protocols and was
genotyped using Infinium CoreExome-24 version 1.1 pro-
ducing ~300,000 informative whole genome SNP markers.
Standard GWAS quality control (QC) steps were per-
formed, including sex-checks (incompatible sex between
genotyping result on the X-chromosome and the indivi-
dual’s clinical record) and the removal of SNPs that were
genotyped <95% of individuals, had a low minor allele
frequency (MAF < 0.01) or deviated from Hardy–Weinberg
Equilibrium (HWE) p < 1 × 10−6, using PLINK version 1.9
[25]. A total of ~250,000 SNPs passed quality control and
were imputed to the Haplotype Reference Consortium
reference panel (Version r1.1 2016) [26] implemented in
Sanger Institute Imputation Server. SNPs with poor impu-
tation accuracy (info score <0.8) and low frequency SNPs
(MAF < 0.01) were removed, leaving 6,681,912 SNPs for
later analysis. The QC on individuals included filtering
related individuals (Identity By Decent, IBD > 0.05, PLINK
1.9 “--genome” command) and individuals known to har-
bour Mendelian-like variants associated with ALS. To
remove ancestry outliers, we projected our case–control
cohort onto the first two principal components (PCs) of the
1000 Genomes cohort [27] using GCTA’s PC loading
method [28]. We removed the ancestry outliers that devia-
ted more than four standard deviations from the European
population mean (calculated using 1000 Genomes Northern
European (CEU), British (GBR), Finnish (FIN), Iberian
Spanish (IBS), and Toscani Italian (TSI) samples), leaving
1501 individuals (836 cases and 665 controls) to be used for
further analyses. SNP data is available from dbGaP refer-
ence phs002068.v1.p1.
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Selection of correlated traits

The genetic correlation between a range of traits with ALS
was estimated using Linkage Disequilibrium Score
Regression (LDSR) [29] between the European ALS
GWAS summary statistics (20,806 ALS cases and 59,804
healthy controls of European ancestry) [30] to over 700
traits as implemented in the LDHub platform (v1.9.0) [22].
Despite the previous report of LDHub results for ALS [18],
the GWAS data held within LDHub are regularly updated.
Here, we report all genetic correlations significant at p <
0.05 for the test of null hypothesis rg= 0, with traits that
have SNP-based heritability estimate >10%. We chose the
minimum SNP-based heritability of 10% because our
interest was to improve out-of-sample prediction and hence
correlated traits need to have sufficient genetic contribution,
noting that the SNP-based heritability of ALS estimated
from the results of the latest GWAS [30] is only 1.76% (SE
= 0.38%), calculated using a lifetime risk of 0.003 (ref.
[26]).

Polygenic risk scores

We calculated a polygenic risk score (PRS) for all indivi-
duals in our Australian ALS case–control sample. The SNPs
taken into the PRS calculations were limited to those SNPs
found in HapMap 3 (HM3) [31] as these were common
across the summary statistics of all traits analysed. PRSs
were calculated using different methods to decide SNPs
included and their effect sizes, but in each case, the PRS is
the sum of risk alleles weighted by SNP effect sizes cal-
culated using the PLINK 1.9 “--score”. The efficacy of the
predictor was measured by the Nagelkerke-R2 of the logistic
regression of PRS on case–control status (R glm package
[32] for logistic regression and fmsb function [33] for
Nagelkerke-R2 calculation) and by comparison of the odds
of being a case in the 10th decile vs 1st decile or
ordered PRS.

In the basic PRS approach, the SNPs were clumped
(PLINK --clump), which selects a quasi-independent SNP
set by taking the most associated SNP in a genomic region
and excluding any SNP with r2 > 0.01 with already selected
SNPs. We considered a range of p-value thresholds for
selection of SNPs into the PRS (see Supplementary Fig-
ure 1), but report in results from PRS using all HapMap3
SNPs, we call this standard PRS (STD_PRS). Including all
SNPs in our prediction model rather than selecting the p-
value threshold based on results from the data prevents the
variance captured from PRS being biased due to winner’s
curse [34], allowing fairer comparison across the methods.

Since the clumping r2 threshold is arbitrary, we also used
BLUP (Best Linear Unbiased Prediction) estimates of all
SNPs to calculate a PRSBLUP, an approach that

appropriately accounts for linkage disequilibrium (LD) of
the SNPs, but assumes SNP effects are normally distributed
(which is a valid assumption for highly polygenic traits).
Approximate BLUP estimates were derived from GWAS
summary statistics using the SBLUP [35] method imple-
mented in the GCTA software with the Human Retirement
Study (HRS) cohort [36] used as the reference sample to
calculate the LD structure. We also calculated SNP effects
using LDPred-Funct (LDPF) [37] a method that includes
functional annotation to weight SNPs effects. We used the
Baseline-LD functional annotation provided by Gazal et al.
[38]. and the HRS cohort for the LD structure reference to
calculate LDPF-inf SNP weightings. Lastly, we calculated
SNP effects using Summary-based BayesR (SBayesR) [39],
a method that models effect sizes using a mixture of normal
distributions with different variances. This allows greater
flexibility in the underlying model, potentially providing a
better reflection of the underlying genetic architecture of
ALS. We used sparse LD-matrix built from 10,000 UK
Biobank [40] unrelated individuals for the LD reference.
[39].

Out-of-sample prediction for a trait can be improved by
using information from correlated traits [19–21], with
multiple-trait prediction implemented in MTAG [19] and
SMTpred [20] software. MTAG and SMTpred use similar
methodologies to develop a multi-trait predictor. Here, we
use MTAG to combine basic SNP effects of ALS and
correlated traits generating a single effect size per SNP from
which to generate a PRS. We use SMTpred (with --blup
option) to combine single trait scores generated by SBLUP
(PRSBLUP), LDPred-Funct (PRSLDPF), and SBayesR
(PRSSBayesR) for each individual using the estimated genetic
correlation and SNP-based heritabilities of each single trait.

Results

Selection of correlated traits

A genetic correlation analysis between ALS and more than
700 traits available in the LD Hub ver1.90 platform iden-
tified 85 traits that were significantly correlated with ALS
(Supplementary table 1) at P value < 0.05. After applying
additional filters of SNP-based heritability estimate >10%
and a 5% False Discovery Rate (FDR) (nominal P value <
5.6 × 10−3), three traits remained, all related to cognition
(Table 1). As larger GWAS sample sizes are available for
both education attainment (EA) and cognitive performance
(CP) [41], and the results from these studies show a sig-
nificant rg with ALS of −0.28 and −0.24 respectively
(Table 1), we took these GWAS summary statistics forward
to improve statistical power in our prediction analysis.
While the genetic correlation between ALS and
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schizophrenia [42] was not significant after correction for
multiple testing in our LDhub analysis (rg= 0.14, p= 1.2 ×
10−2), the genetic correlation estimated with the latest
schizophrenia GWAS [43] results was significant (Table 1).
This observation combined with a previous report of a
genetic correlation between ALS and SCZ [18], led us to
take SCZ through to our prediction analysis.

Polygenic risk scores

Results from the single-trait PRS prediction into the Aus-
tralian sample of 836 cases and 665 controls for each of the
four selected traits (ALS, CP, EA and SCZ) are summarised
in Fig. 1 and Supplementary Table 2. As expected, the ALS
discovery sample (HM3 SNP set) gives the best single trait
prediction performance with a Nagelkerke-R2 (NKR2) of
0.010 for standard PRS, 0.010 for SBLUP, 0.011 for LDPF
and 0.022 for SBayesR. The CP PRS explained a significant
(P value < 0.05) proportion of variance for all four methods,
while the association between the EA predictor and ALS
case–control status was nominally significant only for the
LDPF method. Their regression coefficient had the expected
negative sign, providing independent confirmation that ALS
is genetically negative correlated with these traits. The
predictors calculated from SCZ GWAS statistics are also
significantly associated with ALS case–control, and the sign
of the regression coefficient was positive as expected. In
each single-trait prediction, the highest variance explained
was always from either SBLUP, LDPF or SBayesR
methods.

Combining these traits into multiple trait predictors of
ALS generated higher NKR2 than the single trait predictors
(Fig. 2 and Supplementary Table 3). Direct comparison on
single trait vs multi-trait predictors is given by the PRS vs
MTAG results, both of which do not consider the LD
structure between SNPs, and the SBLUP vs SBLUP-
SMTPRED, which do account for LD structure. The LDPF
and LDPF-SMTPRED results include the functional anno-
tations into SNP weights. The SBayesR and SBAYESR-
SMTPRED results demonstrate the utility of a flexible
distribution of effect sizes (modelled as a mixture of normal
distributions) rather than a single underlying normal dis-
tribution as use by SBLUP. In all cases, the NKR2 of multi-
traits predictors was higher than the predictors using ALS
alone. Combining all correlated traits (ALS, CP, EA and
SCZ) gave the best predictor (NKR2 of 0.027) with the
SBayesR method. For the best predictor, the calculated risk
odds ratio for those in the top 10% of estimated risk when
compared to those in the bottom 10% was 3.15 (95% CI
1.96–5.05).

Discussion

Given that ALS is a complex disease, understanding its
genetic relationship with other traits provides some insight
into this complexity. Analyses using summary statistics
from GWAS allow the study of the genetic relationship
between traits using independently collected samples. We
found that ALS had significant negative genetic correlation
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Fig. 1 Prediction accuracy of
single-trait predictors of ALS
in the Australian cohort.
Predictors constructed using
GWAS summary statistics of
CP, EA and SCZ had small but
significant predictive ability for
ALS case–control status.

Table 1 Genetic correlations
between ALS and traits used in
prediction analysis.

Traits rG SE SNP-h2 P value N (Case+ Control)

Cognitive performance (CP) [41] −0.28 0.06 0.2 1.11E–06 257,828

Educational attainment (EA) [41] −0.24 0.05 0.11 1.10E–06 766,345

Schizophrenia (SCZ) [43] 0.15 0.05 0.42 2.60E–03 105,318
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(after multiple FDR correction) with cognitive related traits
like fluid intelligence, years of schooling, and university/
college qualification measured in large cohorts sampled
from the general population, for example, rg=−0.24 with
educational attainment (Table 1). This observation supports
the earlier US [10] and Italian [11] cohort studies. It is
notable that the rg with schizophrenia is positive (0.15)
(Table 1), and that a negative rg is also found between
schizophrenia and educational attainment (−0.17) [44].

We also found that some physical activity traits, such as
walking to work (SNP-based h2= 2.2%), measured in the
UK-Biobank has a significant negative genetic correlation
with ALS (Supplementary Table 1), but other measures of
exercise (including the duration and frequency of walking
and vigorous or moderate exercise) did not show a sig-
nificant genetic correlation to ALS (p > 0.05). Many studies
provide support for an association between high levels of
physical activity with increased risk of ALS. For example,
an increased risk of ALS is reported for professional soccer
and football players, and Gulf-war veterans [45–47].
Comprehensive epidemiological studies involving five dif-
ferent populations in the Netherlands, Ireland and Italy
found that vigorous and moderate activity are linearly cor-
related with the risk of ALS [48]. Previous epidemiological
studies from Japan and UK also found a similar correlation
using a smaller sample size [49, 50]. These traits were not
taken forward into our prediction analysis because the
physical activity traits show low SNP-based heritability
(<10%), and so would not be expected to improve out of
sample prediction. In addition, the estimates for genetic
correlation between these traits and ALS should be treated
with caution, given that ALS also has a small SNP-based
heritability estimate [51].

Our goal was to provide independent evidence of the
genetic correlation of ALS with schizophrenia and cognitive
related traits, through out-of-sample prediction into an inde-
pendent ALS Australian cohort. We show that there is a

significant out-of-sample prediction for ALS when using PRS
built from EA, SCZ and especially CP SNP effect estimates,
with the sign of regression coefficients matching the sign of
the rg estimates. These results provide independent validation
of the genetic relationship between ALS, CP, EA and SCZ.
As expected, out-of-sample prediction is maximised by
combining all the traits to make a multi-trait predictor. We
compared methods for generating PRS, and found in this
context SBayesR gave highest out-of-sample prediction
accuracy. Since the best methodology for PRS depends on
the genetic architecture of the trait [52], this conclusion may
not be true in other disease applications. While the out-of-
sample prediction was found to be highly significant (smallest
p value= 4.8 × 10-8), the variance explained by the predictor
was still small (maximum NKR2= 0.027, maximum AUC
= 0.580).

This study had several limitations. We used a single
cohort to test the out-of-sample prediction. Application of
PRS prediction in other disorders, such as schizophrenia
[42] and major depression disorder [53], has found varia-
bility in results between cohorts. Hence, other, European
ancestry ALS cohort/s would be useful to confirm this
observation. In addition, the estimated SNP-based herit-
ability of ALS using common SNPs (HM3) was very low
(1.76%, SE= 0.38%, assuming lifetime risk of 0.3%) from
the latest published GWAS [30], smaller than from the
previously published GWAS (h2SNP= 8%, SE= 0.52%)
[15]. This low SNP-based heritability may reflect the
genetic architecture of ALS, and previous analyses have
suggested that low-frequency variants may be relatively
more important in ALS than other common diseases [15].

In conclusion, we found that ALS had a significant
negative genetic correlation with cognitive performance and
educational attainment. These correlations were supported
by the significant prediction of ALS when using the GWAS
summary statistics for both traits, and improvements were
made in prediction accuracy for ALS when included in a
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compared to the ALS only
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SNP effects (multi-trait) of ALS
and correlated traits, improved
predictive ability for ALS
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multi-trait predictor. However, there is still limited clinical
utility in these ALS predictors due to the relatively small
proportion of risk they capture. Larger GWAS for ALS is
needed in order to provide a stronger baseline from which
multi-trait predictors can be built.
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