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Abstract

Inherited retinal dystrophies (IRDs) affect 1 in 3000 individuals worldwide and are genetically heterogeneous, with over 270
identified genes and loci; however, there are still many identified disorders with no current genetic etiology. Whole exome
sequencing (WES) provides a hypothesis-free first examination of IRD patients in either a clinical or research setting to
identify the genetic cause of disease. We present a study of IRD in ten families from Alberta, Canada, through the lens of
novel gene discovery. We identify the genetic etiology of IRDs in three of the families to be variants in known disease-
associated genes, previously missed by clinical investigations. In addition, we identify two potentially novel associations:
LRP] in early-onset drusen formation and UBE2U in a multi-system condition presenting with retinoschisis, cataracts,
learning disabilities, and developmental delay. We also describe interesting results in our unsolved cases to provide further

information to other investigators of these blinding conditions.

Introduction

Inherited retinal dystrophies (IRDs) affect ~1 in 3000
individuals and account for a large proportion of untrea-
table blinding disorders, however many conditions remain
without a genetic explanation [1]. IRDs affect the light
detecting cells of the retina, rod and/or cone photo-
receptors, and may present as either non-syndromic or as a
multisystem disorder (i.e. Bardet-Biedl syndrome).
Advanced technologies such as next generation sequen-
cing (NGS) have significantly improved our ability to
both identify novel associations in family-based studies
and provide genetic diagnoses in patients with IRDs.
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Currently, the proportion of IRD patients that receive a
genetic diagnosis from a panel is variable (37-74%) [2].
Whole exome sequencing (WES) provides a hypothesis
free first approach to identification of the genetic etiology
of a condition, or as a research tool to identify novel genes
and associations. The workflow for filtering and inter-
preting results of WES needs to be understood and
appreciated, as not all investigations will result in the
identification of previously documented variations in
disease-associated genes. We report our experience with
WES in Alberta, Canada using a cohort of ten families
with heritable ocular disease selected for potential novel
gene discovery. Through this study, we solved three
families, which either confirmed or altered diagnoses, and
found two potentially novel associations: variants in the
low-density lipoprotein receptor related protein 1 (LRPI)
gene in patients with macular drusen formation and in the
ubiquitin conjugating enzyme E2 (UBE2U) gene in a
pedigree of retinal dystrophy with associated systemic
defects. In addition, we described potential associations in
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our unsolved cases, which will assist further investiga-
tions into these conditions.

Materials & methods
Family selection

Families and individuals were selected based on clinical
diagnoses, availability of DNA/phenotypic information
from family members, and previous negative clinical/
research genetic testing. In total, ten families were
selected for our WES study and signed consent obtained.
Clinical data on affected family members are listed in
Table 1; pedigrees are presented in Fig. 1. This study
was approved by the University of Alberta Human Ethics
Office (Pro00045377). All procedures abide by the
Declaration of Helsinki. Whole exome sequencing five
micrograms of whole genomic DNA isolated from either
saliva or blood from family members were sent to the
Beijing Genomics Institute (BGI, Beijing, China) or
DNALink (South Korea) for WES. BGI used the Agilent
B5 (50M) exome capture kit and was run on the
BGISEQ-500 (Avg coverage of 100x), DNALink used
the SureSelect Exome V5 QXT and was run on Illumina
Hiseq2500 (Avg Coverage of 96x). WES filters were set
for appropriate mode of inheritance, moderate and high
impact variants (missense, splice, and nonsense var-
iants), and a minor allele frequency (MAF) adjusted for
rarity of the condition (<0.01 for rare conditions, <0.02
for more common presentations). Filtered gene lists were
compared with a list of known retinal disease genes
(RetNet https://sph.uth.edu/retnet/, Accessed May 31,
2020). Families who were not solved using this metho-
dology were moved to a novel discovery pipeline, seg-
regation analysis where possible, and in silico analyses
(SIFT/PROVEAN [3, 4], PolyPhen-2 [5], MutationTa-
ster [6], SplicePort [7], Human Splicing Finder [8]) for
any variants. All variants and phenotypic data listed in
this paper were submitted to the Leiden Open Variation
Database (LOVD; https://www.lovd.nl/, submitted and
accessed January 22nd, 2021).

Clinical investigations

The age at clinical diagnosis, best corrected visual acuity
(BCVA), fundus findings and ocular history, spectral
domain ocular coherence tomography (SD-OCT) were
reviewed and documented based on the availability.
Multifocal electroretinography (mfERG) was recorded
with the Espion system (Diagnosys, Lowell MA USA)
using DTL electrodes according to ISCEV standards
(www.ISCEV.org). Full field ERGs (ffERG) were
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recorded with the UTAS system (LKC, Gaithersburg,
MD USA).

Results
Solved families
Family C137 — choroidal atrophy (Fig. 1)

The proband of family C137 presented at age 72 with
chorioretinal atrophy (Table 1). While the peripheral retina
was relatively preserved, bilateral macular depigmentation
and moderate vascular attenuation were noted. Visual acuity
was counting fingers (CF) in the left eye (Oculus Sinister;
0OS), and 20/800 in the right eye (Oculus Dexter; OD).
Clinical investigation led to molecular investigations for
choroideremia. Full sequencing of the coding region of
CHM revealed no variants, and Western analysis showed
normal REP1 protein expression in lymphoblastoid cells
(data not shown). WES Results: WES analyses were com-
pared with a list of known retinal genes and revealed a
heterozygous variant within RPE65 (c.1430G > A:
p-(D477G)). No other variants of interest were noted.

Family M59 — retinitis pigmentosa (Fig. 1)

Two males of Family M59 were diagnosed in early ado-
lescence with retinitis pigmentosa (RP) characterized by
night blindness, and peripheral vision loss (Table 1). OCT
scan for II-1 showed irregularity of the outer retina with
extensive atrophy of the ellipsoid zone and deposits at the
level of the Bruch’s membrane-RPE complex (Supple-
mentary Fig. 3B). Panel testing for autosomal recessive RP
(Asper Biotech, Tartu Estonia) and X-linked genes (eye-
GENE’) were negative. WES Results: WES revealed
compound heterozygous variations within BBS/ (c.1169 T
> G: p.(M390R) and c.1040del: p.(M347fs)) in both affec-
ted males (Table 2). Only the c.1040del variant was noted in
the unaffected sister. Follow-up of this family revealed that
both brothers suffered from mild learning disabilities, and
the youngest brother had postaxial polydactyly on his right
foot that was surgically removed. Neither brother was obese
or had kidney problems. Considering the new phenotypic
data and our genetic result, the diagnosis was altered from
nonsyndromic RP to Bardet-Biedl Syndrome (BBS; OMIM
209900).

Family M53 — macular dystrophy (Fig. 1)
The proband of family M53 was initially diagnosed with a

cone-dystrophy. At age 12, he had BCVA 20/400 vision in
both eyes with reduced colour vision, hyper-reflective flecks
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Fig. 1 Pedigrees of selected e

families for WES study. Ten
families were selected based on
clinical diagnoses, availability of
DNA/phenotypic information

M69 M70

1,0 QD
" J. ~a @*ET@*?@

* M59 % x MB68 x * *

DNA Available
. Clinically Affected
O Unaffected

4 Proband

from family members, and *
previous negative clinical/ ' D Q D

research genetic testing. Shaded «l &~

individuals indicate affected || -

retinal conditions/syndromes 2 1
further highlighted in Table 1. m

in the macula. A ffERG revealed a reduced photopic b-
wave. The photopic flicker response was within normal
limits as was the scotopic series. The amplitude of the
response of the mfERG was reduced, indicating loss of
central retinal function. By age 19, a maculopathy was more
apparent, with features of degeneration seen with fundus
autofluorescence imaging. OCT across the macula showed
thinning and atrophy of the ellipsoid zone (Supplementary
Fig. 3A). WES Results: WES revealed a single previously
known recessive pathogenic variant c.4469 G > A:p.
(C1490Y) in ABCA4 in Stargardt macular dystrophy
(OMIM 248200) [9]. This variant was heterozygous in the
mother, and not present in the unaffected father. A second
variant was found through a larger study of ABCA4 deep-
intronic variants by our collaborators and was noted as
c.4539 + 2028 C>T: p.(R1514Lfs*36) [10].

Partially solved
Family M73 — macular schisis and hearing loss (Fig. 1)

The 11-year-old proband of Family M73 presented with
bilateral macular schisis and sensorineural hearing loss
(SNHL). When diagnosed at age of 11, his BCVA was
20/150 on the right side and 20/40 on the left side. The
descriptions for his fundus (Supplementary Fig. 2A) and
OCT scan (Supplementary Fig. 3G) are included in Table 1.
Chromosomal analysis and testing for known hearing loss
genes were negative. ERG revealed only a residual cone
flicker response, thus ruling out X-linked juvenile reti-
noschisis. A blood sample was obtained from the proband
and a lymphoblastoid cell line was established via Epstein-
Barr transduction. Given the genetic results in this family
(described below), a possible peroxisomal biogenesis dis-
order (Heimler syndrome, OMIM 616617) was investi-
gated. WES Results & cDNA Analysis: WES identified a
heterozygous variant in PEX6, c.1802G > A: p.(R601Q)
previously associated with Heimler Syndrome, a mild per-
oxisomal biogenesis disorder (OMIM 616617) [11, 12]. No
nail or dental abnormalities were noted, and blood pipe-
colic/plasmalogen levels were normal. cDNA was isolated

from a lymphoblastoid cell line, and the coding region of
PEX6 was sequenced; no second coding or splicing variant
was noted (data not shown). All variants can be found in
Supplementary Table 1. As Falkenberg et al. [13] suggested
an allelic expression imbalance can occur in the presence of
a common 3’-UTR single-nucleotide polymorphism (SNP,
rs144286892), we tested this specific region of the PEX6 3’-
UTR. Sanger sequencing confirmed the proband is hetero-
zygous for this SNP, which is in agreement with the allelic
expression imbalance theory (Supplementary Fig. 1).
However, the father (I-1) who passed the c.1802 G>A
variant to the proband was also a heterozygote for
rs144286892 and had no reported vision or hearing pro-
blems. This leaves this case partially solved.

Putatively novel findings
Family M54 and M70 — macular drusen (Fig. 1)

The proband of Family M54 was a 44-year-old female who
presented with marked bilateral symmetrical macular drusen
(Fig. 2B). The retina was otherwise normal, with no signs of
degeneration. No other family members were affected,
leading to a presumed recessive mode of inheritance.
Family M70 presented with one affected female with
similar bilateral macular drusen at age 36. OCT scan also
showed numerous hyporeflective elevations of the retinal
pigment epithelium in the central macula consistent with
drusen (Supplementary Fig. 2E). The proband’s mother and
sister had no retinal phenotype and a recessive mode of
inheritance was considered. The father was unavailable for
examination or for a DNA sample. WES Results: WES
presumed that the appearance of drusen represented a
heritable macular disorder with a relatively higher MAF
(<0.02) as the trait is not rare in later age groups. Analysis
of family M54 revealed compound heterozygous variations
in LRP1 ([c.650C>T]; [c.9628 G>C], Table 2). Com-
pound heterozygous variants were also found in CPAMDS
([c.1030 G > AJ;[c.5305 C > A]). Compound heterozygous
variants within LRPI were also noted within the proband of
Family M70 ([c.2910G > A];[c.11930C>T]). In silico
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Fig. 2 Clinical presentation of M54 proband and LRP1 hypothesis.
A Normal fundus photo (top) and normal optical coherence tomo-
graphy (OCT; bottom). B Fundus photo (top) of the proband from
family M54 illustrating multiple large, confluent drusen in the central
macula (white arrow) and nasal retina. OCT (bottom) shows numerous
sub-RPE deposits in the macula consistent with drusen (white arrows).

(C) and (D) Hypothesis of LRP1 involvement in MD: as extracellular
matter accumulates in Bruch’s membrane, LRP1 endocytoses and
destroys this matter. As LRP1 is mutated, this process slows, or is
unable to bind particular ligands, leading to accumulated extracellular
material, and drusen formation.
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analyses can be found in Table 2, and all variants are listed
in Supplementary Table 1.

Family M72 — congenital cataracts, hearing loss,
retinoschisis (Fig. 1)

The affected mother and three affected offspring of Family
M72 (sons age 3 and 11, daughter age 7) were referred with
dominantly inherited learning disabilities, facial dys-
morphism, congenital cataracts, and congenital hearing loss
(Table 1). OCT scan from II-1 showed splitting between the
inner nuclear and the outer plexiform layer, consistent with
retinoschisis (Fig. 4B). WES Results Analysis assumed a
dominant mode of inheritance. WES showed no variants in
known disease-related genes, and revealed several novel
variants of interest, namely, variants in STUM c.62 A > G:
p-(D21G) and UBE2U c.122 A>C: p.(E41A). In silico
analyses of the STUM variant indicated that the variant was
likely benign, though analyses predicted the UBE2U
p.(E41A) variant to be pathogenic (Table 2). See Supple-
mentary Table 1 for all identified variants.

Unsolved families

Family M68 — macular dystrophy with normal fundus
(Fig. 1)

The proband of family M68 presented with 20/40 vision in
both eyes with —3 dioptres of myopia. A ffERG noted
normal cone function and a mild reduction in the pure rod
response. A mfERG was reduced in comparison to normal
reflecting a retinopathy predominantly affecting the macula
but not affecting overall cone function. Gradually the
myopia progressed to —7 in both eyes and vision dropped to
20/150 (corrected). The fundus showed mild temporal pal-
lor of the disc with normal SD-OCT imaging. He was
labelled clinically as having occult macular dystrophy.
WES Analysis: Further analysis indicated rare or novel
variants within eight genes (Table 3). We noted hetero-
zygous variants in two genes known to cause congenital
stationary night blindness (CSNB): GRM6 (c.2092 C > G: p.
(L698V)) and TRPMI (c.3958 G> A: p.(E1320K)). These
variants segregated in a ‘digenic’ fashion, and only the
TRPM1 variant was present in the unaffected sister. A
heterozygous variant c.1148del in CNGB3 was also noted
though a second variant in CNGB3 was not discovered
through WES.

Family M69 — macular dystrophy (Fig. 1)
The parents of family M69 were first cousins and an auto-
somal recessive mode of inheritance was prioritized. The two

affected offspring (male 32, female 30) presented with a

SPRINGER NATURE

macular dystrophy. OCT scan from II-2 showed atrophy of
the outer retina and absence of Bruch’s membrane in the
central fovea (Supplementary Fig. 3D). While the brother
provided a DNA sample and was not available for examina-
tion, he has been described as significantly near-sighted at a
young age requiring the use of corrective lenses. WES Ana-
lysis: WES comparisons to retinal disease genes identified
heterozygous variations in four genes and further analysis
identified variants in seven additional genes (Table 3).

Family M71 — cataracts and retinal detachment (Fig. 1)

Family M71 exhibited a highly-penetrant, autosomal domi-
nant condition, which spanned three generations with multiple
affected individuals affecting primarily males (Fig. 1). The
proband was born with left microphthalmia and retinal
detachments were noted shortly after birth. When last exam-
ined, he had high myopia with bilateral cortical cataracts,
which were removed in 2013 and revealed a previously
unrecognized retinopathy (Supplementary Fig. 3F). A diag-
nosis of Wagner syndrome was considered. WES Analysis:
WES analysis was carried out on four members (affected
father, two affected brothers, and unaffected mother) and
assumed dominant inheritance (Fig. 1). No variations were
noted in genes known to cause Wagner syndrome or other
retinal detachments (ATOH7, TSPANI12, LRP5, or NDP) or in
genes known to cause ocular disease. WES identified 72
variations shared between all three affected individuals. Of
these, novel variants were noted in nine genes (Table 3). All
identified variants in family members of M71 can be found in
Supplementary Table 2.

Discussion

WES provides a cost-effective analysis for clinical investi-
gation in families with IRDs as well as research studies
aiming to identify novel retinal disease genes. Our study
used WES to study 10 families from Alberta, Canada,
chosen from a database of ophthalmology patients (IMM)
based on the likelihood of identifying novel genetic asso-
ciations in retinal and ocular disease. Below we discuss
these results in context of our genetic and clinical findings.
We also describe potential genetic associations in our
unsolved cases that provide insights for other investigators
of these blinding conditions.

Solved cases
Choroidal atrophy

Clinical review of this patient indicated a likely diagnosis of
choroideremia, however, molecular testing of CHM/REP1
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precluded this diagnosis. Our results identified a RPE6S5
variant (c.1430 G> A: p.(D477G)) previously shown to
cause choroidal atrophy [14]. Though RPE65 variants cause
recessive Leber congenital amaurosis, this variant has a
unique effect and is the only RPE65 variant known to cause
a choroideremia-like appearance. Functional studies of the
p.(D477G) variant have shown that the protein variant
facilitates mono- and di-ubiquitination of the RPE65 protein
[15], and another showed that ¢.1430 G > A leads to aber-
rant RNA splicing [16]. We suggest that cases of chor-
oideremia with negative CHM sequencing should be tested
for this RPE65 variant.

Bardet-Biedl syndrome

Our analysis identified two variants in BBS/ (c.1169T>G:
p-MM390R) and c.1040del: p.(M347fs)). The affected males
were initially diagnosed as non-syndromic RP but the presence
of known BBSI variants, as well as additional family infor-
mation (presence of post-axial polydactyly and learning dis-
abilities), altered our diagnosis to Bardet-Biedl Syndrome, a
multi-system ciliopathy. The c.1040del variant was previously
reported in a large study of BBSI [17]. In addition, the p.
(M390R) variant has been reported to cause a wide spectrum of
phenotypes from non-syndromic RP to severe BBS [18] when
inherited in a recessive manner. This suggests that genetic
modifiers or mutational burden influences phenotypic pre-
sentation, a phenomenon that has been documented to impact
presentation in ciliopathies such as BBS [19, 20].

Stargardt macular dystrophy

We identified a known pathogenic recessive variant in ABCA4
(c.4469 G > A: p.(C1490Y)) in the proband of family MS53.
This prompted a review of clinical data, as well as a search for
the second variant, which ultimately identified a deep
intronic variant through a collaborator ¢.4539 + 2028 C>T:
p-(R1514Lfs*36) [10]. Combined, this data led us to diagnose
Stargardt macular dystrophy, an adolescent-onset maculopathy.
This case illustrates the importance of identifying heterozygous
variants in WES data for recessive conditions, which may act
as ‘guides’ for further analysis.

Peroxisomal biogenesis

WES analysis of family M73 identified a single variant in
PEX6, ¢.1802G > A: p.(R601Q). This variant has been
previously associated with a mild peroxisomal biogenesis
disorder called Heimler syndrome [12], characterized by
macular schisis, SNHL, and dental/nail abnormalities.
Although the proband of this family presented with SNHL
and macular schisis, no nail or dental abnormalities were
identified and normal pipecolic/plasmalogen were noted in

blood. These findings indicate that this is either a mild
presentation of a peroxisomal disorder, or that our finding is
coincidental. cDNA analysis showed no splicing abnorm-
alities; however, this analysis was carried out in EBV
transformed lymphoblast cells and may not contain the
appropriate PEX6 isoform. It is possible that a second
variant is controlling expression of the PEX6 gene through a
regulatory sequence, which may be detectable through tar-
geted or NGS.

Putatively novel findings
Heritable macular drusen (Families M54 & M70)

Drusen are subretinal deposits of lipids and proteins that are
a major risk factor for age-related macular degeneration
(AMD), though the exact relationship between drusen and
photoreceptor death is not clear. We report two pedigrees
with early-onset (<40 years of age) bilateral, macular drusen
and compound heterozygous variants in LRPI: Family M54
with [c.650 C>TJ;[c.9628 G > C] and M70 with [c.2910 G
> Al;[c.11930 C > T]. One study showed that the ¢.650 C >
T variant may activate a cryptic microRNA binding site,
leading to altered expression of LRPI. Although the ¢.2910
G>A:p.(S970 =) variant is synonymous, in silico splice
predictions (SplicePort and Human Splice Finder) for the
c.2910 G> A variant predict that this likely creates an
exonic splice suppressor and alters an exonic splice
enhancer near the variation. LRP] is an intriguing candidate
gene in the pathology of drusen formation. First, it has
direct interaction with many components of drusen and
proteins associated with MD, such as amyloid-beta [21],
APOE, complement factors, and components of lipid
metabolism. Second, LRP1 is expressed in the retinal pig-
ment epithelium (RPE). The RPE provides nutrients to the
neural retina, and the basal RPE is the site of drusen for-
mation. Third, LRP1 provides a fascinating link between
the three pathologies involved in age-related MD: lipid
metabolism, complement pathway, and extracellular matrix
homeostasis (Fig. 3). We hypothesize that dysfunction of
LRP1I protein leads to accumulation of extracellular material
over time due to altered endocytosis kinetics, resulting in
drusen. Due to its multiple roles in MD-related pathways
and our interesting genetic results, we hypothesize that
LRPI plays a role in drusen formation. Further studies of
this protein and its relationship to drusen formation and MD
are necessary.

Novel syndrome with cataracts, hearing loss, and
intellectual delays (Family M72)

To the best of our knowledge, Family M72 presents a novel
dominantly inherited condition. WES identified two novel

SPRINGER NATURE



1182

L. P. Doucette et al.

Fig. 3 Pathways involved in COMPLEMENT | 48
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variants: ¢.62 A>G: p.(D21G) in STUM, and c.122 A>C:
p-(E41A) in UBE2U. Of interest, UBE2U has been reported
to regulate RNF168 [22], an E2-ubiquitin conjugating
enzyme that has been associated with the Radiosensitivity
Immunodeficiency Dysmorphic features and Learning dif-
ficulties (RIDDLE) syndrome (OMIM 611943). Clinical
assessment by a medical geneticist (OC) indicated this
family shared some systemic dysmorphisms (short stature,
small head circumference, low weight, hypertelorism) and
behavioral/learning disabilities, similar to RIDDLE syn-
drome patients. We predict that the variant leads to an
abnormal interaction between variant UBE2U and RNF168
and leads to a RIDDLE syndrome-like phenotype in our
patients (Fig. 4). The affected mother of this family also
developed breast cancer at age 31. The RNF168 system is
involved with the repair of DNA damage and has a physical
interaction with BRCA1, the most common cause of genetic
breast cancer [23]. The diagnosis of breast cancer in our
patient may be unrelated but is an interesting observation in
the context of the UBE2U variant.

Unsolved families
Macular dystrophy with normal fundus (Family M68)

WES analysis yielded no obvious results to pinpoint the
genetic etiology of this retinopathy. Of interest was the
heterozygous CNGB3 c.1148del variant, previously
associated with achromatopsia, an autosomal recessive
cone photoreceptor disease. However, we excluded the
likelihood of a second CNGB3 variant as the electro-
physiological results make a diagnosis of achromatopsia

SPRINGER NATURE

unlikely; however, the testing revealed a slightly depres-
sed b-wave, indicating a dysfunction between photo-
receptors and the interneurons. We identified two
heterozygous variants in genes that cause CSNB: GRM6
(c.2092 C > G: p.(L698V)) and TRPM (c.3958 G> A: p.
(E1320K)). Van Genderen et al. (2009) suggested that
these two proteins directly interact and that TRPMI1 is
channel-gated by the GRM6 signaling pathway [24]. We
postulate that digenic inheritance of these variants is the
potential cause of this inherited retinopathy, though fur-
ther segregation or functional testing is needed to
confirm this.

Macular dystrophy (Family M69)

The two affected individuals shared variants in many genes not
previously associated with IRD (Table 3), however a direct
cause is not apparent. The most interesting candidate gene is
CROCC, which encodes rootletin protein, a core component of
the ciliary rootlet [25]. Knockout of rootletin leads to loss of the
ciliary rootlet and photoreceptor degeneration in mice [26, 27].
Our reported patient variants may underlie the patient pheno-
type due to a fragile photoreceptor cilium, which could hinder
light detection and phototransduction.

Cataracts and retinal detachment (Family M71)

Three affected individuals across two generations presented
with retinal detachments. WES revealed no variants in known
cataract or retinal detachment-associated genes. We observed
novel variations in nine potential candidate genes identified by
WES (Table 3). Pathogenicity predictor programs and gene
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RNF17

RNF168
—
RNF168
RNF168
D RNF17
—>\l, RNF168 —
UBE2U

Fig. 4 Family M72 Phenotype and UBE2U hypothesis. A OCT from
an unaffected individual through the macula. B OCT scan from II-1
shows splitting between the inner nuclear and the outer plexiform
layer, consistent with retinoschisis (white arrows). C UBE2U has

expression data further narrowed this to three genes: ELAVL2,
WTIP, and ATG2B. Embryonic Lethal Abnormal Vision-Like
2 (ELAVL2) is a neuron-specific RNA binding protein that
regulates transcript expression during neuronal development
[28, 29]. ELAVL?2 is expressed early during retinal develop-
ment, coincident with the differentiation of retinal neurons
[30, 31]. Another notable gene is Wilms Tumour Interacting
Protein (WTIP), which is important for cellcell and
cell-extracellular matrix adhesion in the kidney [32]. There is
also evidence that WTIP associates with basal bodies of cilia
[33]. WTIP expression and function have not been investigated
in the eye, but it may play a role in adhesion of the retina to the
extracellular matrix and cell-cell adhesion in the lens. Autop-
hagy Related 2B (ATG2B) is a key component of autophago-
some biogenesis [34, 35]. The ATG complex is comprised of
ATG2A and ATG2B, which are functionally redundant —
therefore, single loss-of-function variants are unlikely to pro-
duce a phenotype. However, whether they have overlapping
expression in the human eye is unknown. The functional
consequence of the patient’s missense variant in ATG2B is
unknown; however, impaired autophagosome development

gene expression
—
changes

abnormal gene
expression

—

previously been shown to interact with the RIDDLE syndrome protein
RNF168. D We hypothesize that the variant in UBE2U identified in
Family M72, causes a lack of physical interaction with RNF168 and
other interactors, leading to a RIDDLE-like syndrome.

could result in accumulation of damaged organelles and
abnormal proteins, leading to cellular dysfunction and death.

Conclusions

Our approach used WES to identify novel genes in IRDs
and through this work we have identified two putatively
novel associations in retinal disease: LRPI in drusen for-
mation and UBE2U in a novel syndrome. In our experience,
WES can provide a valuable tool into the interrogation of
particularly difficult to solve cases. In some instances, it can
provide a starting point by identifying a single variant in a
recessive condition. In other cases, the genetic information
provided by WES can establish or change a clinical diag-
nosis highlighting the need for multi-disciplinary clinical
investigations before genetic studies, as some phenotypic
features may be missed by a single specialist. In addition,
WES can provide a direction for further interrogations in
more difficult cases by identification of potentially novel
associations.

SPRINGER NATURE
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