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Abstract
While the advent of GWAS more than a decade ago has ushered in remarkable advances in our understanding of complex
traits, the limitations of single-SNP analysis have also led to the development of several other approaches. Simulation studies
have shown that the regional heritability mapping (RHM) method, which makes use of multiple adjacent SNPs jointly to
estimate the genetic effect of a given region of the genome, generally has higher detection power than single-SNP GWAS.
However, thus far its use has been mostly limited to agricultural settings, and its potential for the discovery of new genes in
human diseases is yet to be fully exploited. In this study, by applying the RHM method to primary biliary cholangitis (PBC)
in the Japanese population, we identified three novel loci (STAT4, ULK4, and KCNH5) at the genome-wide significance
level, two of which (ULK4 and KCNH5) have not been found associated with PBC in any population previously. Notably,
these genes could not be detected by using conventional single-SNP GWAS, highlighting the potential of the RHM method
for the detection of new susceptibility loci in human diseases. These findings thereby provide strong empirical evidence that
RHM is an effective and practical complementary approach to GWAS in this context. Also, liver tissue mRNA microarray
analysis revealed higher gene expression levels in ULK4 in PBC patients (P < 0.01). Lastly, we estimated the common SNP
heritability of PBC in the Japanese population (0.210 ± 0.026).

Introduction

Since the publication of the first GWAS study at the
beginning of the twenty-first century, thousands of GWAS
analyses have been performed and published; however, with
the improvement of genotyping technologies, increased
sophistication in study design, and the development of
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large-scale DNA biobanks and cohorts containing a wide
range of clinical data/phenotypes on hundreds of thousands
of individuals, the genome-wide association studies con-
ducted nowadays are often much more elaborate than they
were only a decade ago.

In spite of the many successes of GWAS, this devel-
opment has created a need for innovative analytical
methods and statistical models to better make sense of this
newly available data, for instance by accounting for
population structure and relatedness, reducing error rates
in unbalanced case/control traits, improving the detection
power of rare variants, or analyzing complex immune-
mediated diseases [1]. These aspects are especially
important given that the heterogeneous nature of the
genetic architecture of complex traits suggests that
increasing the sample size and/or the number of pheno-
types analyzed does not always produce the anticipated
gains in terms of novel loci discovery [2].

In this context, linear mixed models have received con-
siderable attention; their flexibility enables among others
estimating trait heritability while adjusting for environmental
factors, or accounting for population stratification and
cryptic relatedness in mixed-linear-model association stu-
dies. This trend is best illustrated by the development of a
number of software applications catering for linear mixed
model analysis, such as GCTA [3], BOLT-LMM [4], and
DISSECT [5], as well as practical statistical methods,
including GRAMMAR [6], EMMAX [7], and GEMMA [8].

Among these, it has been demonstrated that the regional
heritability mapping (RHM) method [9, 10], which consists
in estimating the genetic effect of “windows” (or regions)
composed of multiple adjacent SNPs (in contrast to GWAS
analysis that focuses on individual SNPs), possesses in a
number of cases higher statistical power for the detection of
causal loci compared with conventional single-SNP GWAS
[10, 11], albeit at the expense of computational power.
Despite this, research on the RHM method has been thus far
mostly limited to simulation studies [12], software devel-
opment [5], and application to agricultural settings [13].
This can be explained in large part by the fact that (1)
historically, most major advances regarding the application
of general mixed model methods to genetics have taken
place in the field of animal breeding for the purpose of
estimating random genetic effects [14], and their application
to human genetics is therefore relatively new, and (2) the
substantial discoveries that have resulted from the applica-
tion of GWAS to newly established large-scale genomic
cohorts in recent years have overshadowed the benefits and
slowed down the spread of other methods, including RHM,
which are generally more complex and computationally
demanding than single-SNP mapping methods.

In practice, this means that in spite of the firm theoretical
foundation and the simulation studies supporting the ability

of the RHM method to identify QTLs that cannot be
detected by single-SNP GWAS, its potential for the dis-
covery of new susceptibility loci in human diseases is yet to
be fully exploited. In this study, we applied the RHM
method to primary biliary cholangitis (PBC) in 5643 Japa-
nese individuals, and identified three new loci at the
genome-wide significance level (STAT4, ULK4, and
KCNH5), two of which (ULK4 and KCNH5) have not been
found associated with PBC in any population previously.
These findings highlight the importance of polygenic model
approaches like the RHM method for the discovery of new
susceptibility genes alongside traditional GWAS analyses,
given that these genes could not be detected with a con-
ventional single-SNP GWAS approach. We tested these
three new loci in an independent data set of 491 individuals
for replication, and used liver tissue mRNA microarray data
to analyze gene expression levels. We also carried out a
univariate GCTA-GREML analysis [15] to estimate the
common SNP heritability of PBC in the Japanese
population.

Material and methods

Population and genotyping

This study is based on a high-quality clinical data set
forming a representative sample of the Japanese population.
The samples used in the discovery and replication data sets
were collected nationwide from individuals in the Japan
PBC-GWAS Consortium; the discovery and replication
data sets represent independent samples. General informa-
tion about the individuals included in this study is presented
in Table S1. For the discovery analysis, sample genotyping
was performed by using Japonica v1 (660k SNPs) (Toshiba,
Japan) [16, 17] and Axiom Genome-Wide ASI 1 (600k
SNPs) (Affymetrix, USA) genotyping arrays, as described
in previous papers [18, 19]. All samples used for replication
were genotyped with Japonica v1 arrays. Imputation was
performed with IMPUTE4 [20] in each SNP array to impute
SNPs with no genotype data, by using a phased reference
panel of 2049 Japanese individuals from a prospective
general population cohort study performed by the Tohoku
Medical Megabank Organization, Japan [21]. In the dis-
covery cohort, after imputation we extracted the SNPs with
an info score over 0.5 in each array, and the two data sets
were merged by using the SNPs common to both geno-
typing platforms (13.8M SNPs). All chromosome and base-
pair positions in this paper are given with regard to the
GRCh37 (hg19) assembly.

In both the discovery and replication data sets, quality
control procedures were performed per individual and per
SNP, by using the following criteria in PLINK v1.90 [22]:
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individuals call rate ≥ 98%, SNPs call rate ≥ 98%, minor allele
frequency ≥ 1%, and consistency with Hardy–Weinberg
equilibrium (P ≥ 10−6). Linkage disequilibrium pruning was
also performed by using the --indep-pairwise 50 5 0.8 com-
mand. Identity by descent was calculated for each sample pair
to remove related samples (pi-hat > 0.1). After these steps,
there were 5643 individuals (1953 PBC cases, 3690 healthy
controls) and 1,022,240 autosomal SNPs remaining for ana-
lysis in the discovery data set. SNP cluster plots were used
locally as a visual tool to confirm the genotyping quality of
specific SNPs and remove those displaying genotyping issues.
A small number of regions that displayed convergence pro-
blems or extreme values were also removed from the analysis.
In the replication data set, 491 individuals (220 PBC cases,
271 healthy controls) remained for analysis.

Statistical analysis

Linear mixed model methods were used for analysis. The
following model was used to estimate the genome-wide
SNP heritability:

y ¼ Xβ þ uþ e

with Var(u)=Gσ2u and Var(e)= Iσ2e , where y is a vector
that represents the PBC phenotypes, β is a vector of fixed
effects that includes the overall mean, sex, genotyping
array, as well as the first ten eigenvectors from principal
component analysis (PCA), u is a vector of random effects
representing the whole (genome-wide) genomic additive
effect, and e is a vector of residual effects. X is the design
matrix for the fixed effects, G is the whole genomic
relationship matrix (GRM) computed by using all SNPs,
and I is a unit matrix; σ2u and σ2e represent the genetic and
residual variances, respectively.

The RHM method, which consists in scanning the gen-
ome by using windows (regions) of a given number of
adjacent SNPs [9], was used to estimate the genetic effect of
each region of the genome, as well as their significance
compared with the null model (i.e., the model above used to
calculate the genome-wide SNP heritability, with no
regional component). The model used was as follows:

y ¼ Xβ þ uþ wþ e

with Var(u)= Gσ2u, Var(w)=Qσ2w, and Var(e)= Iσ2e ,
where w is a vector of random effects representing the
regional genomic additive effect, Q is the regional GRM,
and σ2w is the regional genomic variance. A window size
of 50 SNPs was used in this study. The windows were
shifted by 25 SNPs to create a 50% overlap between
adjacent windows.

The GRMs were computed by using all of the SNPs to
calculate the whole GRM, and by using the SNPs corre-
sponding to each region of the genome to construct the

regional GRMs. The genetic relationship between two
individuals j and k was calculated as follows [3]:

gjk ¼ 1
N

XN

i¼1

ðxij � 2piÞðxik � 2piÞ
2pið1� piÞ ;

where xij and xik are the genotypes of the jth and kth
individuals, respectively, at the ith SNP; pi is the frequency
of the reference allele at the ith SNP; and N is the total
number of SNPs.

Additionally, a single-SNP GWAS analysis was per-
formed to provide a point of comparison to the results
obtained with the RHM method, using a logistic regression
model with covariate adjustment for sex, genotyping array,
and the first ten principal components. The replication data
set was adjusted for sex and the first ten principal
components.

Computer software

The Genetic Complex Trait Analysis (GCTA v1.91.4)
software application [3] was used to perform most of the
computations and statistical analyses in this study: the
computation of the GRMs, the PCA, the univariate Geno-
mic Restricted Maximum Likelihood (GREML) analysis, as
well as the RHM analysis. The Average Information
Restricted Maximum Likelihood procedure [23] was used
for estimation of the variance components. PLINK v1.90
[22] was used to perform quality control as well as the
single-SNP GWAS analysis, and R version 3.5.0 [24] was
used in combination with the qqman [25] and ggplot2 [26]
packages for visualizing the RHM and GWAS results. The
limma package v3.42.2 [27] (http://www.bioconductor.org/)
was used in R to analyze the mRNA microarray data.

Significance thresholds

The likelihood ratio test (LRT) statistic, LRT=−2ln(L0/L1),
was used to test for the presence of regional variance, where L0
represents the likelihood for the null model (i.e., H0, with
the whole genomic effect but with no regional genomic
component), and L1 represents the likelihood for the alternative
model (i.e., H1, with both the whole and the regional
genomic effects). It was assumed that the distribution of
the LRT for regional variance follows a 50–50 mixture of
chi-square distributions with degrees of freedom equal to 0 and
1 [28].

Bonferroni correction was performed to adjust for mul-
tiple testing; to estimate the Bonferroni-corrected sig-
nificance thresholds, we used half the number of regions
tested to account for overlapping windows [9]. The
genome-wide critical P values and corresponding LRT
thresholds are provided in Table 1.
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PBC prevalence in Japan

To adjust the heritability estimates for ascertainment the
heritability estimates were transformed from the observed
scale to the liability scale by using disease prevalence
estimates for the general population [1]. Because con-
siderable variation has been reported in the prevalence of
PBC between countries, we used prevalence estimates
based on nationwide epidemiological studies of PBC in
Japan. Concretely, given an estimated range of 380–460
cases per million in the literature [29], we assumed a pre-
valence of 420 per million. All of the heritability estimates
reported in this study are given on the liability scale.

mRNA data analysis

Liver biopsy was performed to obtain liver tissue samples
for the mRNA microarray analysis. All patients for whom
liver biopsy specimens were available were included in this
analysis; specifically, patients with PBC (36 individuals),

chronic hepatitis C (CHC) (15 individuals), and metastatic
liver cancer (5 individuals; normal liver tissue). Details
about RNA extraction and preservation have been described
previously [21]. Quantitative DNA microarray data were
obtained using Agilent Feature Extraction software (Agilent
Technologies), and data normalization (excluding lincRNA)
was performed with the quantile method. Statistical analysis
was performed with the limma package [27] in R, the
P value indicated corresponding to PBC versus CHC/nor-
mal samples.

Results

Genome-wide SNP heritability

In this study, we calculated the GREML-based common
SNP heritability estimate of PBC (±standard error), which is
generally thought of as the lower-bound estimate of narrow-
sense heritability. It was estimated to be 0.210 (±0.026),
adjusting for sex, genotyping array, and the first ten prin-
cipal components.

Regional heritability mapping analysis

The results of the RHM analysis are presented in Fig. 1
(top), which shows the result of the LRT comparing the
likelihood of the model including regional genomic effects
against the null model (i.e., without regional genomic

Table 1 P value and LRT thresholds for the RHM analysis.

α= 0.05 α= 0.1

Number of regions 40,890 40,890

Bonferroni-corrected P value threshold 2.45E−06 4.89E−06

Corresponding LRT threshold 20.88 19.55

α significance level.

Fig. 1 Miami plot of the RHM and GWAS analyses. In the LRT plot of the RHM analysis (top), each dot represents a region of 50 adjacent
SNPs; the red and blue horizontal lines represent the significant (LRT > 20.88) and suggestive (LRT > 19.55) thresholds, respectively. In the
Manhattan plot of the GWAS analysis (bottom), the red and blue horizontal lines represent the significant (P < 5 × 10−8) and suggestive (P < 10−5)
thresholds, respectively.
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effects) for each 50-SNP region of the genome. The cor-
responding QQ-plot is shown in Fig. 2.

The regions that were found to be significant at the
genome-wide level (LRT > 20.88) in this analysis are
located on the following genes: STAT4, ULK4, NFKB1/
MANBA, HLA, TNFSF15/TNFSF8, KCNH5, and IKZF3.
Information about each significant non-HLA region, as well
as detail about the corresponding LRT and regional herit-
abilities, is provided in Table 2. Along with the HLA
complex, the NFKB1/MANBA, TNFSF15/TNFSF8, and
IKZF3 genes have already been examined in a number of
publications on PBC in the Japanese population [18, 30–32]
and will therefore not be discussed further here.

To provide a point of comparison to the results obtained
with the RHM method, we performed a single-SNP GWAS
analysis of the same data (Fig. 1 (bottom); the corresponding
QQ-plot is shown in Fig. S1). Although most genes identi-
fied by RHM were also detected by GWAS, the overlap was
incomplete as three genes (STAT4, ULK4, and KCNH5) did
not reach genome-wide significance (P < 5 × 10−8) in the
GWAS analysis, and conversely two genes (POGLUT1 and
IL7R) were identified by GWAS but not RHM.

The RHM analysis provides evidence, for the first time,
of a statistically significant association between STAT4 and
PBC in the Japanese population at the genome-wide level.
Beside the discovery of this association, this finding is
consequential given that it demonstrates the potential of the
RHM method for the detection of new disease-related genes
in human populations, as this association would have gone
undetected had we only performed a conventional GWAS
analysis.

RHM also identified two entirely new susceptibility loci,
located on the ULK4 and KCNH5 genes. We performed

Fig. 2 QQ-plot of the RHM analysis. The genomic inflation factor
was equal to 1.
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additional analyses for validation and to confirm their
involvement in disease pathogenesis by uncovering differ-
ences in gene expression through mRNA microarray data
analysis (see below).

Additionally, the RHM analysis detected two other loci,
IQCJ-SCHIP1/IL12A and PPARGC1A, at the suggestive
level of significance (19.55 < LRT < 20.88). The IL12A
gene is known to share a common pathogenic pathway with
STAT4 and play an essential role in the development of
PBC [33]. Although less is known about PPARGC1A, at
least two Japanese studies have provided evidence of its
function in PBC progression through the regulation of bile
acid synthesis [34, 35].

Replication and differences in gene expression

We used an independent replication data set of 491 Japa-
nese individuals (220 cases, 271 controls) to validate the
STAT4, ULK4, and KCNH5 genes. The results, presented in
Table 3, confirmed the association of STAT4 and KCNH5
with PBC; while the replication of STAT4 was expected
given that its role is known in PBC, the strongest replication
was at KCNH5 (P= 5.83 × 10−25), a new candidate gene
that only RHM detected. This KCNH5 locus corresponds to
rs28608483 (chr14:g.63375059A > G), which had a P value
of P= 7.33 × 10−8 (OR= 1.57) in the discovery data set.
(The minor allele frequencies in controls and cases were
0.073 and 0.095, respectively).

This analysis, however, failed to replicate the findings for
ULK4. Nevertheless, subsequent mRNA analysis performed
to examine differences in gene expression in liver tissues
provided promising results. While no gene expression was
detected for KCNH5, for ULK4 gene expression levels were
significantly higher in PBC patients (P < 0.01) (Table S2).
This finding is supported by the fact that rs35391137 (chr3:
g.41617623A >G), the SNP with the lowest P value that we
have identified in the ULK4 region in the discovery data set
(P= 3.37 × 10−6; OR= 1.66), corresponds to the binding
site for the Hand1:E47 and Smad3 transcription factors [36].

However, in-depth analyses of the biological pathways
of ULK4 and KCNH5 are necessary to uncover the
mechanisms underlying disease etiology and progression, as
well as clarify the potential role of the eQTL effects that
have been found for ULK4, through cell-specific eQTL
analyses of immune cells, in B, CD4+ T cells, CD8+

T cells, monocytes, and natural killer cells in the Japanese
population (Table S3) [37].

Discussion

The genetic component of PBC

While autoimmune diseases are considered complex and
multifactorial, most have been shown to display high her-
itabilities [38]. PBC is no exception according to the
research on familial occurrence and monozygotic twins,
which has confirmed that family history is a strong risk
factor for developing the disease [39]. Nevertheless, few
estimates of the SNP heritability of PBC are available, as
most of the publications providing measures of the herit-
ability of PBC are based on family studies, and in such
cases it is generally reported in the form of sibling relative
risk estimates or differences in concordance rates between
monozygotic twins and dizygotic twins [40].

Our estimate of the common SNP heritability of PBC
(0.210 ± 0.026) is somewhat low given that previous studies
suggest a strong genetic component to PBC, e.g., it is
known to have much higher concordance rates in mono-
zygotic twins (63%, one of the highest among autoimmune
diseases) than dizygotic twins (≈general population), and a
sibling relative risk of 10.5 [39]. However, these results are
not contradictory since estimates from twin studies differ in
their assessment of environmental components and include
effects that common SNP heritability estimates are not
meant to capture [41]. For this reason, a direct comparison
of estimates is difficult, and more studies are needed in all
human populations to further our understanding of the SNP
heritability of PBC.

Identifying STAT4 in the Japanese population

Although STAT4 is a well-known PBC risk locus in
populations of European ancestry and its role in the
pathogenesis of PBC as well as other autoimmune diseases
has already been thoroughly examined [42], previous
single-SNP GWAS analyses in the Japanese population had
failed to replicate this result and hinted at possible genetic
differences between populations [18, 31]. In our study,
single-SNP GWAS also failed to identify STAT4 at the

Table 3 Summary statistics of the replication data set.

Chr SNP Gene EA OR SE CI (95%) P value Adj. P value

2 rs7574865 STAT4 T 1.436 0.1445 1.082–1.907 0.01217 0.03651

3 rs35391137 ULK4 G 1.109 0.3847 0.5216–2.356 0.7886 1

14 rs28608483 KCNH5 G 11.16 0.2338 7.057–17.64 5.83E−25 1.749E−24

CI confidence interval, EA effect allele, OR odds ratio, SE standard error.
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genome-wide significance level, while RHM detected an
association signal; it is therefore possible that the failure of
Japanese GWAS to identify STAT4 is simply due to the
smaller sample sizes of these analyses, or maybe to
untagged causal variants.

Although rs7574865 (chr2:g.191964633T > G), the top
STAT4 SNP (P= 2.75 × 10−5) in a recent study of 2886
Japanese individuals (1381 PBC cases, 1505 healthy con-
trols) [18], reached genome-wide significance in a GWAS
performed in 11,375 individuals of European ancestry
(2861 cases, 8514 controls) [43], earlier GWAS studies that
reported associations between STAT4 and PBC in popula-
tions of European ancestry and that were of a more limited
scale, such as those performed by Hirschfield et al. [44] and
Liu et al. [45], only provided suggestive evidence of a
statistical association between STAT4 and PBC. While
sample size is not the only factor at play—differences exist
for instance in terms of minor allele frequency between
European and Asian populations with respect to rs7574865,
one can assume that future GWAS analyses of PBC with
larger sample sizes will detect an association signal at the
genome-wide significance level for STAT4 in the Japanese
population. RHM is therefore in all likelihood an effective
approach when sample size matters for the detection of a
given locus.

Single-SNP GWAS and RHM: a different set of QTLs?

The fact that STAT4 was detected by the RHM method but
did not reach genome-wide significance in the single-SNP
GWAS analysis also corroborates the results from simula-
tions studies demonstrating that RHM often has higher
power than single-SNP mapping methods [10, 11], and is
therefore a valuable tool for the discovery of new suscept-
ibility loci in human diseases. On the other hand, our
GWAS analysis identified two loci that are already known
PBC QTLs in the Japanese population, namely IL7R
(rs7717955 (chr5:g.35862841C > T); P= 3.91 × 10−8) and
CD80/POGLUT1 (rs13092998 (chr3:g.119245044G > T);
P= 2.57 × 10−10) [19, 46], but that were not detected by
using the RHM method. Even though computer simulations
have previously indicated that GWAS and RHM tend to
uncover slightly different sets of QTLs depending on the
characteristics of the locus considered (such as the minor
allele frequency or the number of QTLs of the region)
[11, 12], our findings represent strong empirical evidence
that this is indeed the case for human diseases.

Regarding the characteristics of the loci detected by
either one of the two methods, our findings seem to be in
line with computer simulations showing that RHM has
more power than GWAS when it comes to detecting regions
with multiple QTLs, but suggest that single-SNP GWAS
may be more efficient in some instances when the

susceptibility locus contains only a single causal variant
[11]. The case of STAT4, for example, supports this idea,
given that it reached genome-wide significance in our RHM
analysis but not with GWAS, and results from previous
GWAS analyses have revealed that STAT4 comprises sev-
eral independent association signals with PBC [47]. This
may explain why single-SNP mapping methods appear to
be slightly underpowered for the detection of this type of
locus. Conversely, although many SNPs in the IL7R gene,
which was detected with GWAS but not RHM, have been
found to be associated with PBC and other autoimmune
diseases, it appears that they are all linked to a single locus,
rs6897932 (chr5:g.35874575C > T), known to affect the
inclusion of exon 6 through splicing regulation. According
to the 1000 Genomes Phase 3 database, the top IL7R SNP in
our analysis, rs7717955, is in perfect linkage disequilibrium
with rs6897932 in the Japanese population (D′= 1; r2= 1)
[47]. Our findings therefore support the hypothesis that
single-SNP GWAS is likely to be more effective than RHM
for the detection of loci for which a single QTL is
responsible for the regional genetic effect.

Although more discovery studies using the RHM method
are needed to confirm the results of our analysis, it seems
that while RHM is an effective and practical method for the
detection of susceptibility loci that are not easily identified
by GWAS, it should be considered as a complementary
approach to single-SNP GWAS analysis rather than a
potential replacement.

Replication of RHM results

From a methodological point of view, the process of
discovery and replication in GWAS is fairly straightfor-
ward: (1) identify a statistically significant SNP in the
discovery data set, and then (2) use the same SNP for
replication in an independent cohort. The only major
caveat is that the SNP to be replicated—or a near-perfect
proxy—must exist in the replication cohort. With RHM,
several questions arise. First, applying the same standard
as single-SNP GWAS—i.e., using the same SNPs in the
discovery and replication cohorts—is not realistic in most
cases since in RHM a given window contains tens or
hundreds of SNPs; replication would therefore entail that
all of the SNPs contained in a given window in the dis-
covery cohort must also exist in the replication cohort. A
more practical alternative would be to choose windows
that cover exactly the same genomic region, i.e. at least
the first and last SNPs are the same, with the additional
assumption that the SNPs in between capture the regional
genomic variance to the same degree in both cohorts.
Proceeding this way, however, raises several other issues,
such as the difference in marker density between windows
in the target cohorts. Another key issue to contend with is
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sample size, given that replication cohorts are usually
much smaller than discovery cohorts. For unrelated indi-
viduals and common SNPs, univariate mixed model ana-
lyses using REML methodology typically require sample
sizes of over 3000 to bring the standard error of the SNP
heritability below 0.1 [48], and in many cases, including
this study, such thresholds are prohibitive. To validate our
results, we therefore chose to use a different approach;
among the SNPs contained in the windows identified with
RHM in the discovery data set, we selected those with the
lowest P value in the GWAS analysis—e.g., for KCNH5
this corresponds to rs28608483 (P= 7.33 × 10−8 in the
discovery data set)—and used them for replication. While
we acknowledge that applying different approaches in the
discovery and replication data sets is an imperfect strat-
egy, we deemed it the most appropriate in this case.

Pursuing complementary alternatives to single-SNP
mapping methods

On a different note, the findings of our study, by validating
simulation results showing that the RHM method is able to
identify QTLs that cannot be easily detected by single-SNP
GWAS, and by demonstrating that RHM is a powerful tool
for the discovery of new susceptibility loci, imply that
analytical approaches that focus on the joint effect of mul-
tiple SNPs are effective in capturing genetic variation for
highly polygenic traits and deserve a more prominent place
alongside traditional GWAS methods for the detection of
new loci. Our results also suggest that their systematic
implementation is desirable whenever possible, especially
when statistical power is an issue, for instance when the cost
of gathering large amounts of data becomes a major hurdle
and/or sample size is limited to begin with, such as in the
case of rare diseases or for studies targeting people from a
given genetic group for which large data sets are unavail-
able. More broadly, these findings can be extended to the
application of a number of methods other than single-SNP
GWAS; even though in this study we chose to focus on
RHM for the analysis of common SNPs given the dearth of
studies on the application of RHM to human traits for
the discovery of new susceptibility loci, other approaches
such as SKAT-O for the detection of rare variants are
also necessary.

In the specific case of PBC in Japan, the value of pur-
suing complementary analytic methods in parallel with
conventional single-SNP GWAS analyses with larger
sample sizes is gaining recognition [49], one of the under-
lying reasons being that GWAS analyses performed in the
Japanese population so far have only managed to identify a
small number of susceptibility loci in comparison with
European populations. We believe that methods that make
use of multiple adjacent SNPs jointly can be particularly

useful in this context given the increasing diversity of
genetic cohorts worldwide.

Conclusion

In summary, this study provides strong empirical evidence
that RHM is an effective tool for the identification of new
susceptibility loci in human diseases with the ability to
identify QTLs that cannot be detected with conventional
single-SNP mapping methods. We identified associations at
the genome-wide significance level between three new loci
(STAT4, ULK4, and KCNH5) and PBC in the Japanese
population, two of which (ULK4 and KCNH5) have not
been identified in any population previously; this result was
obtained by applying RHM and could not be achieved with
single-SNP GWAS only. At the same time, this approach is
not a replacement for GWAS, as GWAS appears to have its
own benefits regarding QTL discovery. Additional research
is nonetheless required to deepen our understanding of the
underlying mechanisms between these new genes and the
development of PBC.

Web resources

PLINK, https://www.cog-genomics.org/plink/1.9/. GCTA,
https://cnsgenomics.com/software/gcta/. R, https://www.r-
project.org/. limma, http://www.bioconductor.org/packages/
release/bioc/html/limma.html.

Data availability

The analyses presented in this study were in part based on
data accessed through the Tohoku Medical Megabank
Organization (https://www.megabank.tohoku.ac.jp/english/).
The summary statistics of the RHM and GWAS reported in
this paper are available at the National Bioscience Database
Center Human Database (NBDC Human Database; https://
humandbs.biosciencedbc.jp/en/) public repository (Research
ID: hum0261.v1).
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