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Abstract
Polycystic ovary syndrome (PCOS) is a common complex disease in women with a strong genetic component and
downstream consequences for reproductive, metabolic and psychological health. There are currently 19 known PCOS risk
loci, primarily identified in women of Han Chinese or European ancestry, and 14 of these risk loci were identified or
replicated in a genome-wide association study of PCOS performed in up to 10,074 cases and 103,164 controls of European
descent. However, for most of these loci the gene responsible for the association is unknown. We therefore use a Bayesian
colocalization approach (Coloc) to highlight genes in PCOS-associated regions that may have a role in mediating the disease
risk. We evaluated the posterior probabilities of evidence consistent with shared causal variants between 14 PCOS genetic
risk loci and intermediate cellular phenotypes in one protein (N= 3301) and two expression quantitative trait locus datasets
(N= 31,684 and N= 80–491). Through these analyses, we identified seven proteins or genes with evidence of a possibly
shared causal variant for almost 30% of known PCOS signals, including follicle stimulating hormone and ERBB3, IKZF4,
RPS26, SUOX, ZFP36L2, and C8orf49. Several of these potential effector proteins and genes have been implicated in the
hypothalamic–pituitary–gonadal signalling pathway and provide an avenue for functional follow-up in order to demonstrate
a causal role in PCOS pathophysiology.

Introduction

Polycystic ovary syndrome (PCOS) is a common endocri-
nopathy, affecting between 6 and 10% of women of
reproductive age [1], with consequences for reproductive,
metabolic, and psychological health [2, 3]. There is evi-
dence of a clear genetic component [4], and genome-wide
association studies (GWASs) have identified 19 risk loci
[5–9]. Some of these risk loci are close to genes with a
plausible connection to PCOS pathophysiology, including
genes involved in for example insulin and
hypothalamic–pituitary–gonadal (HPG) signalling (e.g.,
INSR, the insulin receptor gene and FSHR, the FSH-
receptor gene) [3, 6–8]. However, for most PCOS-
associated loci the mediating genes and their functional
effects remain to be identified and/or confirmed [6].

One approach to improve biological understanding of a
disease risk locus is through colocalization analysis of the
disease and intermediate cellular phenotypes, such as gene
expression and protein levels in different tissues [10]. Colo-
calization analysis quantifies the probability that two traits
share the same causal variant, and can thereby highlight genes
and proteins that may mediate the risk of a disease [10]. We

* Jenny C. Censin
jenny.censin@ndm.ox.ac.uk

1 Big Data Institute at the Li Ka Shing Centre for Health Information
and Discovery, University of Oxford, Oxford, UK

2 Wellcome Centre for Human Genetics, University of Oxford,
Oxford, UK

3 NIHR Oxford Biomedical Research Centre, Oxford University
Hospitals NHS Foundation Trust, John Radcliffe Hospital,
Oxford, UK

4 Medical Research Council Population Health Research Unit at the
University of Oxford, Nuffield Department of Population Health,
University of Oxford, Oxford, UK

5 Clinical Trial Service Unit & Epidemiological Studies Unit
(CTSU), Nuffield Department of Population Health, Big Data
Institute Building, Roosevelt Drive, University of Oxford,
Oxford, UK

6 Program in Medical and Population Genetics, Broad Institute,
Cambridge, MA, USA

7 Nuffield Department of Women’s and Reproductive Health,
University of Oxford, Oxford, UK

Supplementary information The online version contains
supplementary material available at https://doi.org/10.1038/s41431-
021-00835-8.

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-021-00835-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-021-00835-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-021-00835-8&domain=pdf
http://orcid.org/0000-0001-6625-6074
http://orcid.org/0000-0001-6625-6074
http://orcid.org/0000-0001-6625-6074
http://orcid.org/0000-0001-6625-6074
http://orcid.org/0000-0001-6625-6074
http://orcid.org/0000-0001-6617-0879
http://orcid.org/0000-0001-6617-0879
http://orcid.org/0000-0001-6617-0879
http://orcid.org/0000-0001-6617-0879
http://orcid.org/0000-0001-6617-0879
mailto:jenny.censin@ndm.ox.ac.uk
https://doi.org/10.1038/s41431-021-00835-8
https://doi.org/10.1038/s41431-021-00835-8


therefore investigated the evidence of colocalization between
14 PCOS-associated loci identified in a recent GWAS in
Europeans [6] together with one study with protein and two
studies with expression quantitative trait loci (pQTL and
eQTL, respectively). Our results highlight several genes and
proteins linked to the HPG axis and follicular development,
including e.g. FSH, ZFP36L2, and RAD50, that may be of
particular interest for further functional follow-up.

Materials and methods

Polycystic ovary syndrome dataset

We obtained GWAS summary statistics for PCOS from
Day et al. [6]. In their study, 14 genome-wide significant
loci were identified in up to 10,074 cases and 103,164
controls of European ancestry (Fig. 1 and Table 1). Public
summary statistics and single nucleotide polymorphism
(SNP) estimates were available for (a) the 10,000 most
robustly associated SNPs with estimates computed in the
full sample and (b) for all SNPs with estimates computed in
analyses excluding one of the cohorts (23andMe), resulting
in a sample size of up to 4890 cases and 20,405 controls.
We combined the two SNP summary statistics datasets to
one dataset for use in the main analyses, with preference

given to summary statistics computed using the full sample
size. We then excluded SNPs found to be duplicated by
position, missing relevant data, or indels.

Protein and expression quantitative trait loci
datasets

We used publicly available protein and expression genetic
association data from the INTERVAL study [11, 12], the
GTEx consortium [13], and the eQTLgen consortium [14].
pQTL data were taken from the INTERVAL study, which
had performed GWASs for 2994 unique plasma proteins
(3283 measured aptamers) in 3301 blood donors of Eur-
opean ancestry [11]. For GTEx, we used data from version
7, which contains cis-eQTL data for between 80 and
491 samples in 48 different tissues [13, 15]. Expression had
been measured post-mortem, with ~85% of donors being of
European (“White”) ancestry in the whole sample [15].
Lastly, the eQTLgen consortium had performed cis- and
trans-eQTL analysis in up to 31,684 individuals, pre-
dominantly of European ancestry [14]. Both cis-associa-
tions, containing SNPs within 1Mb from the centre of the
gene, and trans-associations, containing SNPs over 5 Mb
from the centre of the gene, are publicly available [14]. For
all these datasets, we then excluded SNPs that were dupli-
cated by position, missing relevant data, or indels.

Colocalization analyses

We applied Coloc [10], a Bayesian test for colocalization, to
evaluate the probability of evidence consistent with a shared
causal signal between each PCOS risk loci and each p/
eQTL (see Supplement). We performed colocalization using
the coloc.abf() function in the Coloc R package, applying it
to cis-genes using up to three different region sizes
depending on QTL dataset.

For GTEx and eQTLgen, cis-association statistics were
only available for SNPs within 1Mb of the transcription start
site and the centre of the gene, respectively [13, 14]. We
therefore only analyzed genes and proteins with a transcrip-
tion start site or centre of gene ± 800 kb of each top PCOS
SNP (by P value) for all three QTL datasets, to ascertain that
we had a sufficiently large region on both sides of the asso-
ciation peak to determine colocalization. We analyzed two
different region sizes in GTEx and eQTLgen—the entire 2
Mb cis-region available in these datasets in the main analysis
and a 400 kb region around the position of the top PCOS SNP
as a sensitivity analysis. For GTEx, we only performed the
analysis if the PCOS index SNP was present in the GTEx
summary statistics for computational reasons. For colocali-
zation analyses involving the protein data from the INTER-
VAL study [11], we evaluated three different region sizes—a
2Mb region and a 400 kb region around the top SNP, as well
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• Region sizes: 2 Mb regions in the main analysis, 
400 kb and ”independent regions” (INTERVAL 
only) in the sensitivity analyses

• Priors: p1 = 1×10-4, p2 = 10×10-4, p12 = 1×10-6 

14 top PCOS SNPs from Day et al.

Only include proteins/genes with a transcription start 
site/centre of gene +/- 800 kb from PCOS hit

INTERVAL, GTEx and eQTLgen

Fig. 1 Study overview. Top SNPs associated with PCOS were
extracted from Day et al. [6]. Colocalization was then performed
between PCOS risk and both gene expression and protein levels, using
data from INTERVAL [11, 12], GTEx [13], and eQTLgen [14].
Proteins and genes with a transcription start site or center of gene
(depending on the gene/protein dataset) within 800 kb from a PCOS
SNP were then analysed using the Bayesian colocalization software
Coloc [10]. PCOS polycystic ovary syndrome; SNP single nucleotide
polymorphism.
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as the top SNP’s “independent region” [16]. Independent
regions were defined as the approximately independent
regions of linkage disequilibrium in Europeans, as computed
by Berisa et al. [17].

Coloc requires the assignment of prior probabilities for a
SNP being associated with each trait (p1 and p2) and for a
SNP being associated with both traits (p12). We set these
prior probabilities to p1= 1 × 10−4, p2= 1 × 10−4, and
p12= 1 × 10−6, with the prior for p12 being more stringent
than the default setting [10, 18].

Briefly, Coloc evaluates five different hypotheses.
Hypothesis H0, H1 and H2 correspond to situations without
associated/causal SNPs in both the PCOS and the protein/
gene dataset, H3 to a situation where PCOS and the protein/
gene have different associated/causal SNPs, and H4 where
PCOS and the protein/gene have evidence consistent with a
shared associated/causal SNP, i.e., colocalization [10].
Since we performed colocalization as a hypothesis-
generating approach, all analyses with a colocalization
posterior probability (PP) > 0.50 were seen as having
nominal evidence of colocalization and analyzed further. A
colocalization PP just above >0.50 should be regarded with
caution, and we set the threshold for strong evidence of
colocalization at PP ≥ 0.75. Power for detecting colocali-
zation was computed as the sum of the PPs for hypothesis 3
(no colocalization) and hypothesis 4 (colocalization) [19].

Additional analyses

We followed up colocalizing regions with assessing phenome-
wide association study (PheWAS) data for the top PCOS SNP
using the Open Target Genetics platform [20]. The sig-
nificance threshold for a PheWAS association on the Open
Targets Genetics platform is approximately P < 1 × 10−5

(based on visual inspection of the plotted threshold [20]). We
further corrected for the six SNPs we investigated and set the
threshold to P < 1.7 × 10−6 (1 × 10−5 corrected for six SNPs).

We also performed a range of sensitivity analyses.
Analyses were reconducted using the PCOS dataset where
the 23andMe cohort had been excluded, to have roughly the
same sample size for all SNPs. We also computed the PP of
colocalization using HyPrColoc [16], a recently developed
extension of Coloc [10] (see Supplement). For these ana-
lyses we used the larger region sizes of 2 Mb for all three
QTL datasets, as well as the independent regions for
INTERVAL (according to HyPrColoc recommendations
[16]). Finally, we applied an experimental method, “inter-
action-Coloc” (see Supplement for detailed rationale,
methods and results). In brief, we first identified other
genes/proteins linked to the genes/proteins identified in the
main analysis, based on data from protein–protein interac-
tion experiments. We then performed colocalization analy-
sis for these “linked” genes/proteins with PCOS risk under
the assumption that evidence of colocalization for two
linked genes/proteins strengthens the evidence for a role of
affiliated pathways in PCOS pathophysiology. For this
analysis, we used the default Coloc priors given the links to
the genes/proteins identified in the main analysis.

Results

Colocalization highlights genes with a potential
mediating role

We identified seven proteins and genes with strong evi-
dence of colocalization (PP ≥ 0.75), including the protein
FSH, and the genes SUOX, ERBB3, IKZF4, RPS26,

Table 1 Summary statistics for the 14 PCOS SNPs.

SNP Full SNP name Chr Pos EA NEA EAF Odds ratio (95% CI) P

rs2178575:G>A NC_000002.11:g.213391766G>A 2 213391766 A G 0.15 1.18 (1.13–1.23) 3.34e−14

rs11031005:T>C NC_000011.9:g.30226356T>C 11 30226356 C T 0.15 1.17 (1.12–1.23) 8.66e−13

rs804279:A>T NC_000008.10:g.11623889A>T 8 11623889 A T 0.26 1.14 (1.10–1.18) 3.76e−12

rs11225154:G>A NC_000011.9:g.102043240G>A 11 102043240 A G 0.09 1.20 (1.13–1.26) 5.44e−11

rs9696009:G>A NC_000009.11:g.126619233G>A 9 126619233 A G 0.07 1.22 (1.15–1.30) 7.96e−11

rs13164856:T>C NC_000005.9:g.131813204T>C 5 131813204 T C 0.73 1.13 (1.09–1.18) 1.45e−10

rs1784692:T>C NC_000011.9:g.113949232T>C 11 113949232 T C 0.82 1.15 (1.10–1.21) 1.88e−10

rs7563201:G>A NC_000002.11:g.43561780G>A 2 43561780 G A 0.55 1.11 (1.08–1.15) 3.68e−10

rs8043701:A>T NC_000016.9:g.52375777A>T 16 52375777 T A 0.18 1.14 (1.09–1.18) 9.61e−10

rs1795379:T>C NC_000012.11:g.75941042T>C 12 75941042 C T 0.76 1.12 (1.08–1.17) 1.81e−09

rs853854:T>A NC_000020.10:g.31420757T>A 20 31420757 T A 0.50 1.10 (1.07–1.14) 2.36e−09

rs2271194:A>T NC_000012.11:g.56477694A>T 12 56477694 A T 0.42 1.10 (1.07–1.14) 4.57e−09

rs10739076:A>C NC_000009.11:g.5440589A>C 9 5440589 A C 0.31 1.12 (1.07–1.16) 2.51e−08

rs7864171:G>A NC_000009.11:g.97723266G>A 9 97723266 G A 0.57 1.10 (1.06-1.13) 2.95e−08

Summary statistics for the PCOS-associated SNPs that were identified or replicated in Day et al. [6]. Chr chromosome, CI confidence interval, EA
effect allele, NEA non-effect allele, Pos position, SNP single nucleotide polymorphism.

1448 J. C. Censin et al.



C8orf49, and ZFP36L2 (Figs. 2–3 and Supplementary
Tables 1–4; for a detailed description of genes see Sup-
plement and Supplementary Figs. 1–10). In addition, four
genes (RAD50, GDF11, NEIL2, and C9orf3) had nominal
evidence of colocalization (PP > 0.50). Some of these genes
and proteins, such as RAD50, had evidence of colocaliza-
tion in only one tissue, whereas others, such as RPS26 and
SUOX, had evidence of colocalization in a large proportion
of all tested tissues.

Regulatory annotations and associations with other
traits

The colocalization results had highlighted circulating FSH
as colocalizing at the rs11031005:T>C locus (PP= 0.76)
(see Fig. 3). We found that the rs11031005:T>C C-allele
was associated with both higher PCOS risk (OR 1.17, 95%
CI 1.12–1.23, P= 8.7 × 10−13) and lower FSH levels
(−0.166 standard deviations, SE= 0.035, P= 2.0 × 10−6)
[11]. The locus was also associated with several traits
related to female hormonal regulation in the PheWAS look-
up, with the two traits showing the most robust associations
being length of menstrual cycle (P= 1.2 × 10−42) and age at

menopause (P= 1.4 × 10−15) (Supplementary Table 5; for
results for the other loci see Supplementary Tables 6–10)
[20, 21].

Other PCOS loci were colocalized with the expression
levels of several genes. At the rs2271194:A>T locus, the
results supported colocalization for four genes (ERBB3
PP= 0.94, IKZF4 PP= 0.90, RPS26 PP= 0.91, and SUOX
PP= 0.92), as well as nominal evidence (PP= 0.53) for
GDF11 (Fig. 2, Supplementary Figs. 2–6). The PheWAS of
this variant highlighted associations with a range of differ-
ent traits, including e.g. obesity, household income, and
haematologic traits (Supplementary Table 6) [20]. Look-up
of rs2271194:A>T and its proxies (r2 > 0.8 in European-
ancestry populations) in Haploreg [22] gave further evi-
dence for a regulatory function in many different cell types,
including e.g. immune cells, brain cells, and hepatocellular
and cervical cancer cell lines.

Sensitivity analyses

We performed several sensitivity analyses. First, the num-
ber of SNPs included in an analysis can affect the PP of
colocalization [18]. We therefore also conducted analyses

Fig. 2 Posterior probabilities for genes and proteins with any
evidence of colocalization. In the main approach, we used a region
size spanning 2Mb, and 400 kb regions as a sensitivity analysis. In
addition to the main PCOS dataset, we also performed colocalization
analysis with a PCOS dataset where the 23andMe cohort had been
excluded as a sensitivity analysis. r2 is the linkage disequilibrium value
between the top SNP in the main PCOS dataset and the top SNP in the
tissue expression/protein dataset, using the 2 Mb region size. N tissues
are the number of tissues where the colocalization PP > 0.5 in the main

analysis. Only the results for the tissue with the highest posterior
probability of colocalization in the main analysis are reported here (for
full results and power calculations see Supplementary Tables 1–3).
Gene-tissue combinations with a posterior probability of colocalization
>0.50 were seen as having some evidence in favour of colocalization,
whereas the threshold for strong evidence was set at ≥0.75. PCOS
polycystic ovary syndrome, PP posterior probability, Without-23 the
PCOS dataset where the 23andMe cohort had been excluded.
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using a region size of 400 kb for all three e/pQTL datasets
[10, 18], as well as approximately independent regions of
linkage disequilibrium [17] in INTERVAL (performed in
INTERVAL only since the other datasets did not provide
genome-wide summary statistics) [16]. This sensitivity
analysis supported the main findings; all SNP-gene/protein-
tissue combinations with evidence of colocalization (PP >
0.5) in the main analysis had a PP > 0.5 regardless of region
size using the main PCOS dataset (Fig. 4).

Second, Coloc uses SNP-associations to compute PPs
[10], and association statistics are dependent on sample size.

We therefore performed colocalization analyses using esti-
mates from the PCOS dataset where the 23andMe cohort
had been excluded, to obtain a similar sample size for all
SNPs. This analysis generally had lower power (possible
range 0–1, with a power >0.80 indicating strong power) to
detect colocalization, and generally a correspondingly
lower PP of colocalization (Supplementary Tables 1–3 and
Fig. 4) [19].

Next, we performed colocalization analysis using the
software HyPrColoc [16]. Results using HyPrColoc also
provided evidence for colocalization for all gene/protein-
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Fig. 3 Associations between genetic variants and PCOS risk, using
the main PCOS dataset and 2Mb region sizes for FSH protein
levels in blood. In each plot, each dot is a genetic variant. The SNP
with the most significant P value for PCOS is marked, with the other
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−log10 P values with the protein levels on the lower panel for the
corresponding region. FSH follicle stimulating hormone; PCOS
polycystic ovary syndrome; SNP single nucleotide polymorphism.
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tissue combinations that were highlighted in the main ana-
lysis, except ERBB3 in spinal cord, IKZF4 in suprapubic
skin, and SUOX in blood (but with evidence of colocali-
zation between these genes and PCOS risk still present in
other tissue types; Supplementary Tables 1, 2 and Fig. 4).

Finally, the experimental interaction-Coloc analyses pro-
vided suggestive evidence for two additional genes coloca-
lizing with PCOS risk, highlighting their linked genes/
proteins in the main analysis; FSH (as the linked gene coding

for the FSH-receptor colocalized with PCOS risk at PP=
0.84) and RAD50 (with its linked gene UIMC1 colocalizing
with PCOS risk at PP= 0.55) (see Supplement) [23].

Discussion

Using a Bayesian colocalization approach, our results
highlight several genes and proteins that may have a role in
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PCOS pathophysiology. We identify seven genes and pro-
teins with strong evidence, and a further four genes and
proteins with nominal evidence, of colocalization. Whereas
potential mechanisms of action are unclear for some of the
genes, half of the genes and proteins (FSH, RAD50, ERBB3,
RPS26, and ZFP36L2) have links to the HPG axis and/or
follicular development. We also find that a majority of the
colocalizing genes are not the closest gene [6]. As the
mediating genes for most of the genetic risk loci are still
unclear [6], our results suggest genes with a higher like-
lihood of being involved in PCOS pathophysiology for
functional follow-up.

The results highlighted FSH as a potential mediator at the
rs11031005:T>C locus, corroborating the evidence of dis-
ruptions in gonadotropin signalling, specifically FSH
and LH, contributing to PCOS pathophysiology [24]. FSH
and LH are crucial hormones for follicular development and
ovulation, and our PheWAS of the rs11031005:T>C locus
showed an association with female reproductive traits [24].
LH and FSH share an alpha chain (encoded by CGA [25]),
and disruption of FSHB has been associated with higher LH
levels in humans [26]. It is thus possible that the PCOS
association at the rs11031005:T>C locus may partly be
caused by altered FSHB expression affecting LH levels. In
addition, our results also implicated ZFP36L2 at the
rs7563201:G>A locus; another gene with links to gonado-
tropin signalling [27]. Female mice with a disruption in the
ZFP36L2 gene have disturbed oocyte maturation and ovu-
lation, and its gene product has been implicated in regula-
tion of LH-receptor levels [25, 27]. Previous studies have
primarily suggested THADA to be the mediating gene at this
locus [6, 28], but there was no evidence of THADA
expression levels colocalizing with PCOS risk in any tissue
in our study. We therefore suggest that ZFP36L2 may be
the mediating gene at the rs7563201:G>A locus and that the
gene warrants further functional follow-up to evaluate a
potential role in PCOS pathophysiology.

At the rs2271194:A>T locus, two of the colocalizing
genes—ERBB3 and RPS26—are likely candidates for
mediating PCOS risk based on the literature, with both of
them connected to the HPG axis. Gonadotropins have
been shown to upregulate ERBB3 expression and data
suggest an important role in follicular development
[29, 30]. The other gene, RPS26, has been implicated in
DNA damage response and female fertility [25, 31, 32].
For example, oocyte-specific Rps26-knock-out mice have
arrested oocyte growth, impaired follicle development, as
well as poor response to gonadotropin stimulation [32].
Finally, we would like to highlight RAD50 at the
rs13164856:T>C locus. Female mice with disruptions in
RAD50 have reduced fertility [33] and the gene has been
implicated in follicular development and oocyte devel-
opment [34].

There are several strengths and limitations to our study.
First, shared regulatory mechanisms between e.g. different
genes and tissues can result in several gene/protein and
tissue combinations colocalizing. However, it is unlikely
that all of them are involved in disease development. The
true mediating gene and tissue combination may not even
have been investigated in the analyses, which may explain
why some PCOS loci did not colocalize with any genes or
proteins. In addition, we were surprised by the tissue types
in which gene expression was colocalizing with PCOS. The
disease is primarily thought of as being of hormonal and
metabolic origin, wherefore we expected the results to
highlight tissues types like the hypothalamus, the pituitary
gland, and ovary and adipose tissue [2, 3]. Yet, many of the
genes were colocalizing in seemingly unrelated tissue types,
such as the heart (RAD50 and C9orf3). Still, for other genes,
such as RPS26, even though the highest PP was achieved in
the expression dataset with the highest sample size (whole
blood in eQTLgen), the gene was also colocalizing with
PCOS risk in ovary. Indeed, it is possible that the results in
tissue types with many different cell types may have rela-
tively lower PPs of colocalization if the disease is caused by
changed expression in a single cell type in low abundance.
Therefore, while colocalization can highlight genes, pro-
teins, and tissues that are more likely to be involved in
PCOS pathophysiology, results should be seen as
hypothesis-generating rather than definitive evidence of a
causal role. Second, if the causal SNP (or a proxy) is
altering the coding sequence of a tested protein, it may
become a false positive pQTL through changed aptamer
binding. In our study, this could potentially result in
rs11031005:T>C being a false pQTL for FSH, yet this is
unlikely as the loci has previously been shown to associate
with FSH levels using another protein quantification
method [35]. Third, ancestral heterogeneity could poten-
tially bias results due to different LD structure [10], even
though all datasets primarily consisted of participants of
European descent and we restricted our study to risk loci
that were robust in a European-only GWAS [11, 13–15].
Fourth, the protein and expression datasets included both
men and women [11, 13–15], whereas the PCOS GWAS [6]
was performed in women only. If associations between
genotypes and expression/protein levels differ between the
sexes, it could bias results [36]. Fifth, Coloc also assumes a
single causal variant per locus [10]. Accordingly, loci with
multiple SNPs independently associated with either the
disease or the intermediate trait may result in false negative
colocalization results [10]. Still, Day et al. [6] did not report
any multi-signal loci in the PCOS GWAS.

Finally, we performed a range of sensitivity analyses that
largely supported the main results. We also presented an
experimental method to nuance evidence, interaction-Coloc;
however, we want to emphasize that the interaction-Coloc
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analyses should be interpreted with caution. The method has
not been validated and is inherently limited by previously
known interactions for each gene/protein, but we welcome
future evaluations and developments of the method.

In summary, our results highlight potential mediating
genes and proteins for almost a third of PCOS risk loci. Half
of these genes and proteins have links to the HPG axis and
follicular development, including the hormone FSH and the
genes ZFP36L2, ERBB3, RPS26, and RAD50. In combi-
nation with previous studies that have indicated these genes
as being involved in physiologic processes associated with
PCOS, these genes may be of particular interest for further
functional follow-up to assess if they have role in the dis-
ease development.

Data availability

Results are available in full in the supplementary tables and
accessible at https://doi.org/10.6084/m9.figshare.13655444
(see Supplement for access to all other datasets used).
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